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Background: This study evaluated the psychometric
properties of a new, comprehensive measure of knowl-
edge about genomic sequencing, the University of
North Carolina Genomic Knowledge Scale (UNC-GKS).
Methods: The UNC-GKS assesses knowledge in four
domains thought to be critical for informed decision
making about genomic sequencing. The scale was vali-
dated using classical test theory and item response the-
ory in 286 adult patients and 132 parents of pediatric
patients undergoing diagnostic whole exome sequencing
(WES) in the NCGENES study. Results: The UNC-GKS
assessed a single underlying construct (genomic knowl-
edge) with good internal reliability (Cronbach’s a = 0.90).
Scores were most informative (able to discriminate
between individuals with different levels of genomic

knowledge) at one standard deviation above the scale
mean or lower, a range that included most participants.
Convergent validity was supported by associations
with health literacy and numeracy (rs = 0.41–0.46). The
scale functioned well across subgroups differing in
sex, race/ethnicity, education, and English proficiency.
Discussion: Findings supported the promise of the UNC-
GKS as a valid and reliable measure of genomic knowl-
edge among people facing complex decisions about WES
and comparable sequencing methods. It is neither disease-
nor population-specific, and it functioned well across
important subgroups, making it usable in diverse popula-
tions. Key words: genomic sequencing; knowledge;
whole exome sequencing; informed decision making.
(MDM Policy & Practice 2017;2:1–13)

Rapidly evolving genetic testing practices have
begun to include panels of dozens of genes in

some clinical scenarios, or even more comprehen-
sive tests ranging from thousands of genes to the
entire genome or exome (e.g., whole exome sequen-
cing [WES]).1 Genome-scale tests (‘‘genomic sequen-
cing’’) are more complex than single gene tests in
important ways. For instance, they yield a wide
spectrum of potential results, many of which have
uncertain meaning. Providing informed consent for
genomic sequencing requires that people have
knowledge that includes, but goes beyond, knowl-
edge needed for informed consent for single gene

testing.2,3 People with greater knowledge of the
nature of genes and their effects on health, how
genes are inherited in families, and the potential
benefits, harms, and limitations of genomic sequen-
cing are better equipped than their less knowledge-
able peers to make informed decisions about under-
going sequencing, comprehend the meaning and
limitations of their results, and take appropriate
actions on learning these results.4,5 Yet many peo-
ple currently offering genomic sequencing have
inadequate knowledge and misconceptions about
basic genetics2,6 and are unfamiliar with genomic
sequencing. The unique and complex issues raised
by genome-scale tests are not well covered by exist-
ing knowledge measures. Having a validated, com-
prehensive measure of genomic knowledge could
help identify knowledge gaps and reduce the
chance that people’s decisions and responses to
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genomic sequencing are based on false assump-
tions, unrealistic expectations, or misconceptions.

To meet the need for a valid way to assess geno-
mic knowledge, we conducted the present study
to evaluate a new measure, the University of
North Carolina Genomic Knowledge Scale (UNC-
GKS). We conceptualized ‘‘genomic knowledge’’ as
encompassing four domains: the structure and func-
tion of genes, how they are inherited, their relation
to health, and potential benefits, harms, and limita-
tions of WES—a sequencing method that identifies
variants in the subset of the genome that encodes
the genes. These domains are based on our clinical
experiences with patients offered sequencing and
reflect a pragmatic approach that is highly relevant
to typical research applications of genomic sequen-
cing. The domains are also consistent with a frame-
work discussed by Smerecnik and colleagues7 that
includes awareness knowledge (knowing that there
are genetic risk factors for disease), how-to knowl-
edge (knowing how those risk factors influence risk
for developing a disease), and principles knowledge
(knowledge of pathways through which genes are
theorized to influence health). Our comprehensive
definition allows evaluation of the extent to which
people have a basic working knowledge they can
use to evaluate pros and cons, risks, uncertainties,
and alternatives to genomic sequencing.

The UNC-GKS was also designed to address sev-
eral limitations in existing measures. First, many

existing knowledge measures focus on testing for
mutations in a single gene8 or are specific to a par-
ticular disease.9,10 However, genome-scale tests, in
addition to becoming increasingly common, raise
unique and complex issues not well covered by
these kinds of existing measures. Moreover, because
the UNC-GKS is general rather than disease-
specific, scores can be compared across populations
affected by different diseases. The UNC-GKS can
also be used in populations affected by diseases for
which disease-specific measures do not exist. A sec-
ond issue addressed by the UNC-GKS relates to the
sociodemographic diversity of most patient popula-
tions. Given recognized subgroup differences in
knowledge and views of genomic sequencing,11,12 it
is often useful to compare knowledge scores across
subgroups in a study’s sample. However, these com-
parisons are only informative if observed subgroup
knowledge differences reflect real differences rather
than measurement artifacts. It is rare to see formal
analyses investigating the psychometric functioning
of a knowledge measure across different subgroups.
Finally, some existing knowledge measures assess
agreement or disagreement with statements about
genetics or genomics13—a common approach for
measuring beliefs or attitudes that may, but does
not necessarily, correspond to knowledge. Studies
in educational testing and knowledge assessment
more often use items with multiple-choice or true/
false response options that can be unambiguously
scored as correct or incorrect.14,15

Accordingly, our goal was to develop a measure
that met the following criteria: 1) it covers domains
of knowledge relevant to the complex decision con-
texts created by genome-scale sequencing; 2) it
applies to a broad range of contexts and populations
rather than being specific to a particular disease or
population; 3) it has adequate validity and reliabil-
ity across important sociodemographic subgroups;
and 4) it uses a true/false response scale. No existing
measures meet these criteria. We note that a recently
introduced measure of basic knowledge about genet-
ics and genetic causes of disease16 used true/false
response options; however, it was evaluated in a sam-
ple with little diversity, and analyses did not examine
the psychometric functioning of its items across sub-
groups, so it is unclear whether the measure can
assess knowledge with similar validity and reliability
across important subgroups. Moreover, it does not
include items about genomic sequencing and implica-
tions of potential sequencing results. The UNC-GKS
includes those types of items, and we examined its
item functioning across subgroups varying by sex,
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race/ethnicity, education, and English language profi-
ciency. Consequently, the present study was expected
to yield a new tool for research with diverse popula-
tions offered genomic sequencing.

METHODS

Participants

Participants were enrolled in the North Carolina
Clinical Genomic Evaluation by Next-generation
Exome Sequencing (NCGENES) study, which is
investigating the performance and best use of WES
in the diagnosis and clinical care of patients with
suspected genetic disorders.3 Adult and pediatric
patients evaluated at a UNC-affiliated hospital or at
Vidant Medical Center (Greenville, NC) were eligible
for NCGENES if they had symptoms or an illness
with a possible genetic etiology (as determined by
the referring physician) and if they were in one of
the following diagnostic groups: hereditary cancers,
cardiovascular disorders (mainly cardiomyopathies),
neurodevelopmental disorders, congenital disorders,
retinopathies, or selected other disorders (e.g., mito-
chondrial disorders). Adult patients and parents of
pediatric patients sequenced in NCGENES com-
pleted study measures including the UNC-GKS.
Participants also included a small sample of guar-
dians of adult patients whose cognitive or physical
functioning precluded completion of study proce-
dures; however, none were included in the present
sample. We recruited 418 participants (286 adult
patients, 132 parents) for the present study’s sample
between August 2012 and December 2014. All com-
pleted study measures in English.

Procedures

Eligible individuals were contacted by study staff
to schedule a study visit and then were mailed an
appointment letter, consent and HIPAA forms, edu-
cational brochures designed for the study, and an
intake questionnaire that included the UNC-GKS.
Potential participants then met with a certified
genetic counselor who obtained informed consent for
sequencing. At this meeting, consenting participants
returned their completed intake questionnaire, com-
pleted health literacy measures, and had their blood
drawn. Data for the present study came from the
intake questionnaire, the literacy measures, and UNC
Hospitals chart abstraction. Prior to completing the
UNC-GKS, participants had the opportunity to read
the mailed educational brochures, which provided

an overview of genomic sequencing and potential
sequencing results. They had not yet received the
more specific, personalized information provided
during informed consent procedures. Their intake
UNC-GKS scores therefore may not reflect the level of
genomic knowledge in the general public; instead,
these scores approximate knowledge likely to be
found in candidates for sequencing. The institutional
review boards of the University of North Carolina and
Vidant Medical Center approved the study protocols.

Measures

Development of UNC-GKS

The UNC-GKS was developed in an iterative pro-
cess that gathered feedback on measure domains
and on item content and clarity from a team that
included certified genetic counselors and medical
geneticists with extensive clinical experience edu-
cating patients, behavioral scientists with formal
training in communication and measure develop-
ment, and others with and without genetics exper-
tise. This team identified four key domains for the
measure: the structure and function of genes, how
they are inherited in families, their relation to
health, and strengths and limitations of WES. We
viewed the latter domain as a potentially separate
module that future users could adapt or replace for
other sequencing contexts (e.g., newborn or population
screening). We reviewed existing measures and
adapted or drafted knowledge items with the goal of
ensuring good content validity across the four domains
and cohesion across the underlying construct of geno-
mic testing knowledge.17 Some items within each
domain specifically addressed misconceptions that
could affect informed decision making (e.g., ‘‘A mother
and daughter who look alike are more genetically simi-
lar than a mother and daughter who do not look
alike’’). We used genetic terms that participants were
exposed to throughout the study (e.g., in consent pro-
cedures, brochures, and counseling). Because the term
gene variant was especially important, the instructions
included the following reminder:

We are using the term gene variant to mean a ver-
sion of a gene. Sometimes two people have the same

version of a gene (they have the same gene variant)
and other times two people have different versions
of a gene (they have different gene variants).

The resulting measure includes 25 items framed
as statements and uses the following response
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categories: true, false, and not sure/don’t know
(with the latter provided to minimize guessing).
The statements and correct answers appear in Table
1. We scored correct responses as 1 and incorrect
responses and not sure/don’t know responses as 0.

Sociodemographic and Medical Characteristics

Sociodemographic variables came from clinical
records or self-report in the intake questionnaire.
They included participant sex, race/ethnicity, educa-
tional attainment, and annual household income.
Nominating clinicians reported patients’ diagnosis
or symptoms; this information was supplemented
and confirmed during the informed consent session.

English Proficiency

We used 3-item subscale of the Cultural Identity
Scale18 to assess English proficiency in speaking,

reading, and writing. Responses, ranging from 1
(Poor) to 4 (Excellent), were summed to create a sin-
gle score for which higher scores indicated greater
proficiency (Cronbach’s a = 0.90).

Health Literacy

Study staff assessed general health literacy and
genetics-related health literacy in person using the
66-item Rapid Estimate of Adult Literacy Measure19

and the 8-item Rapid Estimate of Adult Literacy–
Genetics.6 For both scales, we created scores by
summing the number of words a participant pro-
nounced correctly; words that a participant pro-
nounced incorrectly or skipped were not counted.
Higher scores indicate greater general health lit-
eracy and genetics-related health literacy, respec-
tively. REALM raw scores can be used to categorize
people as having low health literacy (scores of 0–44,

Table 1 UNC Genomic Knowledge Scale Items

Content Area Item

Genes 1. Genes are made of DNA.
2. Genes affect health by influencing the proteins our bodies make.
3. All of a person’s genetic information is called his or her genome.
4. A person’s genes change completely every 7 years.*
5. The DNA in a gene is made of four building blocks (A, C, T, and G).
6. Everyone has about 20,000 to 25,000 genes.

Genes and health 7. Gene variants can have positive effects, harmful effects, or no effects on health.
8. Most gene variants will affect a person’s health.*
9. Everyone who has a harmful gene variant will eventually have symptoms.*

10. Some gene variants have a large effect on health while others have a small effect.
11. Some gene variants decrease the chance of developing a disorder.
12. Two unrelated people with the same genetic variant will always have the same

symptoms.*
How genes are

inherited in families
13. Genetic disorders are always inherited from a parent.*
14. If only one person in the family has a disorder it can’t be genetic.*
15. Everyone has a chance for having a child with a genetic disorder.
16. A girl inherits most of her genes from her mother while a boy inherits most of his genes

from his father.*
17. A mother and daughter who look alike are more genetically similar than a mother and

daughter who do not look alike.*
18. If a parent has a harmful gene variant, all of his or her children will inherit it.*
19. If one of your parents has a gene variant, your brother or sister may also have it.

Whole exome
sequencing

20. Whole exome sequencing can find variants in many genes at once.
21. Whole exome sequencing will find variants that cannot be interpreted at the present time.
22. Whole exome sequencing could find that you have a high risk for a disorder even if you do

not have symptoms.
23. Your whole exome sequencing may not find the cause of your disorder even if it is genetic.
24. The gene variants that whole exome sequencing can find today could have different

meanings in the future as scientists learn more about how genes work.
25. Whole exome sequencing will not find any variants in people who are healthy.*

Note: Correct answer to the items is true unless followed by an asterisk (*).
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less than or equal to sixth-grade reading level), mar-
ginal literacy (scores of 45–60, seventh- to eighth-
grade reading level), and functional health literacy
(scores of 61–66, ninth-grade or higher reading
level).19 REAL-G scores of three or less have been
interpreted as indicating low genetics-related health
literacy (less than or equal to sixth-grade level).6

Numeracy

We measured subjective numeracy with a vali-
dated 3-item version of the Subjective Numeracy
Scale.20–22 Items assess perceived numerical apti-
tude and preference for numbers on a scale from 1
(Not at all good/helpful) to 6 (Extremely good/help-
ful). Summing responses yields a single score for
which higher scores indicated stronger preference
for numerical over textual information and greater
perceived ability to perform mathematical tasks
(Cronbach’s a = 0.89). We measured objective
numeracy with a validated measure that presents
three arithmetic problems testing the use of propor-
tions, fractions, and percentages.23 Summing cor-
rect responses yields an objective numeracy score.

Data Analysis

We examined the psychometric properties, factor
structure (to evaluate the assumption that all items
reflect a single underlying construct—in this case,
genomic knowledge), and convergent validity (to
evaluate the scale’s association with conceptually
related variables) of the UNC-GKS. We also con-
ducted item response theory (IRT) analyses that
offer more in-depth information than classical test
theory methods, including evaluation of variation
in item performance (differential item functioning)
across demographic subgroups.

Item-Level Descriptive Statistics

First, we examined the proportion of participants
correctly answering each UNC-GKS item to evaluate
whether items were too easy (ceiling effects, indi-
cated by .90% of participants answering them cor-
rectly) or too hard (floor effects, indicated by .90%
of participants answering them incorrectly).
Second, we computed inter-item tetrachoric correla-
tions24 to evaluate whether UNC-GKS items were
positively associated with each other, as we would
expect. Third, we evaluated whether responses to
each item were consistent with the sum of the
responses to the remaining items by examining

whether item-total correlations were positive.
Negative or low item-total correlations indicate
items that may need to be reworded or discarded.

Factor Analyses

Before completing IRT analyses, we checked the
assumption that the measure was unidimensional
by conducting a confirmatory factor analysis of
the inter-item tetrachoric correlation matrix using
the Mplus25 ‘‘weighted least squares with robust
standard errors, mean- and variance-adjusted’’ algo-
rithm. We evaluated model fit using the root mean
square error of approximation (RMSEA; acceptable
if \0.05),26 the Tucker-Lewis index (TLI; acceptable
if .0.95),27 the comparative fix index (CFI; accepta-
ble if .0.95),28 and residual correlations between
items via modification indices. Large modification
indices (.10) reveal possible local dependence for
sets of items, indicating possible violation of the
local dependence assumption of IRT. Local depen-
dencies indicate content redundancy or similar
wording between two or more items and may sug-
gest additional factors exist in the scale.

IRT Analyses

We evaluated performance of the UNC-GKS items
by fitting one-, two-, and three-parameter logistic
IRT models (1PL, 2PL, and 3PL, respectively) using
the software program IRTPRO.29 The 1PL model30

characterizes each item by a single parameter—the
difficulty parameter, b, which indicates the level of
genetic knowledge at which there is a 50% chance
of answering the item correctly (i.e., how difficult
the item is). The 2PL model31 estimates both b and
an additional parameter, the discrimination para-
meter, a, which reflects the degree to which item
responses are associated with the latent construct
being measured (how effectively an item discrimi-
nates between individuals with higher versus lower
genomic knowledge). The 3PL model31 estimates
the a and b parameters and an additional parameter,
c, which accounts for guessing. We chose the best
fitting model by examining chi-square tests of the
likelihood ratio for each model pair, then examined
this model’s goodness of fit to the data using
Orlando and Thissen’s S-x2 statistic,32,33 for which
a nonsignificant result indicates adequate model fit
at the item level (i.e., how well each item fits the
model). We controlled for multiple comparisons
using the Benjamini-Hochberg procedure.34,35
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In addition to items flagged for potential local
dependence in the confirmatory factor analysis, we
used the IRT-based local dependence statistic36 to
identify items that were excessively related after
controlling for the underlying construct (genomic
knowledge)—an undesirable characteristic. Values
.10 indicate substantial local dependence. We then
conducted an additional check on the dimensional-
ity of the data by estimating a bifactor IRT model in
which each locally dependent set of items was spec-
ified as a second-order factor. Violations of local
dependence were deemed negligible if the variance
accounted for by first-order or general factor (com-
mon variance)37–40 was at least 0.85.

Next, we examined differential item functioning
(DIF), which enables evaluation of whether items
behave differently across subgroups after holding
the underlying construct (genomic knowledge) con-
stant.41 It detects a form of measurement bias that
occurs when people in different groups with the
same level of the underlying construct have a differ-
ent probability of getting a particular score on a
scale. DIF may indicate that attributes other than
those the scale is intended to measure are affecting
responses. In the present study, we examined DIF
across sex, race/ethnicity, education, and English
proficiency groups. For each item, we used a logis-
tic regression model to evaluate whether item
responses were associated with group membership
after controlling for participants’ IRT score on the
UNC-GKS. Uniform DIF (of a similar magnitude
across the range of the underlying construct) was
evaluated with a likelihood ratio test comparing a
logistic regression model with one predictor (IRT
score) to a model with both IRT score and an addi-
tional predictor (group membership); this approach
allowed us to evaluate whether, after controlling for
overall level of genomic knowledge, one group was
more likely than the other to answer the item cor-
rectly. Nonuniform DIF (for which magnitude may
differ across the range of the underlying construct)
was evaluated with a likelihood ratio test compar-
ing a model with both predictors (IRT score and
group membership) to a model that also included
their interaction term. This model allowed us to
evaluate whether an item provided better measure-
ment of genomic knowledge for one group versus
another. We used the Benjamini-Hochberg proce-
dure to make inferential decisions in multiple
comparisons.

According to common practice, we planned to
drop items if they did not fit well, substantially vio-
lated local dependence, or functioned differently

for key groups. The remaining items would then be
used to calibrate a final IRT model to use in subse-
quent analyses.

IRT Scoring and Reliability

We computed IRT scores for the UNC-GKS based
on the parameters from the final IRT model. These
scores are relative to the population of this sample,
assuming a normal distribution with a mean of 0
and standard deviation of 1. To be more easily inter-
pretable, we scaled the IRT scores to the T-score
metric with a mean of 50 and a standard deviation
of 10. Analysts typically compute IRT scaled scores
based on response patterns, essentially weighting
item responses by their IRT a parameters so that
items more strongly related to the underlying con-
struct have a greater impact on the score. However,
analysts also often use summed scores because they
do not require special software. To enable practical
use of scaled scores, we computed a scoring table to
convert summed scores to expected scaled scores.
We also computed a scoring table for a 19-item ver-
sion of the UNC-GKS that omitted the WES items,
for use when those items are not needed. The 19-
item version was scored using the 19 IRT para-
meters from the 25-item calibration so that scores
would be on the same scale and comparable.

Next, we used the IRT test information function
(TIF) to examine the precision of scale scores—the
extent to which an estimate of genomic knowledge
at a given scale score is reasonably close to the true
value. Given that these scores estimate individuals’
genomic knowledge, greater precision improves the
scale’s ability to distinguish between individuals
with different levels of genomic knowledge in addi-
tion to providing other useful information. The TIF
sums information functions for each individual
item into a single function. Greater test ‘‘informa-
tion’’ indicates greater precision.42 TIF is depicted
in a graphical format where the amount of informa-
tion is plotted against the latent construct (here,
genomic knowledge) to show how well the test esti-
mates the construct over the full range of individu-
als’ ability or knowledge. The areas of greatest mea-
surement precision are indicated by the highest
points of the curve.

Classical Test Theory Reliability

We evaluated internal consistency reliability of
the 25 UNC-GKS items by computing Cronbach’s
coefficient a.43 Ideal a values are at least 0.70,44
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indicating a set of items that are strongly related to
one another.

Convergent Validity

We calculated Pearson correlations between the
UNC-GKS scale score and the REAL-G, REALM,
and subjective and objective numeracy scales to
evaluate convergent validity, or the extent to which
measures that should be associated with each other
are in fact associated. We predicted that the UNC-
GKS would correlate positively with genetics-
related literacy and general health literacy, because
individuals with greater ability to obtain, process,
and understand health information should be more
able to learn the domains of information assessed
by the UNC-GKS. We also predicted positive corre-
lations between the UNC-GKS and both measures of
numeracy because the ability to reason and apply
numerical concepts influences ability to learn these
domains of information.45

RESULTS

Sample

The final sample included 286 adult patients
and 132 parents (Table 2). Three quarters were
women and 17% were racial/ethnic minorities.
Participants’ mean age was 47 years (range 17–84
years). Nearly 20% of participants had not attended
college; just over half had a college degree. The
median annual household income category was
$60,000 to $74,999. Nearly 13% of the sample had
marginal or worse general health literacy and 6%
had low genetic literacy. About 18% reported less
than ‘‘excellent’’ proficiency in speaking, writing,
and/or reading English.

Scale and Item Descriptive Statistics

The number of missing responses was minor,
ranging from 2 to 8 of 418 participants per item.
The mean proportion of participants correctly
answering each item was 0.73 (SD = 0.12) with a
range of 0.48 to 0.89 across the items. Figure 1
shows the distribution of responses for each item,
revealing items for which knowledge and uncer-
tainty were highest and lowest. Items from the four
domains assessed by the measure (the structure and
function of genes, how they are inherited, their rela-
tion to health, and the strengths and limitations of

Table 2 Participant Characteristics (N = 418)

n (%) Mean (SD)

Role
Adult patient 286 (68.4)
Parent of pediatric patient 132 (31.6)

Age (years)a 46.5 (14.3)
Sex

Female 315 (75.4)
Male 103 (24.6)

Ethnicity
Non-Hispanic 391 (93.5)
Hispanic 19 (4.5)
Missing 8 (1.9)

Race
White 345 (82.5)
Non-White 71 (17.0)
Missing 2 (0.5)

Education
Less than high school 28 (6.7)
High school graduate 52 (12.4)
Some college 88 (21.1)
Associates degree or
vocational program

69 (16.5)

4-Year college degree 108 (25.8)
Graduate degree 71 (17.0)
Missing 2 (.5)

Income ($)
\30,000 107 (25.6)
30,000-59,999 83 (19.9)
60,000-89,999 84 (20.1)
90,000-104,999 17 (4.1)
.105,000 97 (23.2)
Missing 30 (7.2)

Clinical group
Hereditary cancers 100 (23.9)
Cardiovascular disorders 46 (11.0)
Neurodevelopmental
disorders

112 (26.8)

Congenital disorders 32 (7.7)
Other 128 (30.6)

General health literacy 63.0 (6.7)
Functional (9th grade
and above)

358 (85.6)

Marginal (7th or 8th grade) 44 (10.5)
Low (6th grade and below) 12 (2.9)
Missing 4 (1.0)

Genetics-related health literacy 7.1 (1.6)
High (above 6th grade) 384 (91.9)
Low (6th grade and below) 23 (5.5)
Missing 11 (2.6)

Objective numeracy 1.7 (1.0)
Subjective numeracy 4.6 (1.3)

aAges for participating parents of pediatric patients were not col-
lected early in the study; therefore, descriptive statistics for partici-
pant age are based on all adult patients and 27 of the 132 participat-
ing parents.

UNC GENOMIC KNOWLEDGE SCALE

ARTICLE 7



WES) were well distributed across the range of
items answered correctly, incorrectly, or for which
there was uncertainty. There were no floor or

ceiling effects; thus, no items were too easy or too
hard for this sample. All correlations among items
were positive and statistically significant, with a
mean of r = 0.46 (SD = 0.15) and range of 0.10 to
0.90. Similarly, all item-total correlations were posi-
tive and of medium to large magnitude, with a
mean of r = 0.49 (SD = 0.11) and range of 0.29 to
0.68. Thus, item-level statistics did not identify any
items as candidates for revision or removal and sub-
sequent analyses considered all 25 items.
Distributions of the summed score for the 19 and 25
item versions of the UNC-GKS appear in Figures 2
and 3. Scores are skewed to the left, indicating that
participants correctly answered most items.

Factor Analyses

The one-factor confirmatory factor analysis
model fit the data well (x2 = 476.4, df = 275, P \
0.001; RMSEA = 0.04; CFI = 0.96; TLI = 0.95), indi-
cating that the items represented a single underly-
ing construct. The standardized factor loadings
were positive, statistically significant, and of mod-
erate to large magnitude (0.40–0.95); thus, all items
were associated with the underlying construct of
genomic knowledge (Table 4). Two modification
indices indicated possible local dependence
between Items 5 and 6, and between Items 9 and 12.
Fitting a model that allowed the errors for these two
item pairs to correlate led to good fit (x2 = 456.0,
df = 273, P \ 0.001; RMSEA = 0.04; CFI = 0.96;
TLI = 0.96) with a statistically significant improve-
ment in fit over the simpler model (x2

diff = 20.4, df =

Figure 1 Item response distributions for the University of North

Carolina Genomic Knowledge (UNC-GKS)

Figure 2 Summed score distribution for the 25-item University
of North Carolina Genomic Knowledge (UNC-GKS)

Figure 3 Summed score distribution for the 19-item University
of North Carolina Genomic Knowledge (UNC-GKS)
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2, P \ 0.001). However, the residual correlations
were not large (r = 0.33 for Items 5 and 6, r = 0.42
for Items 9 and 12) and the items’ text did not sug-
gest content redundancy so we retained them for
further evaluation.

Item Response Theory Analyses

The UNC-GKS items varied in their ability to dis-
criminate between participants with differing
amounts of genomic knowledge, as indicated by the
better fit of the 2PL rather than the 1PL model
(x2

diff = 221.37, df = 24, P \ 0.001). The 2PL model
fit the items well; no items exhibited misfit or local
dependence (P \ 0.05). Participants were not likely
to have been guessing when they answered ‘‘true’’
or ‘‘false,’’ given that the 3PL model did not fit bet-
ter than the 2PL model (x2

diff = 2.92, df = 24, P =
1.00); participants who were unsure of their
responses were likely selecting ‘‘not sure/don’t

know.’’ The S-x2 and LD statistics appear in
Table 3.

To further evaluate the residual correlations
found in the confirmatory factor analysis model
between Items 5 and 6 and Items 9 and 12, we esti-
mated a bifactor 2PL model with each of these item
pairs loading on a second-order factor in addition to
the overall genomic knowledge factor. Explained
common variance for this model was 0.91; thus,
most of the variance in the items was attributable to
the overall factor. This finding supported our deci-
sion to retain these items and led us to consider the
data to be ‘‘essentially unidimensional,’’ meaning
that there were no other meaningful underlying
dimensions. Thus, these four items could be consid-
ered part of the overall factor.

DIF detection analyses, estimated with logistic
regression models, did not reveal any statistically
significant parameters (P \ 0.05) for uniform or
nonuniform DIF. That is, after controlling for level
of genomic knowledge, the scale items did not

Table 3 Results of the One-Factor Confirmatory Factor Analysis Model and Two-Parameter Logistic Item
Response Theory Model for University of North Carolina Genomic Knowledge Scale items

CFA Model 2PL IRT Model Parameters 2 PL IRT Model Item Fit

Item Number L a SE b SE S-x2 df

1 0.55 0.92 0.18 22.56 0.43 21.55 18
2 0.67 1.72 0.23 20.83 0.11 20.82 16
3 0.60 1.27 0.18 20.94 0.14 20.83 19
4 0.59 1.19 0.17 20.84 0.14 18.69 18
5 0.64 1.56 0.21 20.49 0.10 14.78 15
6 0.52 0.96 0.15 20.10 0.12 15.86 17
7 0.75 1.80 0.28 21.66 0.17 26.53 17
8 0.58 1.35 0.19 0.09 0.10 15.16 15
9 0.67 1.42 0.20 20.69 0.11 19.87 15
10 0.84 1.98 0.30 21.52 0.15 13.01 15
11 0.57 1.26 0.18 20.07 0.10 18.99 16
12 0.78 1.82 0.26 21.21 0.13 18.69 15
13 0.40 0.59 0.13 20.62 0.22 18.27 19
14 0.70 1.51 0.22 21.44 0.17 17.43 18
15 0.48 0.77 0.14 21.48 0.27 23.4 20
16 0.65 1.40 0.20 21.19 0.15 22.67 17
17 0.53 0.94 0.15 20.53 0.14 14.25 18
18 0.81 1.72 0.26 21.59 0.17 17.5 16
19 0.77 1.80 0.26 21.40 0.15 18.06 17
20 0.74 2.20 0.29 20.55 0.09 16.71 13
21 0.73 2.01 0.27 20.53 0.09 9.28 14
22 0.95 4.90 0.90 20.90 0.07 16.04 9
23 0.90 3.58 0.56 20.84 0.08 6.1 12
24 0.94 3.80 0.63 21.01 0.09 13.93 11
25 0.86 2.91 0.42 20.79 0.08 17.36 12

Note: CFA = confirmatory factor analysis; 2PL IRT = two-parameter logistic item response theory; SE = standard error; df = degrees of freedom.
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function differently in terms of their difficulty or
how related they were to genomic knowledge when
answered by individuals who differed on each of
the key demographic groups of sex, race/ethnicity,
education, and English proficiency. The measure
performed comparably across these groups.

Our analytic plan called for items to be dropped
prior to calibration of a final IRT model if they did
not fit well, substantially violated local depen-
dence, or functioned differently for key groups.
Because no items were flagged for removal using
these criteria, the original 2PL calibration was the
final IRT model used for scoring. As shown in Table
3, the difficulty (b) parameters for the items ranged
from 22.56 to 0.09; higher b parameters indicate
more difficult items. The discrimination (a) para-
meters indicated that all items were highly related
to the underlying construct of genomic knowledge
and that they were able to discriminate between
individuals with different levels of genomic knowl-
edge. Items specific to WES (Items 20–25) had a
parameters .2.0 and thus were particularly good at
discriminating between these individuals, perhaps
because the items covered information that was rel-
atively unfamiliar to participants, many of whom
had not known about WES prior to the study.

Item Response Theory Scoring and Reliability

We examined score precision (TIF) and reliability
for both forms of the scale (see Figure 4). For the 25-
item UNC-GKS, precision and reliability was espe-
cially high for T-scores between 32 and 49, and
reliability was good (� 0.70) for all scores below 61
(approximately one standard deviation above the
mean). For the 19-item UNC-GKS, precision and
reliability was highest for T-scores between 36 and

40, and reliability was good (�0.70) for all T-scores
below 60. Thus, reliability was above accepted cut-
offs for individuals who correctly answered �23
items on the 25-item UNC-GKS or �17 items on the
19-item UNC-GKS. Table 4 provides a scoring trans-
lation table for converting summed scale scores to
T-scores based on the final (2PL) IRT model using
the overall sample as a reference group. The correla-
tion between T-scores resulting from the two ver-
sions of the scale was 0.97.

Classical Test Theory Reliability

Internal consistency reliability was high
(Cronbach’s a = 0.90) for the 25-item UNC-GKS and
for the 19-item UNC-GKS (a = 0.86).

Convergent Validity

As expected, the UNC-GKS correlated moderately
and positively with general health literacy, genet-
ics-related health literacy, and objective and subjec-
tive numeracy (Table 5), providing evidence of con-
vergent validity.

DISCUSSION

In order to make informed decisions about
accepting or declining sequencing, understand their
sequencing results, and decide on appropriate ways
to apply these results, people need knowledge about
the structure and function of genes, how genes are
inherited in families, effects of genes on health, and
potential benefits, harms, and limitations of sequen-
cing.4,5 Our study used rigorous methods to evalu-
ate the psychometric properties of the UNC-GKS,
which assesses these domains of knowledge.
Findings indicate that all of the scale’s items mea-
sured genomic knowledge well, and taken together,
they cover a broad range of critical genomic knowl-
edge. Thus, the UNC-GKS can generate a single
score representing a person’s genomic knowledge.

Importantly, findings indicated that the UNC-
GKS measures genomic knowledge in the same way
regardless of people’s sociodemographic back-
ground. That is, different subgroup scores indicate
different levels of genomic knowledge rather than
differences in the way people in certain subgroups
understood scale items or differences in their
response patterns that are unrelated to their level of
genomic knowledge. As such, the UNC-GKS is valid
for a variety of subgroups and researchers can use it

Figure 4 Item response theory test information and reliability

for the University of North Carolina Genomic Knowledge (UNC-
GKS) T-scores.
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with diverse populations. For instance, group differ-
ences in UNC-GKS scores could be used to advance
understanding of disparities in genomic sequencing.

Furthermore, UNC-GKS scores were most infor-
mative below one standard deviation above the
scale’s mean. Thus, the scores are precise for most
individuals, with slightly less reliability, although
still well within an acceptable range for those who
answer all items correctly or those who give one
incorrect answer (i.e., scores at one standard deviation
above the scale’s mean or higher). These high-scoring
individuals may have less need for educational

interventions, so this psychometric property of the
UNC-GKS does not detract from its usefulness. In
sum, the measure is reliable and especially sensitive
for identifying people with varying degrees of low to
moderately high genomic knowledge—the group in
greatest need of education and decision support when
offered genomic sequencing.

We created two versions of the UNC-GKS: a 25-
item version that includes items assessing knowl-
edge about strengths and limitations of WES (the
context for which we developed the scale) and a 19-
item version that excludes these WES-specific items.
T-scores were comparable for these two forms—an
advantage for researchers and clinicians who use
only the first 19 items because they are not offering
WES, or they wish to develop a new set of items spe-
cific to the type of testing they are using. Our team
has developed and will validate versions of the scale
that substitute the WES items with new items rele-
vant to the application of genomic sequencing to
newborn screening and to screening adults for highly
penetrant mutations that confer risk for treatable or
preventable diseases.

Moreover, findings indicated that participants
were not guessing, likely as a positive result of
including the ‘‘not sure/don’t know’’ response
option. This response option also allows evaluation
of the extent to which individuals are unsure of
responses versus having been forced to indicate that
each item is true or false, without being able to indi-
cate uncertainty. Being able to evaluate uncertainty
may have practical utility in some applications. For
instance, items with high unsure/don’t know
responses may represent specific areas that should
be targeted with educational efforts.

Limited literacy and numeracy—basic abilities
necessary for seeking, comprehending, and using
health information46,47—is a prevalent problem and

Table 4 Table for Converting Summed Scores to
Item Response Theory (IRT)–Scaled T-Scores for the
University of North Carolina Genomic Knowledge

Scale (UNC-GKS)

25-Item UNC-GKS 19-Item UNC-GKS

Summed

Score T-Score

Standard

Error T-Score

Standard

Error

0 21.7 5.0 21.9 5.1
1 24.3 4.6 24.6 4.7
2 26.7 4.2 27.1 4.3
3 28.8 3.8 29.4 4.0
4 30.6 3.5 31.4 3.8
5 32.2 3.2 33.3 3.6
6 33.7 3.0 35.1 3.5
7 35.0 2.8 36.8 3.5
8 36.2 2.7 38.4 3.5
9 37.3 2.6 40.1 3.5
10 38.4 2.5 41.8 3.6
11 39.5 2.4 43.5 3.7
12 40.6 2.4 45.4 3.8
13 41.6 2.4 47.3 4.0
14 42.7 2.5 49.4 4.2
15 43.9 2.6 51.8 4.5
16 45.1 2.7 54.4 4.9
17 46.3 2.9 57.4 5.4
18 47.7 3.1 61.0 5.9
19 49.3 3.4 65.0 6.5
20 51.1 3.7
21 53.1 4.1
22 55.5 4.5
23 58.2 5.1
24 61.6 5.7
25 65.4 6.3

Note: This table can be used to convert the summed count of a partici-
pant’s correct responses (summed scores) to item response theory
scaled scores in the T-score metric, allowing easy comparison across
studies and populations. These T-scores were calculated using this
study’s sample, a population mean of 50, and standard deviation of
10. To convert a score, find a participant’s summed score in column 1
and follow the row to determine the IRT-scaled T-score and standard
error for the 25- and 19-item versions of the UNC-GKS.

Table 5 Pearson Correlations Between University
of North Carolina Genomic Knowledge (UNC-GKS)

Scale Score and Other Measures

Scale

Correlation With

UNC-GKS 95% CI n

Genetics-related
health literacy

0.46* 0.38-0.53 407

Health literacy 0.40* 0.31-0.47 410
Subjective numeracy 0.43* 0.34-0.52 412
Objective numeracy 0.41* 0.32-0.48 418

*P \ 0.001.
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one that is highly relevant for researchers and clini-
cians who need to educate individuals about geno-
mic sequencing. Both were associated with lower
scores on the UNC-GKS. These associations have
been identified as important in the context of genetic
testing and genomic sequencing,45 and they have
contributed to calls to increase educational efforts
necessary for making scientific knowledge about
genetics and genomics more broadly accessible.4

Additional research will be needed to evaluate
additional aspects of validity, including other corre-
lates of genomic knowledge measured by the UNC-
GKS, group differences in genomic knowledge that
may contribute to disparities in decision making and
decision outcomes, and whether UNC-GKS scores
identify people at risk for experiencing poor psycho-
social or medical outcomes after testing. Research
using this measure may also help guide development
of psychoeducational interventions to address
knowledge deficits, targeting clinicians (e.g., training
in communicating effectively about genomic sequen-
cing), patients and research participants (e.g., more
useful and accessible educational resources), or both.

Future studies should also address limitations of
the present study. Some of our subgroups were
smaller than a suggested subgroup size of 100 for
DIF analyses.48 This rule of thumb is an estimate,
and given the distribution of our item responses, we
believe our results to be reliable. Yet a more diverse
sample would enable more in-depth examination of
differential item functioning across subgroups,
including the potential for more difficult or complex
items to function poorly in some subgroups. We note
that we did not find evidence for this type of prob-
lem, perhaps in part because our items were itera-
tively reviewed by measurement and clinical
experts. However, it would be valuable to recruit a
larger proportion of underserved minority groups,
individuals with less than a high school education,
and those with low health literacy. In addition, the
research was conducted primarily at an academic
medical center in a single geographic area. Future
research should evaluate the measure in community-
based samples and other geographic areas. Finally,
the scale is likely to be too long for some purposes,
and validation of a briefer form could increase its
usefulness.

CONCLUSION

This study used a rigorous approach to demon-
strate that the UNC-GKS is a promising tool for

advancing research on people’s decisions about
and responses to genomic sequencing. The scale
has promising psychometric properties across dif-
ferent sociodemographic subgroups, making it
appropriate for research in diverse populations. In
addition, it covers domains of knowledge consid-
ered by a multidisciplinary team of experts to be
critical for informed decision making about geno-
mic sequencing, which is rapidly replacing single
gene testing in some populations. Moreover, the
scale is not disease or population specific, making
it usable across a wide range of populations facing
complex decisions involving next generation geno-
mic sequencing.
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