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Abstract

Aim—Late-onset Alzheimer’s disease (LOAD) accounts for 95% of all Alzheimer’s cases and is 

genetically complex in nature. Overlapping clinical and neuropathological features between AD, 

FTD and Parkinson’s disease highlight the potential role of genetic pleiotropy across diseases. 

Recent genome-wide association studies (GWASs) have uncovered 20 new loci for AD risk; 

however, these exhibit small effect sizes. Using NGS, here we perform association analyses using 

exome-wide and candidate-gene-driven approaches.
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Methods—Whole-exome sequencing was performed on 132 AD cases and 53 control samples. 

Exome-wide single-variant association and gene burden tests were performed for 76 640 

nonsingleton variants. Samples were also screened for known causative mutations in familial 

genes in AD and other dementias. Single-variant association and burden analysis was also carried 

out on variants in known AD and other neurological dementia genes.

Results—Tentative single-variant and burden associations were seen in several genes with kinase 

and protease activity. Exome-wide burden analysis also revealed significant burden of variants in 

PILRA (P = 3.4 × 10−5), which has previously been linked to AD via GWAS, hit ZCWPW1. 

Screening for causative mutations in familial AD and other dementia genes revealed no pathogenic 

variants. Variants identified in ABCA7, SLC24A4, CD33 and LRRK2 were nominally associated 

with disease (P < 0.05) but did not withstand correction for multiple testing. APOE (P = 0.02) and 

CLU (P = 0.04) variants showed significant burden on AD.

Conclusions—In addition, polygenic risk scores (PRS) were able to distinguish between cases 

and controls with 83.8% accuracy using 3268 variants, sex, age at death and APOE ε4 and ε2 

status as predictors.
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Introduction

Alzheimer’s disease (AD) is the most common form of dementia, affecting over 850 000 

people in the UK alone, a number expected to rise to 1 million by 2025 [1]. There are two 

forms distinguished by the age when symptoms first appear. In the early-onset familial form 

(fEOAD), symptoms appear before 65 years of age; however, this only accounts for about 

5% of cases [2]. Mutations in the familial genes APP, PSEN1 and PSEN2 are rare but highly 

penetrant. Individuals with these mutations are almost certain to develop fEOAD [3]. The 

majority of cases are sporadic in nature and classified as late-onset Alzheimer’s disease 

(LOAD), with symptoms appearing at 65 years or later. This represents the other 95% of all 

incidences [4]. Presence of the APOE ε4 allele is the largest known genetic risk factor for 

LOAD, with a two- to three-fold increase in risk for carriers and 15-fold for individuals 

homozygous for the ε4 allele [5]. The rare ε2 allele confers a protective effect and appears 

to reduce AD risk by up to 40%.

Genome-wide association studies (GWAS) have identified 20 risk variants associated with 

LOAD [6–9]; this has implicated several new pathways in AD, such as endocytic processing, 

inflammation and cholesterol transport [8]. Although highly replicable in Caucasian groups, 

these effects have been difficult to replicate in other populations [10]. These common 

variants also exert only small effects on disease risk, which does not account for much of the 

missing heritability in AD. It is likely that low-frequency variants, not detected by GWAS, 

could have greater effect sizes and therefore explain more of the heritable component.

Advances in next-generation sequencing (NGS) in recent years have allowed exomes and 

entire genomes to be explored at single-base level. The exome accounts for approximately 
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1% of the human genome, yet it harbours almost 85% of known mutations underlying 

disease-related traits [11]. Therefore, rare mutations can be identified using this technology. 

Whole-exome sequencing (WES) has identified a rare variant in the TREM2 gene, R47H, 

associated with a five-fold increase in AD risk [12]. These studies have also found rare 

causative variants in CLU and SORL1 that were overlooked by GWAS [13]. By identifying 

the genetic variants of individuals, WES has the potential to uncover more rare variants 

associated with AD risk.

There are several overlapping clinical and neuropathological features across different 

dementias. For example, dementia with Lewy bodies (DLB) shares clinical features with AD 

and Parkinson’s disease (PD), often resulting in misdiagnosis. PD and DLB are both 

synucleinopathies presenting with alpha-synuclein deposits in the brain, whereas APOE ε4 

increases risk of disease in AD and DLB [14]. This suggests that genetic risk factors may 

contribute to more than one disease, known as genetic pleiotropy, whereby a gene or DNA 

variant can influence multiple phenotypes.

Clinically well-characterized brain tissue samples from healthy individuals remain a limiting 

factor in the study of neurological disorders [15]; Brains for Dementia Research (BDR) 

(www.brainsfordementiaresearch.org.uk) is a network of six leading UK brain banks (jointly 

funded by Alzheimer’s Research UK and Alzheimer’s Society), specifically created to 

address the shortages of high-quality brain tissue samples from healthy individuals and those 

with dementia. This project is a planned brain donation programme with over 3000 

participants, aged 65 years and above, with and without the diagnosis of dementia. Regular, 

standardized cognitive and psychiatric assessment of potential brain donors during life is 

critical in optimizing the value of brain tissue for research [16,17].

We performed single-variant and burden analysis on coding variants to identify significant 

associations with LOAD. We also report on screening of 132 LOAD patients from the 

Brains for Dementia Research (BDR) resource with the aim to identify causative or 

predicted pathogenic coding variants in 40 selected genes. Of these, 16 are associated with 

familial forms of neurodegeneration, including fEOAD (APP, PSEN1 and PSEN2), 

frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS) (C9or72, 

CHMP2B, FUS, GRN, MAPT, TARDBP and VCP), PD (LRRK2, PARK2, PARK7, PINK1 
and SNCA) and Prion disease (PRNP). The remaining genes were selected from AD GWAS 

and NGS (20 GWAS, APOE and TREM2).

Polygenic risk scores (PRS) have been increasingly used to investigate the effect of multiple 

genetic variants on disease traits. It is based on the notion that many variants with small 

effects will not be detectable at genome-wide significance; however, collectively they may 

have a strong effect [18]. PRS were generated to examine the association between multiple 

genetic markers and their collective effects on LOAD.
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Materials and Methods

BDR samples

The BDR cohort comprised 132 clinically diagnosed LOAD (age at onset ≥65 years) cases 

and 53 cognitively normal controls; all diagnoses were neuropathologically confirmed 

(Table S1). Neuropathological diagnoses were undertaken by experienced neuropathologists 

within the Brains for Dementia Research network and were based on Thal Aβ phases [19], 

neurofibrillary tangle Braak stages [20], Consortium to Establish a Registry for Alzheimer’s 

disease (CERAD) criteria for AD [21] which are all combined in the National Institute on 

Aging – Alzheimer’s Association guidelines [22], together with the Newcastle/McKeith 

criteria for Lewy body disease [23] and for FTLD-TDP as described by Mackenzie et al 

[24]. While there are no fully established criteria for vascular pathology, the VCING criteria 

were used [25] along with those proposed by Smallwood et al [26] and Grinberg and Thal 

[27].

Demographics of case and control samples for each centre are shown in Table 1. The 

average age at death was 82.5 years (range 65–101 years) for LOAD samples. For control 

individuals, average age at death was 85.9 years (range 58–104 years). The proportion of 

females between cases and controls were similar, accounting for around 50% of the total 

sample size. APOE ε4 carriers were three-fold higher in cases (64.7%) with almost one fifth 

(17.3%) being homozygous for the ε4 allele. In comparison, only 24.5% of controls were 

carriers and no individuals were ε4ε4. The ε2 allele was present in 10 control samples 

(18.9%) and 8 cases (6.2%), with both a case and control sample being homozygous for the 

allele. The higher three-fold frequency observed in control samples correlates with the 

protective effect of the ε2 allele. All samples in the BDR cohort used for analysis were 

classified as AD or control by neuropathology.

The BDR has a number of neuropathological features available for more definitive analysis 

of genotype–phenotype correlation [28]. Data include the CERAD scale, Braak tangle and 

Lewy body staging, with simplified measures (present/absent; mild/moderate/severe) of 

small vessel disease, deposition of TDP-43 protein, arteriolar Aβ-CAA and cerebrovascular 

atherosclerosis. Detailed clinical and cognitive information on the samples is also available 

on request, demonstrating the potential value of the BDR cohort for very detailed analyses in 

future studies as more extensive genetic data are generated.

DNA extraction

DNA was extracted from brain tissue using standard phenol–chloroform procedures. 

Samples were analysed on the Agilent TapeStation and quantified using the Nanodrop 3300 

spectrometer to ensure high concentration and quality material was obtained. Samples were 

genotyped for APOE ε2, ε3 and ε4 alleles using the TaqMan method (Applied Biosystems) 

to determine APOE status.

Exome-sequencing library prep

DNA libraries were hybridized to exome-capture probes with Agilent SureSelect Human All 

Exon Kit V4 for Illumina GA (Agilent Technologies) as per manufacturer’s protocol. 
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Exome-enriched libraries were sequenced on the Illumina HiSeq 2500 using 2 × 100 bp 

paired end read cycles. The Agilent capture library includes 5′ and 3′ untranslated regions.

Bioinformatics

Paired-end sequence reads were aligned to the human reference genome build 19 (UCSC 

hg19) using Burrows-Wheeler Aligner [29]. Format conversion, indexing and removal of 

PCR duplicates were performed with Picard (www.picard.sourceforge.net/index.shtml). The 

Genome Analysis Toolkit was used for recalibration of base quality scores, realignment 

around indels and variant calling [30]. Variants were annotated using ANNOVAR [31], and 

Variant Effect Predictor [32] predicted SIFT and Polyphen2 scores of protein coding 

variants. Consistency between SIFT and Polyphen2 predictions and the databases allowed 

more reliable classification. Variants were also checked against established databases 

(dbSNP v.149, 1000 Genomes Project and Exome Variant Server).

Filtering

Singleton variants with MAF ≤ 0.002 were removed in VCFtools [33]. Coding variants in 

genes were filtered by annotation with SnpSift [34]. Visualization of variants was 

performed, when necessary, using Integrative Genomics Viewer [35]. Individuals with a 

calculated age at onset below 65 years were removed and samples were screened for 

causative mutations in fEOAD genes APP, PSEN1 and PSEN2 to ensure only sporadic cases 

were used for analyses. Pathogenicity of variants was determined using pathogenic status in 

AD&FTD and PD mutation databases [36].

Association analyses

Quality control filtering was performed on the VCF using VCFtools. Individuals were 

removed if genotyping rate ≤97%, followed by markers with call rate ≤98%. Markers with 

significant deviation (P < 0.001) from the Hardy–Weinberg equilibrium in control 

individuals were removed. After removing samples and markers failing quality control, 290 

individuals remained with 76 640 nonsingleton variants in coding regions. The average 

genotyping rate was 99.9%.

Plink files were imported to PLINK-SEQ [37] (https://atgu.mgh.harvard.edu/plinkseq/). 

Single-variant association was performed on samples using a logistic regression test 

correcting for the covariates sex, age at death and APOE ε4 allele count.

Gene-based association for genes of interest was calculated in R using a SKAT-O [38] 

burden test. The Calpha test was used for exome-wide analysis, and the SKAT-O test was 

used for selected genes.

Polygenic risk scoring

PRS were generated for BDR samples using PRSice [39]. The International Genomics of 

Alzheimer’s Project (IGAP) summary data were used as the base dataset, collated from 17 

008 LOAD cases and 37 154 controls. A region of 500 kb around the APOE locus was 

excluded from the analysis. The best-fit model with the greatest predictive accuracy was 

computed using area under the curve (AUC) in SPSS. Additional predictor variables 
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included were the number of APOE ε4 and ε2 alleles, age, sex and genotypes for the GWAS 

SNPs.

Results

Overview of data

Exome sequencing was performed on a total of 292 individuals. The final cohort consisted 

of 132 LOAD cases and 53 control samples after quality control filtering. A total of 157 217 

nonsingleton variants were present in 290 individuals, with a minimum of two alleles 

observed per variant. Filtering to retain only coding mutations resulted in 76 640 variants for 

exome-wide analysis.

Exome-wide analyses

Burden analysis using a C-alpha test highlighted some nominally significant gene 

associations with AD, shown in Table 2. PILRA and PRSS45 are just below the Bonferroni-

corrected threshold (P = 2 × 10−6) at P = 3.4 × 10−5 and P = 5.9 × 10−5, respectively. PILRA 
has previously been linked to AD through ZCWPW1, which was highlighted by the GWAS 

meta-analysis [9]. Five variants in PILRA contribute to the effect: intronic variants 

rs7792525, rs190071731 and rs148891131, synonymous mutation rs2405442 and missense 

variant p.S279L (rs34266222). GWAS SNP rs1476679 is in weak LD with rs2405442 

(R2=0.50). This mutation is tolerated as predicted by SIFT and Polyphen2. The other genes 

have not previously been linked to AD. PRSS45 contains five variants that drive this signal, 

of which two were highly associated with disease (Table 3); therefore, it is possible that 

these SNPs are contributing to the signal.

Exome-wide association analysis was performed on the nonsingleton variants, correcting for 

age, sex and APOE ε4 status of individuals. As expected, APOE SNP rs429358 showed the 

most significant association prior to adjusting for covariates (P = 7.2 × 10−9, OR = 6.5 [3.2–

13.1]). There were no significant associations at the genome-wide threshold (P = 5 × 10−8) 

or at the suggestive threshold (P = 1 × 10−5) after correction. However, due to low sample 

numbers, we do not have the power to detect any association at that level. Some tentative 

associations were observed and are shown in Table 3.

Several of the genes encompassing variants are involved in signalling pathways, including 

serine proteases PRSS42 and PRSS45 and inositol triphosphate receptor ITPR3. SIFT and 

Polyphen2 predictions indicate that most mutations are benign or tolerated. However, 

missense mutations TMEM260 p.A245S/T (rs17776256) and AVPR1B p.K65N 

(rs35369693) were predicted to be probably damaging by both software. Both variants are 

more frequent in control samples, signifying a protective effect. MEP1B is a metalloprotease 

recently implicated in APP cleavage and has been implicated in inflammation. The 

synonymous variant p.S537 (rs173032) has an odds ratio of 3.1 (1.6–5.9) and has a 

significantly greater frequency in cases than controls, inferring an association with AD. Two 

missense mutations in PRSS45 are associated with protection against AD, p.I190L 

(rs58830807) and P130Q (rs58943210); however, both are predicted to be benign. None of 

the genes aside from MEP1B have been directly linked to dementia.
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Polygenic risk scoring

A 500-kb region around the APOE gene containing 227 variants was excluded from the 

analysis to identify effects independent of APOE. The predictive accuracy of each tested 

model is given in Table 4, denoted by area under the curve (AUC), with 95% confidence 

intervals. The APOE ε4 allele alone has 71.8% accuracy in discriminating between cases 

and controls; however, this is a poor fit model. Other covariates ε2, age, sex and GWAS 

greatly increase the predictive power 83.0%. In total, 3268 variants were utilized to score 

risk of developing AD using the best-fit model, which had a predictive accuracy of 83.8% 

when combined with all covariates as predictors. The addition of PRS only increased this 

accuracy by 0.8%, which is similar to improvements seen in other studies. There is overlap 

between scores for both groups; however, on average, scores were higher for cases. Mean 

scores for AD cases were 3.6 × 10−4 compared with 2.7 × 10−4 for control samples.

Screening for familial mutations

Samples were screened for mutations in fEOAD genes to remove any nonsporadic cases. A 

total of six coding variants were found in APP (1), PSEN1 (1) and PSEN2 (4), shown in 

Table 5. All individuals were heterozygous for the variants listed and mutations were 

synonymous except two identified as missense. PSEN1 p.E318G (rs17125721) was 

classified as a risk modifier but not pathogenic, found in five cases and one control sample. 

PSEN2 p.S130L (rs63750197) was previously identified as possibly damaging in silico with 

unclear pathogenicity, present in one case and one control. Both SNPs were predicted to be 

deleterious depending on the transcript. However, no causative or fully penetrant pathogenic 

mutations were observed in these genes, confirming that these samples are representative of 

sporadic AD.

Other known neurological genes were also screened for potential pathogenic mutations to 

identify genetic overlap between sporadic LOAD and other neurodegenerative diseases 

(Table 6). Mutations in Parkinson’s genes LRRK2, PARK2 and PINK1 appear to have some 

possibly damaging consequences on the proteins. PARK2 p.R275W (rs34424986) is very 

rare and present in one AD case and one control sample with mild cerebral amyloid 

angiopathy and presence of an unspecified dementia. SIFT/Polyphen2 predictions both 

indicate a potentially deleterious effect of this mutation. Variant p.P246L (rs149953814) was 

also found in one case and control, both also presenting with mild nonamyloid small vessel 

disease. Samples were heterozygous for both variants.

Previously uncharacterized mutations were found in CHMP2B and LRRK2. The frameshift 

variant in CHMP2B was seen in a healthy control and an individual with AD. The LRRK2 
mutation was heterozygous in a sample of each phenotype and results in a p.L1271P change. 

PRNP p.M129V (rs1799990) has previously been implicated as a risk factor for prion 

disease; here, however, it is observed in an equal number of case and controls, suggesting no 

effect in AD.

Association analyses of known neurological genes

Following on from this, genes were selected based on whether they had been linked to AD 

or other neurological diseases. Direct functionality was inferred from data filtered for coding 
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variants only. A total of 76 640 variants were annotated as coding mutations, with 219 

variants in 35 of the selected genes. Association and burden analyses were performed as 

before on the subset of variants. No coding variants were identified in AD genes HLA-
DRB1, HLA-DRB5 and MEF2C or the other neurological genes MAPT and TARDBP.

We performed single-variant association on all 219 variants in the selected genes. No 

variants reached genome-wide or suggestive levels of significance as identified by a logistic 

regression test with correction for covariates. The most significant associations (P < 0.05) 

are listed in Table 7. Results for all 219 variants are shown in Table S2.

A large proportion of the highly associated variants are synonymous mutations. Four 

ABCA7 variants are present, with two suggesting increased risk (OR>1) and two showing a 

protective effect (OR<1). ABCA7 rs3752234 and rs3752237 are both synonymous 

mutations that increase risk more than two-fold. SLC24A4 synonymous SNP (rs7144273) 

also showed strong effects in the risk direction (OR = 1.63, P = 0.018).

The majority of variants appear to be exhibiting a protective effect as indicated by the odds 

ratios, as they were observed more frequently in control samples. LRRK2 p.M1646T 

(rs35303786) missense is predicted as benign; however, it is found in a greater frequency in 

control samples (OR = 0.14, P = 0.018). We calculated gene-based burden using a SKAT-O 

test to provide greater statistical power than that of a single-marker test (Table 8). Both sets 

of familial genes did not appear to exhibit any burden on LOAD. Burden analysis revealed 

two significant associations; APOE and CLU were the only genes to reach significance (P ≤ 

0.05). However, they would not pass Bonferroni correction (P = 0.0014). Five variants in 

CLU contributed to the effect seen, which was corrected for age, sex and APOE ε4 status. 

Two of these variants were significant, synonymous variant rs9331939 and rs149859119 

(p.S16R); therefore, they could be driving the signal in this gene.

Discussion

In this study, we initially investigated genetic association with LOAD using an exome-wide 

approach. Although the analyses did not find any significant associations when corrected for 

multiple testing, the sample size only provides enough power to detect common variant 

(MAF > 5%) associations with an effect size above 2.2 with 80% certainty. Nonetheless, 

single-variant analysis highlighted some interesting tentative associations which may merit 

further exploration.

Burden analysis revealed a tentative association with PILRA, an inhibitory immunoglobulin 

receptor involved in regulating signal transduction in the immune system. This gene has 

previously been linked to AD via its interaction with paired activation receptor PILRB and 

GWAS hit ZCWPW1. It is expressed on myeloid cells and works with PILRB, which also 

associates with DAP12 and TREM2 [40]. PILRA SNP rs2405442 is in weak LD (r2 = 0.5) 

with GWAS SNP rs1476679, suggesting this signal is likely to be independent of the GWAS 

association. ZCWPW1 locus SNP rs1476679 was nominally associated with reduced PILRA 
levels [41]. This suggests a potential role for the gene in AD, highlighting the need for 

further investigation.
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Many of the remaining genes on the burden list are enzymes with serine/threonine activity or 

serine proteases, such as PRSS45, BCR, KLK2 and THNSL2. Efficient breakdown of 

proteins is important as impairments in this can lead to the buildup of misfolded proteins. 

Dysfunction of the amyloid protein degradation pathway has been implicated in AD. None 

of these genes have been previously linked to AD. However, in combination, enzymes 

regulating protein function and breakdown could play a greater role in disease and this too 

warrants further exploration.

Multiple PRSS45 variants were observed, with two missense mutations found to be 

associated with AD, exerting a protective effect. However, functional predictions indicate 

that both polymorphisms are benign. This gene encodes a serine protease, part of a group of 

enzymes that cleave peptide bonds. PRSS45 SNPs were also highly associated when tested 

in burden. Missense variants TMEM260 p.A245S and AVPR1B p.K65N were both 

predicted to be damaging to the protein in silico and found more frequently in control 

samples. The function of TMEM260 is not clearly understood, whereas AVPR1B is a 

vasopressin receptor located in the anterior pituitary gland that stimulates ACTH release. 

AVPR1B SNP rs35369693 has been linked to mood disorders and found more frequently in 

affected females [42]. The mutation in MEP1B, known as meprin β, is synonymous; recent 

proteomic studies have found that these metalloproteases can cleave APP, affecting Aβ 
levels [43,44]. While these associations are tentative, examination of other larger datasets 

could be worthwhile.

PRS generated for individuals showed that, on average, scores were significantly higher in 

LOAD cases than controls, despite an overlap among the cohort. Using sex, age at death, 

APOE ε4 and ε2 allele counts and GWAS SNP genotypes as variables for prediction, the 

model was able to distinguish cases and control with 83.8% accuracy. A total of 3268 

variants were used to predict disease risk. The presence of controls with high-risk scores 

suggests that these individuals may have gone on to develop AD had they lived longer. The 

utility of PRS has already been demonstrated in AD, with individuals’ genetic risk profiles 

able to predict disease susceptibility with more than 80% accuracy [45]. However, there 

were controls with high PRS and no phenotypic changes indicative of dementia and also 

cases with low PRS. Although PRS can identify more of the genetic component of AD, this 

shows that there is still unexplained missing heritability.

Mutations in familial AD genes, APP, PSEN1 and PSEN2, are rare but highly penetrant. 

Screening of these genes revealed no pathogenic variants and samples harbouring mutations 

were heterozygotes, confirming that there were no familial EOAD cases among the BDR 

LOAD-classified cases. Other neurological familial genes were also screened for pathogenic 

mutations linked to related dementias. No known causative mutations were identified; 

however, PARK2 p.R275W was predicted to be deleterious and has unknown pathogenicity 

in the PD mutation database. It produces an unusual distribution of parkin with large 

cytoplasmic and nuclear inclusions [46]. The variant was present in one case and control 

sample, however, which suggests that it is likely benign and not pathogenic in nature. 

Previously uncharacterized mutations were identified in CHMP2B and LRRK2, with a 

frameshift variant in CHMP2B and a missense variant in LRRK2. The frameshift variant 

was only seen in one control sample, suggesting that it could be a sequencing artefact. 
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LRRK2 p.L1271P is present in a case and control sample so does not appear to segregate 

with disease. PRNP p.M129V has been highlighted as a risk factor for prion disease but 

appears not to be having any effect in AD.

TREM2 mutation p.R47H was observed in three AD case samples which were 

heterozygotes. This variant can increase risk of developing AD by two- to three-fold [12,47]. 

DNA was available for these three samples and Sanger sequencing confirmed the presence 

of the variant in these subjects. No control samples harboured this variant. However, given 

the documented frequency of R47H (MAF = 0.002), this cohort appears to have a greater 

MAF of 0.008. This four-fold greater frequency will be verified as the BDR sample set 

increases in size.

Single-variant association of all neurological gene variants revealed several synonymous 

mutations to be nominally associated with AD at P ≤ 0.05. The majority of variants exerted 

effects in the protective direction with greater frequency in controls than case samples. Four 

ABCA7 variants were significantly associated at P < 0.05 with two increasing risk and two 

being protective. Synonymous variants rs3752234 and rs3752237 increased AD risk more 

than four-fold, which is contradictory to previous findings [48,49], where the effects were 

protective. Conversely, rs4147915 and missense mutation rs3764645 p.E188G are 

protective. ABCA7 p.E188G is predicted as tolerated and previously shown to have no effect 

on disease risk [48]. These findings need to be validated as the sample size increases.

Missense variant LRRK2 p.M1646T was associated with protection against AD, but the 

amino acid substitution is predicted to be tolerated. However, the mutation is known to 

increase risk of developing PD [50]. LRRK2 mutations have previously been linked to AD 

with PD risk variant p.R1628P found in greater frequencies in AD cases than controls [51]. 

The variant increased apoptosis and cell death in transfected human cell lines. Therefore, it 

is likely that genetic pleiotropy possibly occurs across several neurodegenerative diseases. 

LRRK2 is involved in autophagy and recycling proteins in the retrograde trafficking 

pathway. Mutations in this protein are associated with dendrite shortening in neurons, a 

possible cause of motor symptoms in PD [46]. With some shared clinical features, mutations 

in LRRK2 could also affect the autophagy process in AD.

Gene-based burden analysis in SKAT-O allowed adjustment to correct for the effect of age, 

sex and number of APOE ε4 alleles. Both AD and other neurological familial genes did not 

exhibit any burden on LOAD. APOE and CLU were significant to P < 0.05 but did not pass 

Bonferroni correction. Only SNP p.S16R in CLU was significantly associated in single-

variant testing, indicating that this is driving the signal.

Conclusion

Although other familial neurological genes did not show any burden on LOAD, an 

individual missense variant in LRRK2 was tentatively associated; preliminary exploration of 

the data has indicated that genetic pleiotropy is likely to play a role in diseases with 

overlapping features. LRRK2 is involved in PD, yet few studies have investigated its role in 

other dementias.
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Exome-wide analysis has revealed a significant burden of PILRA variants on AD. Previous 

studies have identified a possible link with AD via GWAS hit ZCWPW1 and paired receptor 

PILRB which associates with DAP12 and TREM2. PILRA and PILRB function may be co-

regulated, and therefore, further investigation should involve looking at both genes in AD.

Limitations in power have made it difficult to find many significant associations, but with 

ongoing data collection, the sample size will increase to address this issue. However, using 

an exome-sequencing approach, it has been possible to detect rare variants with greater 

effect sizes, which previous GWAS did not permit.
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Refer to Web version on PubMed Central for supplementary material.
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Table 2

Burden analysis results for exome-wide analysis

Gene mRNA ID Position Number of variants P-value

PILRA NM_013439 7:99971313-99997454 5 3.40E-05

PRSS45 NM_199183 3:46783959-46785453 4 5.92E-05

THNSL2 NM_001244676 2:88470874-88485392 12 1.49E-04

KLK2 NM_001002231 19:51376837-51381777 8 1.96E-04

STOX2 NM_020225 4:184930646-184932631 8 2.42E-04

SEC31A NM_001077206 4:83740163-83803115 23 3.58E-04

PRSS42 NM_182702 3:46875258-46875258 1 3.81E-04

HAS3 NM_138612 16:69143481-6915 2391 4 4.09E-04

KLRF2 NM_001190765 12:10041364-10048327 5 5.08E-04

SLC22A2 NM_003058 6:160638357-160677614 9 5.48E-04

GRIK2 NM_001166247 6:102134022-102516260 10 5.77E-04

TRDMT1 NM_004412 10:17194026-17243638 12 6.86E-04

FAM136A NM_032822 2:70528601-70529205 5 7.25E-04

ITGAL NM_001114380 16:30484308-30522152 13 7.82E-04

APOC1 NM_001645 19:45419414-45422561 2 8.28E-04

HAS3 NM_001199280 16:69143481-69143816 3 8.52E-04

TMIE NM_147196 3:46742941-46751229 3 8.84E-04

BCR NM_004327 22:23523602-23657604 24 8.96E-04

POU4F2 NM_004575 4:147560411-147561971 6 9.54E-04

Burden analysis of all genes was performed using a C-alpha test without correction for covariates. The results shown are significant to P < 0.001. 
Information includes gene name [Gene], mRNA [mRNA ID], chromosomal position in genome build hg19 [Position], number of variants 
contributing to the signal [Number of Variants], significance [P-value].
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Table 4

Predictive accuracy model for 132 AD cases versus 53 controls

Model Nagelkerke’s R2
Area under ROC
curve (AUC) AUC 95% CI

Hosmer–Lemeshow
test P-value

ε4 0.086 0.718 0.642–0.794 0.001

ε4 + ε2 0.215 0.734 0.660–0.809 0.347

ε4 + ε2 + Sex + Age 0.223 0.742 0.668–0.816 0.891

ε4 + ε2 + Sex + Age + GWAS 0.366 0.830 0.770–0.891 0.816

ε4 + ε2 + Sex + Age + GWAS + PRS (P < 0.05) 0.378 0.838 0.779–0.898 0.536

Different predictors were compared for their accuracy in predicting risk of developing AD. APOE ε4 and ε2 alleles, sex, age at death and 
genotypes for 19 of the GWAS SNPs were used as predictors. PRS were constructed using independent variants associated with AD at a threshold 

of P < 0.05, excluding the APOE region ±500 kb and the GWAS variants. Nagelkerke’s R2 expresses the proportion of variance explained by the 

model, with the largest R2 value indicating the best model. Area under the receiver operating characteristic curve (AUC) is a measure of predictive 
accuracy, which quantifies the overall ability to discriminate between case and control individuals. The Hosmer–Lemeshow statistic is a goodness-
of-fit test for risk prediction models, with a significant result indicating that the data are a poor fit to the model.
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