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Abstract

Aim—Late-onset Alzheimer’s disease (LOAD) accounts for 95% of all Alzheimer’s cases and is
genetically complex in nature. Overlapping clinical and neuropathological features between AD,
FTD and Parkinson’s disease highlight the potential role of genetic pleiotropy across diseases.
Recent genome-wide association studies (GWASS) have uncovered 20 new loci for AD risk;
however, these exhibit small effect sizes. Using NGS, here we perform association analyses using
exome-wide and candidate-gene-driven approaches.
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Methods—Whole-exome sequencing was performed on 132 AD cases and 53 control samples.
Exome-wide single-variant association and gene burden tests were performed for 76 640
nonsingleton variants. Samples were also screened for known causative mutations in familial
genes in AD and other dementias. Single-variant association and burden analysis was also carried
out on variants in known AD and other neurological dementia genes.

Results—Tentative single-variant and burden associations were seen in several genes with kinase
and protease activity. Exome-wide burden analysis also revealed significant burden of variants in
PILRA (P= 3.4 x 107°), which has previously been linked to AD via GWAS, hit ZCWPW1.
Screening for causative mutations in familial AD and other dementia genes revealed no pathogenic
variants. Variants identified in ABCA7, SLC24A4, CD33and LRRK2were nominally associated
with disease (P < 0.05) but did not withstand correction for multiple testing. APOE (P= 0.02) and
CLU (P=0.04) variants showed significant burden on AD.

Conclusions—In addition, polygenic risk scores (PRS) were able to distinguish between cases
and controls with 83.8% accuracy using 3268 variants, sex, age at death and APOE 4 and e2
status as predictors.

Keywords

Alzheimer’s disease; burden analysis; polygenic risk score; Whole-exome sequencing

Introduction

Alzheimer’s disease (AD) is the most common form of dementia, affecting over 850 000
people in the UK alone, a number expected to rise to 1 million by 2025 [1]. There are two
forms distinguished by the age when symptoms first appear. In the early-onset familial form
(FEOAD), symptoms appear before 65 years of age; however, this only accounts for about
5% of cases [2]. Mutations in the familial genes APP, PSEN1 and PSENZ are rare but highly
penetrant. Individuals with these mutations are almost certain to develop fEOAD [3]. The
majority of cases are sporadic in nature and classified as late-onset Alzheimer’s disease
(LOAD), with symptoms appearing at 65 years or later. This represents the other 95% of all
incidences [4]. Presence of the APOE e4 allele is the largest known genetic risk factor for
LOAD, with a two- to three-fold increase in risk for carriers and 15-fold for individuals
homozygous for the 4 allele [5]. The rare £2 allele confers a protective effect and appears
to reduce AD risk by up to 40%.

Genome-wide association studies (GWAS) have identified 20 risk variants associated with
LOAD [6-9]; this has implicated several new pathways in AD, such as endocytic processing,
inflammation and cholesterol transport [8]. Although highly replicable in Caucasian groups,
these effects have been difficult to replicate in other populations [10]. These common
variants also exert only small effects on disease risk, which does not account for much of the
missing heritability in AD. It is likely that low-frequency variants, not detected by GWAS,
could have greater effect sizes and therefore explain more of the heritable component.

Advances in next-generation sequencing (NGS) in recent years have allowed exomes and
entire genomes to be explored at single-base level. The exome accounts for approximately
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1% of the human genome, yet it harbours almost 85% of known mutations underlying
disease-related traits [11]. Therefore, rare mutations can be identified using this technology.
Whole-exome sequencing (WES) has identified a rare variant in the 7REMZ2gene, R47H,
associated with a five-fold increase in AD risk [12]. These studies have also found rare
causative variants in CLUand SORL 1 that were overlooked by GWAS [13]. By identifying
the genetic variants of individuals, WES has the potential to uncover more rare variants
associated with AD risk.

There are several overlapping clinical and neuropathological features across different
dementias. For example, dementia with Lewy bodies (DLB) shares clinical features with AD
and Parkinson’s disease (PD), often resulting in misdiagnosis. PD and DLB are both
synucleinopathies presenting with alpha-synuclein deposits in the brain, whereas APOE e4
increases risk of disease in AD and DLB [14]. This suggests that genetic risk factors may
contribute to more than one disease, known as genetic pleiotropy, whereby a gene or DNA
variant can influence multiple phenotypes.

Clinically well-characterized brain tissue samples from healthy individuals remain a limiting
factor in the study of neurological disorders [15]; Brains for Dementia Research (BDR)
(www.brainsfordementiaresearch.org.uk) is a network of six leading UK brain banks (jointly
funded by Alzheimer’s Research UK and Alzheimer’s Society), specifically created to
address the shortages of high-quality brain tissue samples from healthy individuals and those
with dementia. This project is a planned brain donation programme with over 3000
participants, aged 65 years and above, with and without the diagnosis of dementia. Regular,
standardized cognitive and psychiatric assessment of potential brain donors during life is
critical in optimizing the value of brain tissue for research [16,17].

We performed single-variant and burden analysis on coding variants to identify significant
associations with LOAD. We also report on screening of 132 LOAD patients from the
Brains for Dementia Research (BDR) resource with the aim to identify causative or
predicted pathogenic coding variants in 40 selected genes. Of these, 16 are associated with
familial forms of neurodegeneration, including fEOAD (APP, PSENI1 and PSEN2),
frontotemporal dementia (FTD) and Amyotrophic lateral sclerosis (ALS) (C90r72,
CHMP2B, FUS, GRN, MAPT, TARDBPand VCP), PD (LRRKZ, PARKZ, PARK7, PINK1
and SVCA) and Prion disease (PRNP). The remaining genes were selected from AD GWAS
and NGS (20 GWAS, APOE and TREM?).

Polygenic risk scores (PRS) have been increasingly used to investigate the effect of multiple
genetic variants on disease traits. It is based on the notion that many variants with small
effects will not be detectable at genome-wide significance; however, collectively they may
have a strong effect [18]. PRS were generated to examine the association between multiple
genetic markers and their collective effects on LOAD.
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Materials and Methods

BDR samples

The BDR cohort comprised 132 clinically diagnosed LOAD (age at onset =65 years) cases
and 53 cognitively normal controls; all diagnoses were neuropathologically confirmed
(Table S1). Neuropathological diagnoses were undertaken by experienced neuropathologists
within the Brains for Dementia Research network and were based on Thal Ap phases [19],
neurofibrillary tangle Braak stages [20], Consortium to Establish a Registry for Alzheimer’s
disease (CERAD) criteria for AD [21] which are all combined in the National Institute on
Aging — Alzheimer’s Association guidelines [22], together with the Newcastle/McKeith
criteria for Lewy body disease [23] and for FTLD-TDP as described by Mackenzie et al
[24]. While there are no fully established criteria for vascular pathology, the VCING criteria
were used [25] along with those proposed by Smallwood et al [26] and Grinberg and Thal
[27].

Demographics of case and control samples for each centre are shown in Table 1. The
average age at death was 82.5 years (range 65-101 years) for LOAD samples. For control
individuals, average age at death was 85.9 years (range 58-104 years). The proportion of
females between cases and controls were similar, accounting for around 50% of the total
sample size. APOE e4 carriers were three-fold higher in cases (64.7%) with almost one fifth
(17.3%) being homozygous for the 4 allele. In comparison, only 24.5% of controls were
carriers and no individuals were e4e4. The 2 allele was present in 10 control samples
(18.9%) and 8 cases (6.2%), with both a case and control sample being homozygous for the
allele. The higher three-fold frequency observed in control samples correlates with the
protective effect of the £2 allele. All samples in the BDR cohort used for analysis were
classified as AD or control by neuropathology.

The BDR has a number of neuropathological features available for more definitive analysis
of genotype—phenotype correlation [28]. Data include the CERAD scale, Braak tangle and
Lewy body staging, with simplified measures (present/absent; mild/moderate/severe) of
small vessel disease, deposition of TDP-43 protein, arteriolar AB-CAA and cerebrovascular
atherosclerosis. Detailed clinical and cognitive information on the samples is also available
on request, demonstrating the potential value of the BDR cohort for very detailed analyses in
future studies as more extensive genetic data are generated.

DNA extraction

DNA was extracted from brain tissue using standard phenol-chloroform procedures.
Samples were analysed on the Agilent TapeStation and quantified using the Nanodrop 3300
spectrometer to ensure high concentration and quality material was obtained. Samples were
genotyped for APOE €2, €3 and &4 alleles using the TagMan method (Applied Biosystems)
to determine APOE status.

Exome-sequencing library prep

DNA libraries were hybridized to exome-capture probes with Agilent SureSelect Human All
Exon Kit V4 for lllumina GA (Agilent Technologies) as per manufacturer’s protocol.
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Exome-enriched libraries were sequenced on the Illumina HiSeq 2500 using 2 x 100 bp
paired end read cycles. The Agilent capture library includes 5 and 3" untranslated regions.

Bioinformatics

Filtering

Paired-end sequence reads were aligned to the human reference genome build 19 (UCSC
hg19) using Burrows-Wheeler Aligner [29]. Format conversion, indexing and removal of
PCR duplicates were performed with Picard (www.picard.sourceforge.net/index.shtml). The
Genome Analysis Toolkit was used for recalibration of base quality scores, realignment
around indels and variant calling [30]. Variants were annotated using ANNOVAR [31], and
Variant Effect Predictor [32] predicted SIFT and Polyphen2 scores of protein coding
variants. Consistency between SIFT and Polyphen2 predictions and the databases allowed
more reliable classification. Variants were also checked against established databases
(dbSNP v.149, 1000 Genomes Project and Exome Variant Server).

Singleton variants with MAF < 0.002 were removed in VVCFtools [33]. Coding variants in
genes were filtered by annotation with SnpSift [34]. Visualization of variants was
performed, when necessary, using Integrative Genomics Viewer [35]. Individuals with a
calculated age at onset below 65 years were removed and samples were screened for
causative mutations in fEOAD genes APP, PSENI and PSENZto ensure only sporadic cases
were used for analyses. Pathogenicity of variants was determined using pathogenic status in
AD&FTD and PD mutation databases [36].

Association analyses

Quality control filtering was performed on the VCF using VCFtools. Individuals were
removed if genotyping rate <97%, followed by markers with call rate <98%. Markers with
significant deviation (P < 0.001) from the Hardy—Weinberg equilibrium in control
individuals were removed. After removing samples and markers failing quality control, 290
individuals remained with 76 640 nonsingleton variants in coding regions. The average
genotyping rate was 99.9%.

Plink files were imported to PLINK-SEQ [37] (https://atgu.mgh.harvard.edu/plinkseq/).
Single-variant association was performed on samples using a logistic regression test
correcting for the covariates sex, age at death and APOE e4 allele count.

Gene-based association for genes of interest was calculated in R using a SKAT-O [38]
burden test. The Calpha test was used for exome-wide analysis, and the SKAT-O test was
used for selected genes.

Polygenic risk scoring

PRS were generated for BDR samples using PRSice [39]. The International Genomics of
Alzheimer’s Project (IGAP) summary data were used as the base dataset, collated from 17
008 LOAD cases and 37 154 controls. A region of 500 kb around the APOE locus was
excluded from the analysis. The best-fit model with the greatest predictive accuracy was
computed using area under the curve (AUC) in SPSS. Additional predictor variables
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included were the number of APOE e4 and 2 alleles, age, sex and genotypes for the GWAS
SNPs.

Overview of data

Exome sequencing was performed on a total of 292 individuals. The final cohort consisted
of 132 LOAD cases and 53 control samples after quality control filtering. A total of 157 217
nonsingleton variants were present in 290 individuals, with a minimum of two alleles
observed per variant. Filtering to retain only coding mutations resulted in 76 640 variants for
exome-wide analysis.

Exome-wide analyses

Burden analysis using a C-alpha test highlighted some nominally significant gene
associations with AD, shown in Table 2. /L RA and PRSS545 are just below the Bonferroni-
corrected threshold (P=2 x 1075) at P=3.4 x 105 and £=5.9 x 1075, respectively. P/LRA
has previously been linked to AD through ZCWPW!1, which was highlighted by the GWAS
meta-analysis [9]. Five variants in £/LRA contribute to the effect: intronic variants
rs7792525, rs190071731 and rs148891131, synonymous mutation rs2405442 and missense
variant p.S279L (rs34266222). GWAS SNP rs1476679 is in weak LD with rs2405442
(R%2=0.50). This mutation is tolerated as predicted by SIFT and Polyphen2. The other genes
have not previously been linked to AD. PRSS45 contains five variants that drive this signal,
of which two were highly associated with disease (Table 3); therefore, it is possible that
these SNIPs are contributing to the signal.

Exome-wide association analysis was performed on the nonsingleton variants, correcting for
age, sex and APOE e4 status of individuals. As expected, APOE SNP rs429358 showed the
most significant association prior to adjusting for covariates (P=7.2 x 1079, OR = 6.5 [3.2—
13.1]). There were no significant associations at the genome-wide threshold (P=5 x 1078)
or at the suggestive threshold (P= 1 x 1075) after correction. However, due to low sample
numbers, we do not have the power to detect any association at that level. Some tentative
associations were observed and are shown in Table 3.

Several of the genes encompassing variants are involved in signalling pathways, including
serine proteases PRSS42and PRSS45and inositol triphosphate receptor /7PR3. SIFT and
Polyphen2 predictions indicate that most mutations are benign or tolerated. However,
missense mutations TMEMZ260p.A245S/T (rs17776256) and AVPRIB p.K65N
(rs35369693) were predicted to be probably damaging by both software. Both variants are
more frequent in control samples, signifying a protective effect. MEPIB is a metalloprotease
recently implicated in APP cleavage and has been implicated in inflammation. The
synonymous variant p.S537 (rs173032) has an odds ratio of 3.1 (1.6-5.9) and has a
significantly greater frequency in cases than controls, inferring an association with AD. Two
missense mutations in PRSS545 are associated with protection against AD, p.1190L
(rs58830807) and P130Q (rs58943210); however, both are predicted to be benign. None of
the genes aside from MEPIB have been directly linked to dementia.
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Polygenic risk scoring

A 500-kb region around the APOE gene containing 227 variants was excluded from the
analysis to identify effects independent of APOE. The predictive accuracy of each tested
model is given in Table 4, denoted by area under the curve (AUC), with 95% confidence
intervals. The APOE 4 allele alone has 71.8% accuracy in discriminating between cases
and controls; however, this is a poor fit model. Other covariates €2, age, sex and GWAS
greatly increase the predictive power 83.0%. In total, 3268 variants were utilized to score
risk of developing AD using the best-fit model, which had a predictive accuracy of 83.8%
when combined with all covariates as predictors. The addition of PRS only increased this
accuracy by 0.8%, which is similar to improvements seen in other studies. There is overlap
between scores for both groups; however, on average, scores were higher for cases. Mean
scores for AD cases were 3.6 x 1074 compared with 2.7 x 1074 for control samples.

Screening for familial mutations

Samples were screened for mutations in fEOAD genes to remove any nonsporadic cases. A
total of six coding variants were found in APP (1), PSENI (1) and PSENZ (4), shown in
Table 5. All individuals were heterozygous for the variants listed and mutations were
synonymous except two identified as missense. PSEN1 p.E318G (rs17125721) was
classified as a risk modifier but not pathogenic, found in five cases and one control sample.
PSENZ2p.S130L (rs63750197) was previously identified as possibly damaging /n silico with
unclear pathogenicity, present in one case and one control. Both SNPs were predicted to be
deleterious depending on the transcript. However, no causative or fully penetrant pathogenic
mutations were observed in these genes, confirming that these samples are representative of
sporadic AD.

Other known neurological genes were also screened for potential pathogenic mutations to
identify genetic overlap between sporadic LOAD and other neurodegenerative diseases
(Table 6). Mutations in Parkinson’s genes LRRKZ, PARKZ and PINK1 appear to have some
possibly damaging consequences on the proteins. PARKZ2 p.R275W (rs34424986) is very
rare and present in one AD case and one control sample with mild cerebral amyloid
angiopathy and presence of an unspecified dementia. SIFT/Polyphen2 predictions both
indicate a potentially deleterious effect of this mutation. Variant p.P246L (rs149953814) was
also found in one case and control, both also presenting with mild nonamyloid small vessel
disease. Samples were heterozygous for both variants.

Previously uncharacterized mutations were found in CHMPZB and LRRKZ. The frameshift
variant in CHMPZB was seen in a healthy control and an individual with AD. The LRRK2
mutation was heterozygous in a sample of each phenotype and results in a p.L1271P change.
PRNPp.M129V (rs1799990) has previously been implicated as a risk factor for prion
disease; here, however, it is observed in an equal number of case and controls, suggesting no
effect in AD.

Association analyses of known neurological genes

Following on from this, genes were selected based on whether they had been linked to AD
or other neurological diseases. Direct functionality was inferred from data filtered for coding
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variants only. A total of 76 640 variants were annotated as coding mutations, with 219
variants in 35 of the selected genes. Association and burden analyses were performed as
before on the subset of variants. No coding variants were identified in AD genes HLA-
DRB1, HLA-DRB5and MEFZC or the other neurological genes MAPT and TARDBP.

We performed single-variant association on all 219 variants in the selected genes. No
variants reached genome-wide or suggestive levels of significance as identified by a logistic
regression test with correction for covariates. The most significant associations (£ < 0.05)
are listed in Table 7. Results for all 219 variants are shown in Table S2.

A large proportion of the highly associated variants are synonymous mutations. Four
ABCA 7 variants are present, with two suggesting increased risk (OR>1) and two showing a
protective effect (OR<1). ABCA7rs3752234 and rs3752237 are both synonymous
mutations that increase risk more than two-fold. SLC24A4 synonymous SNP (rs7144273)
also showed strong effects in the risk direction (OR = 1.63, = 0.018).

The majority of variants appear to be exhibiting a protective effect as indicated by the odds
ratios, as they were observed more frequently in control samples. LRRK2p.M1646T
(rs35303786) missense is predicted as benign; however, it is found in a greater frequency in
control samples (OR = 0.14, A= 0.018). We calculated gene-based burden using a SKAT-O
test to provide greater statistical power than that of a single-marker test (Table 8). Both sets
of familial genes did not appear to exhibit any burden on LOAD. Burden analysis revealed
two significant associations; APOE and CLU were the only genes to reach significance (P<
0.05). However, they would not pass Bonferroni correction (£=0.0014). Five variants in
CLU contributed to the effect seen, which was corrected for age, sex and APOE &4 status.
Two of these variants were significant, synonymous variant rs9331939 and rs149859119
(p.S16R); therefore, they could be driving the signal in this gene.

Discussion

In this study, we initially investigated genetic association with LOAD using an exome-wide
approach. Although the analyses did not find any significant associations when corrected for
multiple testing, the sample size only provides enough power to detect common variant
(MAF > 5%) associations with an effect size above 2.2 with 80% certainty. Nonetheless,
single-variant analysis highlighted some interesting tentative associations which may merit
further exploration.

Burden analysis revealed a tentative association with P/LRA, an inhibitory immunoglobulin
receptor involved in regulating signal transduction in the immune system. This gene has
previously been linked to AD via its interaction with paired activation receptor P/LRB and
GWAS hit ZCWPWI. It is expressed on myeloid cells and works with P/LRB, which also
associates with DAPI2and TREMZ2[40]. PILRA SNP rs2405442 is in weak LD (72 = 0.5)
with GWAS SNP rs1476679, suggesting this signal is likely to be independent of the GWAS
association. ZCWPWI locus SNP rs1476679 was nominally associated with reduced P/LRA
levels [41]. This suggests a potential role for the gene in AD, highlighting the need for
further investigation.
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Many of the remaining genes on the burden list are enzymes with serine/threonine activity or
serine proteases, such as PRSS45, BCR, KLKZ2and THNSLZ. Efficient breakdown of
proteins is important as impairments in this can lead to the buildup of misfolded proteins.
Dysfunction of the amyloid protein degradation pathway has been implicated in AD. None
of these genes have been previously linked to AD. However, in combination, enzymes
regulating protein function and breakdown could play a greater role in disease and this too
warrants further exploration.

Multiple PRSS45 variants were observed, with two missense mutations found to be
associated with AD, exerting a protective effect. However, functional predictions indicate
that both polymorphisms are benign. This gene encodes a serine protease, part of a group of
enzymes that cleave peptide bonds. PRS5S45 SNPs were also highly associated when tested
in burden. Missense variants TMEMZ260p.A245S and AVPRIB p.K65N were both
predicted to be damaging to the protein /n silico and found more frequently in control
samples. The function of TMEMZ260is not clearly understood, whereas AVPR1B s a
vasopressin receptor located in the anterior pituitary gland that stimulates ACTH release.
AVPRI1B SNP rs35369693 has been linked to mood disorders and found more frequently in
affected females [42]. The mutation in MEPIB, known as meprin B, is synonymous; recent
proteomic studies have found that these metalloproteases can cleave APP, affecting AB
levels [43,44]. While these associations are tentative, examination of other larger datasets
could be worthwhile.

PRS generated for individuals showed that, on average, scores were significantly higher in
LOAD cases than controls, despite an overlap among the cohort. Using sex, age at death,
APOE &4 and €2 allele counts and GWAS SNP genotypes as variables for prediction, the
model was able to distinguish cases and control with 83.8% accuracy. A total of 3268
variants were used to predict disease risk. The presence of controls with high-risk scores
suggests that these individuals may have gone on to develop AD had they lived longer. The
utility of PRS has already been demonstrated in AD, with individuals’ genetic risk profiles
able to predict disease susceptibility with more than 80% accuracy [45]. However, there
were controls with high PRS and no phenotypic changes indicative of dementia and also
cases with low PRS. Although PRS can identify more of the genetic component of AD, this
shows that there is still unexplained missing heritability.

Mutations in familial AD genes, APP, PSENI and PSENZ, are rare but highly penetrant.
Screening of these genes revealed no pathogenic variants and samples harbouring mutations
were heterozygotes, confirming that there were no familial EOAD cases among the BDR
LOAD-classified cases. Other neurological familial genes were also screened for pathogenic
mutations linked to related dementias. No known causative mutations were identified,;
however, PARK2p.R275W was predicted to be deleterious and has unknown pathogenicity
in the PD mutation database. It produces an unusual distribution of parkin with large
cytoplasmic and nuclear inclusions [46]. The variant was present in one case and control
sample, however, which suggests that it is likely benign and not pathogenic in nature.
Previously uncharacterized mutations were identified in CHMP2B and LRRKZ, with a
frameshift variant in CHMPZB and a missense variant in LRRKZ. The frameshift variant
was only seen in one control sample, suggesting that it could be a sequencing artefact.
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LRRK2p.L1271P is present in a case and control sample so does not appear to segregate
with disease. PRNPp.M129V has been highlighted as a risk factor for prion disease but
appears not to be having any effect in AD.

TREMZ mutation p.R47H was observed in three AD case samples which were
heterozygotes. This variant can increase risk of developing AD by two- to three-fold [12,47].
DNA was available for these three samples and Sanger sequencing confirmed the presence
of the variant in these subjects. No control samples harboured this variant. However, given
the documented frequency of R47H (MAF = 0.002), this cohort appears to have a greater
MAF of 0.008. This four-fold greater frequency will be verified as the BDR sample set
increases in size.

Single-variant association of all neurological gene variants revealed several synonymous
mutations to be nominally associated with AD at A< 0.05. The majority of variants exerted
effects in the protective direction with greater frequency in controls than case samples. Four
ABCA 7 variants were significantly associated at £ < 0.05 with two increasing risk and two
being protective. Synonymous variants rs3752234 and rs3752237 increased AD risk more
than four-fold, which is contradictory to previous findings [48,49], where the effects were
protective. Conversely, rs4147915 and missense mutation rs3764645 p.E188G are
protective. ABCA7p.E188G is predicted as tolerated and previously shown to have no effect
on disease risk [48]. These findings need to be validated as the sample size increases.

Missense variant LRRK2p.M1646T was associated with protection against AD, but the
amino acid substitution is predicted to be tolerated. However, the mutation is known to
increase risk of developing PD [50]. LRRKZ mutations have previously been linked to AD
with PD risk variant p.R1628P found in greater frequencies in AD cases than controls [51].
The variant increased apoptosis and cell death in transfected human cell lines. Therefore, it
is likely that genetic pleiotropy possibly occurs across several neurodegenerative diseases.
LRRKZis involved in autophagy and recycling proteins in the retrograde trafficking
pathway. Mutations in this protein are associated with dendrite shortening in neurons, a
possible cause of motor symptoms in PD [46]. With some shared clinical features, mutations
in LRRK?Z2 could also affect the autophagy process in AD.

Gene-based burden analysis in SKAT-O allowed adjustment to correct for the effect of age,
sex and number of APOE 4 alleles. Both AD and other neurological familial genes did not
exhibit any burden on LOAD. APOE and CLU were significant to £< 0.05 but did not pass
Bonferroni correction. Only SNP p.S16R in CLU was significantly associated in single-
variant testing, indicating that this is driving the signal.

Conclusion

Although other familial neurological genes did not show any burden on LOAD, an
individual missense variant in LRRKZ2 was tentatively associated; preliminary exploration of
the data has indicated that genetic pleiotropy is likely to play a role in diseases with
overlapping features. LRRKZis involved in PD, yet few studies have investigated its role in
other dementias.
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Exome-wide analysis has revealed a significant burden of P/LRA variants on AD. Previous
studies have identified a possible link with AD via GWAS hit ZCWPWI and paired receptor
PILRB which associates with DAP12and TREM?Z2. PILRA and PILRB function may be co-
regulated, and therefore, further investigation should involve looking at both genes in AD.

Limitations in power have made it difficult to find many significant associations, but with
ongoing data collection, the sample size will increase to address this issue. However, using
an exome-sequencing approach, it has been possible to detect rare variants with greater
effect sizes, which previous GWAS did not permit.
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Table 2

Burden analysis results for exome-wide analysis

Gene mRNA 1D Position Number of variants ~ P-value

PILRA NM_013439 7:99971313-99997454 5 3.40E-05
PRSS45 NM_199183 3:46783959-46785453 4 5.92E-05
THNSL2 NM_001244676  2:88470874-88485392 12 1.49E-04
KLK2 NM_001002231 19:51376837-51381777 8 1.96E-04
STOXZ2 NM_020225 4:184930646-184932631 8 2.42E-04
SEC3IA NM_001077206 4:83740163-83803115 23  3.58E-04
PRSS42 NM_182702 3:46875258-46875258 1 3.81E-04
HAS3 NM_138612 16:69143481-6915 2391 4 4.09E-04
KLRFZ NM_001190765 12:10041364-10048327 5 5.08E-04
SLC22A2  NM_003058 6:160638357-160677614 9 5.48E-04
GRIKZ2 NM_001166247  6:102134022-102516260 10 5.77E-04
TRDMTI  NM_004412 10:17194026-17243638 12 6.86E-04
FAM136A NM_032822 2:70528601-70529205 5 7.25E-04
ITGAL NM_001114380 16:30484308-30522152 13 7.82E-04
APOCI1 NM_001645 19:45419414-45422561 2 8.28E-04
HAS3 NM_001199280 16:69143481-69143816 3 8.52E-04
TMIE NM_147196 3:46742941-46751229 3 8.84E-04
BCR NM_004327 22:23523602-23657604 24 B8.96E-04
POU4F2 NM_004575 4:147560411-147561971 6 9.54E-04

Page 18

Burden analysis of all genes was performed using a C-alpha test without correction for covariates. The results shown are significant to £< 0.001.

Information includes gene name [Gene], mMRNA [mRNA D], chromosomal position in genome build hg19 [Position], number of variants

contributing to the signal [Number of Variants], significance [~-value].
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Table 4

Predictive accuracy model for 132 AD cases versus 53 controls

Page 20

Area under ROC

Hosmer—Lemeshow

Model Nagelkerke’s R2  curve (AUC) AUC 95% CI  test P-value
e4 0.086 0.718 0.642-0.794  0.001
ed+e2 0.215 0.734 0.660-0.809  0.347
ed+e2+ Sex+ Age 0.223 0.742 0.668-0.816  0.891
ed+e2+ Sex+ Age+ GWAS 0.366 0.830 0.770-0.891  0.816
ed+e2+ Sex+ Age+ GWAS+ PRS (P<0.05) 0.378 0.838 0.779-0.898  0.536

Different predictors were compared for their accuracy in predicting risk of developing AD. APOE e4 and €2 alleles, sex, age at death and
genotypes for 19 of the GWAS SNPs were used as predictors. PRS were constructed using independent variants associated with AD at a threshold

of P<0.05, excluding the APOE region +500 kb and the GWAS variants. Nagelkerke’s R2 expresses the proportion of variance explained by the

model, with the largest R2 value indicating the best model. Area under the receiver operating characteristic curve (AUC) is a measure of predictive
accuracy, which quantifies the overall ability to discriminate between case and control individuals. The Hosmer—Lemeshow statistic is a goodness-
of-fit test for risk prediction models, with a significant result indicating that the data are a poor fit to the model.
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