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ARTICLE INFO ABSTRACT

Keywords: To benefit from cognitive behavioral therapy (CBT), individuals must not only learn new skills but also stra-
Real-time fMRI tegically implement them outside of session. Here, we tested a novel technique for personalizing CBT skills and
Neurofeedback facilitating their generalization to daily life. We hypothesized that showing participants the impact of specific
;‘;‘izicﬁ;iilt’;}:"ioral therapy CBT strategies on their own brain function using real-time functional magnetic imaging (rt-fMRI) neurofeedback

would increase their metacognitive awareness, help them identify effective strategies, and motivate real-world
use. In a within-subjects design, participants who had completed a clinical trial of a standardized course of CBT
created a personal repertoire of negative autobiographical stimuli and mood regulation strategies. From each
participant's repertoire, a set of experimental and control strategies were identified; only experimental strategies
were practiced in the scanner. During the rt-fMRI neurofeedback session, participants used negative stimuli and
strategies from their repertoire to manipulate activation in the anterior cingulate cortex, a region implicated in
emotional distress. The primary outcome measures were changes in participant ratings of strategy difficulty,
efficacy, and frequency of use. As predicted, ratings for unscanned control strategies were stable across ob-
servations, whereas ratings for experimental strategies changed after neurofeedback. At follow-up one month
after the session, efficacy and frequency ratings for scanned strategies were predicted by neurofeedback during
the rt-fMRI session. These results suggest that rt-fMRI neurofeedback created a salient and durable learning
experience for patients, extending beyond the scan session to guide and motivate CBT skill use weeks later. This
metacognitive approach to neurofeedback offers a promising model for increasing clinical benefits from cog-
nitive behavioral therapy by personalizing skills and facilitating generalization.

Personalized therapy

1. Introduction

Efficacious psychotherapies convey clinical benefit in part through
learning, often relying on the appropriate application of new skills
(Kazdin, 2007). For example, individuals with a disorder like depres-
sion may benefit from developing the ability to challenge (or change)
negative thoughts, increase positive behaviors, and cope with distres-
sing emotions. While these skills can be practiced during a therapy
session, the best outcomes are obtained when individuals successfully
incorporate new skills into their daily routines (Hundt et al., 2013).
However, generalization to life outside of the therapy session remains
one of the critical challenges of psychotherapy. As dissemination of

evidence-based therapies occurs on a broader scale (Karlin and Cross,
2014), methods to increase successful generalization of therapeutic
learning and optimize real-world skill use are needed to improve clin-
ical outcomes.

Several challenges to generalization may be characterized as me-
tacognitive: a patient may have been told that a new skill can be
helpful, but without having experienced benefits directly, he or she may
not be motivated to use it; we refer to this problem as one of credibility.
Alternatively, a patient may have tried a strategy previously and found
it to be effective, but if the skill has not yet become a part of his or her
daily behavioral repertoire, the cue to implement it depends on its re-
trievability from memory. We refer to this problem as one of
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availability—if a given skill is not available in memory to be retrieved
and used when needed, then it is unlikely to be used outside of session.
Critically, since skills must be practiced outside of session to be ade-
quately reinforced, these metacognitive barriers may be an overriding
constraint on generalization and progress. Thus, the state of an in-
dividual's metacognitive awareness and knowledge about therapeutic
techniques may either limit or permit gains from psychotherapy.

An additional challenge concerns how to flexibly apply the skills
gained in psychotherapy in response to diverse real-world scenarios.
Most learning-based therapies include a rich repertoire of skills and
concepts that must be adapted across situations and individuals.
Selection of a specific strategy for use in daily life is not trivial, and
monitoring the impact of a strategy on one's own symptoms is a com-
plex, cognitively-demanding problem. The ability to efficiently com-
pare and contrast the effects of specific strategies on one's own symp-
toms and psychobiology is, therefore, another critical constraint on
clinical benefit. Improving patients' ability to identify the specific skills
that are the most effective for them should support the development of
a personalized repertoire of skills and optimize real-world skill use.

1.1. Increasing credibility and availability of therapy skills

The notion that psychotherapy can change the brain is intuitive to
neuroscientists; neuroscience conceptualizes therapy as a learning ex-
perience that confers long-term benefits via alteration of brain structure
and function. However, members of the general public are likely to
believe that psychotherapy alone is insufficient for treating “biological”
mental disorders (Deacon and Baird, 2009). We aimed to counter this
assumption by harnessing the persuasive power of neuroscience in-
formation, which appeals to and is considered highly credible by lay
audiences (Fernandez-Duque et al., 2015; McCabe and Castel, 2008;
Weisberg et al., 2008). We hypothesized that a live demonstration of
therapy skills changing brain activity would be particularly effective for
increasing the credibility of skills learned in therapy. We created such a
demonstration using real-time functional magnetic resonance imaging
(rt-fMRI) neurofeedback.

In addition to improving credibility, a neurofeedback demonstration
of brain activity changing in response to therapy skills is also likely to
be salient and memorable for participants, thus increasing the avail-
ability of practiced skills. Rt-fMRI neurofeedback is a relatively new
technology and one that few people have had the opportunity to ex-
perience directly (Sulzer et al., 2013). Therefore, we hypothesized that
the experience would be novel, and thus more likely to be remembered
compared to a more routine laboratory or clinic procedure.

1.2. Personalized feedback to aid skill selection

Rt-fMRI neurofeedback is an emerging technology with significant
advantages over feedback modalities like EEG or psychophysiology; it
offers increased access to subcortical areas and, importantly, anato-
mical and temporal specificity (Linden et al., 2012; Sulzer et al., 2013;
Young et al., 2014). Visual feedback depicting activation in a specific
structure can be displayed in real time and used to train brain activation
or to demonstrate volitional control of brain activity. In the current
study, we aimed to show participants the efficacy of specific skills they
had learned in therapy to change brain activity, using an idiographic
approach that offered neurofeedback corresponding to a personalized
repertoire of strategies. This approach aimed not only to enhance
general credibility and motivate real-world skill use, but also to inform
evaluation of specific skills to improve selection.

1.3. A novel approach to rt-fMRI neurofeedback
The current study aimed to test whether a single rt-fMRI session

could enhance metacognitive awareness of the neural changes asso-
ciated with use of existing skills for regulating negative emotions. We
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built upon prior rt-fMRI interventions for depression where participants
were trained to upregulate brain activation responsive to positive
emotions (e.g., Linden et al., 2012; Young et al., 2014). Unlike prior
studies, however, we did not attempt to teach a new regulation skill to
our participants. Here, the scan session consisted entirely of a “test”
phase, in which participants could draw their own conclusions about
associations between neural activation and previously-learned mood
regulation skills. To achieve this, we recruited participants who had
prior experience with cognitive behavioral therapy (CBT) and a pre-
sumably well-learned set of skills that could be tested inside the MRI
scanner.

Our approaches for selecting regions of interest (ROIs) and stimuli
for the scan session were idiographic, prioritizing ecological validity
and individual differences over standardization. An ROI search was
conducted within the anatomical boundaries of the anterior cingulate
cortex (ACC) because activation in this region has been shown to cor-
relate with subjective distress and has favorable signal-to-noise ratio for
providing real-time neurofeedback (Hamilton et al., 2011). We selected
a unique region of interest (ROI) for each participant to maximize our
chances of providing a strong neurofeedback signal to each individual.
The stimuli for the scan session were also personalized. Participants
reported previously-learned strategies that were effective for control-
ling mood, and strategies were divided into experimental and control
groups. Strategies that were compatible with fMRI (e.g., purely cogni-
tive such as cognitive reframing or focusing on positive emotions) were
included as experimental strategies inside the scanner. Some cognitive
strategies, as well as those that were not compatible with the scanner
(e.g., behavioral such as calling a friend or physical such as breath
control), were analyzed as within-subject control strategies (see Sup-
plementary Fig. 1).

To our knowledge, this is the first rt-fMRI study to use a metacog-
nitive rather than feedback-training approach, and the first time that
fMRI neurofeedback has been used to support generalization of pre-
viously-learned mood regulation strategies. We predicted significant
correspondence between the neurofeedback received and outcomes
related to skill generalization: subjective efficacy (a measure of cred-
ibility) and frequency (a measure of availability) of specific strategy use,
one month later. We hypothesized that only those strategies that suc-
cessfully decreased ACC activation would be rated as more effective and
more frequently used following the neurofeedback experience.
Similarly, we predicted that, across participants, those who had more
success at decreasing ACC activation with their strategies would en-
dorse higher efficacy and frequency of strategy use at follow-up.

2. Methods and materials
2.1. Participants

We recruited from a group of 24 participants who had prior diag-
noses of depression and had previously completed a standardized
course of CBT in a randomized clinical trial (Eddington et al., 2015). We
chose this recruitment approach to minimize treatment heterogeneity,
as all participants had received equivalent doses of evidence-based
treatment delivered in the same clinical setting. Recruiting from this
advantageous sample, however, limited our potential sample size; thus,
we elected to deliver the active intervention to all participants and
utilize a within-subject control.

Potential participants were excluded if they were deemed ineligible
for the MRI scan (due to medical/safety concerns; n = 3), reported
active suicidal ideation and a history of previous attempts (n = 1), were
not interested in participating (n = 3), or did not respond to recruit-
ment calls or emails (n = 4). A final sample of 13 participants (11F;
mean age = 44) took part in the scan session.

Participants were recruited for their prior therapy experience, ra-
ther than diagnostic status, and served as their own controls. Thus, a
full diagnostic assessment was not performed. Before enrolling in the
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Fig. 1. Timeline of Study Events. Screening mea-

6 sures were administered at each timepoint for
,__7'1’;70"”' symptom and safety monitoring. At Week 1, the Pre-
ﬂ Scan Interview catalogued and codified each in-

dividual participant's repertoire of negative mem-
ories (or worries) and of CBT strategies for reg-

ulating negative emotion. At Week 1 (Baseline) and Week 6 (Follow-Up), all strategies were rated for frequency, efficacy, and difficulty of use. At Week 2, immediately
following the rt-fMRI neurofeedback task runs (Scan Session), all scanned strategies were rated for efficacy and difficulty.

initial CBT trial, a majority of the participants (8/13) had been naive to
therapy and all were medication-naive. Since completing the trial, three
had pursued additional therapy and four had started taking anti-
depressant medications. On average, 29 months had elapsed since CBT
treatment completion (range: 19-39 months.) Although the sample was
characterized by mild depressive symptoms on average, there was a
wide range of mood symptoms at enrollment, with a mean PHQ-9 score
of 8.2 (range: 1-18), and mean BDI-II score of 16 (range: 0-30). A full
description of participant characteristics can be found in
Supplementary Table 1.

2.2. Experimental timeline and strategy ratings

The study took place over a 6-week span (Fig. 1). The Pre-Scan
Interview (week 1) and Scan Session (week 2) were both completed in
person. The Follow-Up assessment (week 6) was completed remotely
using the Qualtrics survey platform. Screening measures were ad-
ministered at each timepoint for symptom and safety monitoring (i.e.,
assessing for suicidal ideation or acute distress), but were not primary
outcome measures and are not relevant to the current report. All study
procedures met ethical standards and were approved by the Duke
Medicine Institutional Review Board.

Strategy ratings were collected at the Pre-Scan Interview (hereafter
Baseline), during the Scan Session (immediately after participants fin-
ished the real-time task runs), and at the 1-month Follow-Up (Fig. 1).
Participants used 7-point Likert-type scales to rate each strategy in
terms of efficacy (“how effective is this strategy, on average?”), diffi-
culty of use (“how difficult is it to use this strategy, on average?”), and
frequency of use (“how frequently do you use this strategy?”). Our
primary hypotheses concerned strategy efficacy, and frequency ratings,
which we expected to change in response to neurofeedback. We did not
expect difficulty ratings to change in response to neurofeedback.

2.3. Pre-scan interview session

A two-hour in-person Pre-Scan Interview was conducted one week
prior to the Scan Session. Participants reviewed their therapy experi-
ences and listed 24 negative memories or worries that could be used to
trigger negative emotions in the scanner. Each memory or worry was
rated for emotionality and level of detail, and identified with a short
phrase to be shown in the scanner (e.g., “pool incident” or “Mom's
overdue medical bills.”)

Participants also identified 8 strategies, learned in therapy or else-
where, that they believed effective for regulating their mood. All

- Count Phase Memory Phase

invoke memory/worry

count backwards

pool incident
feedback

30s

apply strategy

examine the
evidence

strategies were rated for efficacy, difficulty, and frequency of use. Each
strategy was identified with a short phrase to be shown in the scanner
(e.g., “examine the evidence”).

Each participant's repertoire of strategies was then divided to supply
the experimental (for use during the MRI session) and control conditions.
The assignment of strategies was not fully random, because some of the
strategies listed were incompatible with the MRI environment (e.g.,
calling a friend) and were necessarily assigned to the control condition
(Supplementary Fig. 1). This stratification nevertheless allowed us to
compare the stability of ratings across time for strategies used or not
used during the scan session.

2.4. Scan session

The scan session took place one week after the Pre-Scan Interview.
Participants remained in the scanner for 1.5-2h during collection of
structural images, functional localizers, resting state scans, and up to 5
real-time neurofeedback runs.

For each participant, their individual experimental strategies (as
identified during the Pre-Scan Interview) were pseudo-randomly paired
with the participant's 24 negative memories/worries, such that each
strategy appeared an equal number of times. The memory-strategy pairs
were randomized for use during the localizer and real-time neuro-
feedback runs.

2.5. Localizer task

The localizer task was comprised of 4 trials. Each trial cycled
through three phases—Count, Memory, Strategy—with each phase
lasting 30s (Fig. 2). During the Count phase, participants counted
backwards from a starting value using a specified increment (e.g., 300
by 4). Task instructions for the count phase minimized the potential
stress effects of mental subtraction by emphasizing the absence of a
target value or penalty for errors. During the Memory phase, partici-
pants viewed an idiographic memory/worry cue and were instructed to
elaborate on the emotions associated with the memory or worry. During
the Strategy phase, participants viewed an idiographic strategy cue and
were instructed to employ that specific strategy to regulate their mood.

2.6. Real-time neurofeedback task

The real-time neurofeedback task was identical in structure and
timing to the localizer task, except that following each Memory and
Strategy phase, participants viewed a brief (5s) neurofeedback display

Fig. 2. Rt-fMRI Neurofeedback Task Design. The rt-
fMRI neurofeedback trial structure is illustrated here.
The localizer task was identical except it did not in-
clude feedback. Activation in the individualized re-
gion of interest (ROI) was presented as neurofeed-
back following negative memory retrieval or worry
(Memory Phase) and regulation (Strategy Phase).
Successive trials rotated through each participant's
repertoire of memories or worries and strategies,
using the personalized phrases generated in the Pre-
Scan Interview.

feedback
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no overlap
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indicating fMRI activation during the preceding phase (See Fig. 2).
Participants were instructed to remain still in the scanner, and to not
intentionally alter respiration rate during strategy use. Participants
completed 5 real-time runs, consisting of 4 trials each (~8 min/run). To
minimize potential distress, after each run participants were offered the
choice to continue or to end the session.

2.7. Imaging parameters

2.7.1. fMRI acquisition

Functional runs were collected on a 3.0T GE MR750 scanner using
an echo-planar sequence with the following parameters: TR, 1s; TE,
28 ms; flip angle, 90°; voxel size, 3 X 3 X 3.8 mm; 18 oblique axial
slices, parallel to the anterior commissure-posterior commissure axis.
The first 8 volumes of each run were discarded to permit stabilization of
the net magnetization. Fast spoiled gradient echo high-resolution
whole-volume T1-weighted images (voxel size, 1 X 1 X 1 mm) were
acquired.

2.7.2. Presentation of real-time fMRI neurofeedback

The five task runs included neurofeedback after each Memory and
Strategy phase, calculated from a participant-specific ACC ROI (see ROI
Definition). Real-time fMRI data collection and analysis employed
Pyneal, a custom software package developed by the second author
(freely available at:  https://github.com/jeffmacinnes/pyneal).
Throughout the scan a dedicated real-time analysis computer (running
Pyneal) retrieved reconstructed imaging data, calculated average raw
BOLD activation within the target ACC ROI, and made those results
available to the neurofeedback presentation computer. The neuro-
feedback presentation consisted of an ascending or descending series of
animated signal bars that conveyed the magnitude of fMRI brain acti-
vation change in each phase (see Fig. 2).

Feedback values were calculated using the mean signal from within
the ROI, and converted to a percent signal change relative to a moving
reference value (i.e., the last half of the preceding phase). Use of a
moving reference value throughout each run, combined with presenting
intermittent feedback at the end of each trial phase (as opposed to
continuous feedback throughout each trial) minimized the effects of
nuisance sources of noise in the signal (e.g., low frequency scanner
drift, physiological artifacts, etc.).

For the Memory phase, participants were instructed to expect in-
creases in brain activation. The neurofeedback value was calculated as
the average ROI signal during the last 15s of the Memory phase minus
the average ROI signal during the last 15 s of the preceding Count phase.
The feedback range was normalized to [0 to 1] to present relative
changes, with any negative values truncated at 0.

For the Strategy phase, participants were instructed to expect de-
creases in brain activation. The neurofeedback value was calculated as

MNI coordinates
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Fig. 3. Location of Subject-Specific MNI-space ROIs.
ROI selection used activation in the individual lo-

subj # Anatomical Area X Y z . . . . .

calizer runs intersected with anatomical priors.

1 Paracingulate gyrus 4 46 -6 Anatomical boundaries reflected prior research im-

2 Paracingulate gyrus 2 4 20 plicating anterior cingulate cortex (ACC) in sub-

3 Paracingulate gyrus 4 50 12 jective distress. The center coordinate of each sub-

4 Paracingulate gyrus 2 52 8 ject-specific ROI is listed along with its anatomical

5 Paracingulate gyrus 2 48 8 label derived from the Harvard-Oxford structural

6  Paracingulate gyrus 0 52 -4 atlas.

7  Paracingulate gyrus 10 54 -4

8 Paracingulate gyrus 14 46 4

9  Anterior Cingulate -4 24 32

10  Anterior Cingulate 14 44 8

11 Anterior Cingulate 4 18 26

12 Posterior Anterior Cingulate -4 24 42

13 Subcallosal Cortex -4 28 2

the average ROI signal during the last 15 s of the Strategy phase minus
the average ROI signal during the last 15s of the preceding Memory
phase. The feedback range was normalized to [—1 to 0] to present
relative changes, with any positive values truncated at 0.

The analytic focus for the present report was the neurofeedback
provided to participants, showing the efficacy of strategies (specific and
collective) at reducing activation in the Strategy phase relative to the
Memory phase.

2.8. ROI definition

Participant-specific ROIs were defined using the localizer task. We
first ran a GLM modeling activation for the Memory
Phase > [Strategy + Count Phases]. The resulting whole brain z-stat
maps were then smoothed at 4 mm FWHM and masked to isolate ac-
tivated voxels within an anatomically-defined ACC ROI (union of
Brodmann Areas 24, 25 and 32; Maldjian et al., 2003). Voxels within
this ROI were segregated into clusters based on an activation threshold
set at the 95th percentile of all voxel activation. We selected the largest
resultant cluster, identified the peak voxel, and constructed a 7-mm
spherical ROI centered on this voxel for neurofeedback. For one parti-
cipant, the peak voxel was from a whole-brain search—and not re-
stricted to anatomical ACC—due to a registration error. Neurofeedback
values for this participant did not differ from participants whose ROIs
fell within the typical search area. For the majority of participants (8/
13), the neurofeedback ROI was located in the paracingulate gyrus
(Harvard-Oxford anatomical atlas; Fig. 3).

2.9. Data analysis

Our analysis approach focused on whether the neurofeedback ex-
perience in the rt-fMRI session predicted changes in strategy efficacy
and frequency ratings. Four participants completed fewer than 20
neurofeedback trials; however, there were no associations between the
number of neurofeedback trials completed and any of the outcome
measures; all (ps > 0.2). Pearson correlation coefficients were calcu-
lated to assess the relationship between trial-by-trial neurofeedback
values and subjective strategy ratings collected at three observation
intervals: baseline, during the scan session, and at 1-month follow-up.
Pearson correlation coefficients served as our measures of effect size,
with r values of 0.1 indicating small, 0.3 indicating moderate, and 0.5
indicating large effect sizes. Finally, the correlation results were re-
plicated in a multi-level model to account for the nested structure of the
data. Multi-level models included strategy at the lower level, and par-
ticipant at the upper level. With a sample size of 13, statistical power is
limited to detect effects in such a model (Maas & Hox, 2005). We
therefore modeled only fixed effects, as our number of observations per
participant (8 strategies, maximum 4 per condition) was insufficient to
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model individual differences in slopes. Of note, none of the baseline or
treatment history measures (see Supplementary Table 1) correlated
significantly with variables of interest (experimental or control strategy
ratings at baseline, follow-up, or neurofeedback). Thus, to preserve
degrees of freedom, these measures were not included in the multilevel
model.

3. Results

We hypothesized that observing real-time fMRI neurofeedback de-
picting the ability of specific strategies to decrease brain activation
generated by negative memories or worries would impact participants'
awareness of the efficacy of those strategies, and increase the frequency
of their use in daily life, but not their perceived difficulty. To test these
hypotheses, we looked for correspondence between presented neuro-
feedback and strategy ratings before versus during the scan session and
at 1-month follow-up. We furthermore looked for changes in ratings
(between baseline and follow-up) for strategies used in the scanner
(experimental) compared to those that were not used (control). For one
participant, follow-up strategy ratings were not obtained due to a
technical error, leaving a sample size of 12 participants for the follow-
up analyses reported below.

3.1. Experimental vs. control strategies

Experimental and control strategies did not differ on average ratings
of frequency, efficacy, or difficulty, either at baseline or at follow-up
(univariate tests in repeated measures ANOVA, all ps > 0.2). Two-
sample Kolmogorov-Smirnov tests revealed that the distributions of the
ratings for control vs. experimental strategies also did not differ at ei-
ther baseline or follow-up (all Ds < 0.5, all ps > 0.7). Thus, while
experimental strategies may have differed qualitatively from control
strategies, there was no significant quantitative difference in their
average effectiveness, difficulty, or frequency of use.

Within-subject ratings of control strategies were significantly cor-
related at baseline and at follow-up (efficacy: r = 0.60, p = .04,
power = 0.55; frequency: r = 0.70, p = .01, power = 0.74; difficulty:
r = 0.57, p = .05, power = 0.49), suggesting that ratings of the control
strategies were stable before and after completion of the fMRI session.
In contrast, for experimental strategies, ratings at follow-up were not
correlated with ratings at baseline (efficacy: r=0.13, p = .68,
power = 0.05; frequency: r = 0.41, p = .18, power = 0.25; difficulty:
r=0.10, p = .76, power = 0.05), suggesting that the ratings for ex-
perimental strategies were not stable and may have changed as a result
of the neurofeedback experience.

3.2. Correlations between strategy neurofeedback and strategy ratings

To examine whether the subjective experience of strategy efficacy
during the scan session was related to the trial-by-trial presentation of
neurofeedback, we examined associations between feedback and rat-
ings for individual strategies (collapsed across subjects). No participants
used identical labels for their strategies; thus even if two strategies were
similar, they were treated distinctly in this analysis. A total of 50 ex-
perimental strategies (3—4 per participant) and 54 control strategies
(4-5 per participant) were analyzed. Individual strategies that were
associated with a stronger neurofeedback signal (defined as decrease
for Strategy relative to Memory in the ROI) were rated as more effec-
tive, r = —0.31, p = .03, power = 0.59, and easier to use, r = —0.35,
p = .01, power = 0.71, on the day of the scan (Fig. 4). At follow-up four
weeks after the scan, strategies that were associated with a stronger
feedback signal were rated as more effective, r = —0.33, p = .03,
power = 0.65, and more frequently used (at trend level), r = —0.26,
p = .08, power = 0.45. This supported our hypothesis that strategies
for which neurofeedback demonstrated decreased ROI activation
during the scan would be selectively associated with greater self-
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reported credibility and availability. Neurofeedback was not associated
with follow-up difficulty ratings, however, r = —0.12, p = .40,
power = 0.13, suggesting that strategies associated with stronger neu-
rofeedback, while easier to use in the scanner, were not easier to use in
daily life.

Critical to a conservative test of our hypothesis, we observed that
pre-scan baseline ratings of frequency and efficacy for individual stra-
tegies were not predictive of feedback values received during the scan
(Fig. 4). For efficacy, the correlation of baseline ratings with strategy
feedback was non-significant, r = —0.12, p = .41, power = 0.13, and
statistically different from the correlation of strategy feedback with 1-
month follow-up efficacy ratings, Steiger's Z = 2.11, p = .03. For fre-
quency of use, the correlation of baseline ratings with strategy feedback
was non-significant, r = —0.08, p = .60, power = 0.08, and different
from the coefficient with 1-month follow-up frequency ratings at trend-
level, Steiger's Z = 1.74, p = .08. For difficulty, the correlation of
baseline ratings with strategy feedback was non-significant, r = —0.06,
p = .65, power = 0.07, and not statistically different from the correla-
tion of strategy feedback with 1-month follow-up difficulty ratings,
Steiger's Z = 0.331, p = .74. Thus, for scanned strategies, baseline
ratings did not predict real-time fMRI neurofeedback values, but neu-
rofeedback values did predict efficacy and frequency ratings four weeks
after scanning.

3.3. Multi-level model

We used a multi-level model to test the findings from the correlation
analysis above taking into account the nested structure of the data. The
goal was to test whether feedback values predicted strategy ratings at
baseline or follow-up. Both experimental and control strategies were
entered into the model; control strategies were assigned a 0 value for
the neurofeedback, and thus were reflected as the model intercept (a).
Of primary interest was the comparison of associations between ex-
perimental strategy ratings (from baseline and follow-up) and neuro-
feedback.

The fixed effect parameter estimates for the model predicting effi-
cacy ratings are shown in Table 1. At the between-subjects level, sub-
jects who received stronger neurofeedback values rated their strategies
as more effective at 1-month follow-up, B, = —1.94, t= 2.84,
p < .01, but not at baseline, fo, = —0.38, t = —0.58, p = .56. The
baseline and follow-up coefficients (Bo,—B1,5) differed at trend-level,
t=1.74, p = .08. Similarly, at the within-subject (strategy) level,
strategies that were associated with higher neurofeedback values in the
scanner were rated as significantly more effective at 1-month follow-up,
B1,w = —1.70, t=2.53, p = .01, but not at baseline. B, = —0.06,
t = —0.1, p = .92. The baseline and follow-up coefficients (Bo w—P1,w)
differed at trend-level, t = 1.86, p = .07. These findings confirm the
results of the correlational analyses presented above, taking into ac-
count the nested structure of the data.

An identical model was run with frequency ratings as the dependent
variable. None of the fixed-effect parameter estimates reached sig-
nificance in the frequency model at baseline or follow-up (all ps >
0.1). A multi-level model with difficulty ratings was not run, given the
lack of significant correlations between difficulty ratings and neuro-
feedback at baseline or follow-up.

4. Discussion

The goal of the current study was to test a new technique for in-
creasing metacognitive awareness and demonstrating the efficacy of
previously-learned mood regulation skills in a sample of participants
who had received cognitive behavioral therapy for depression. Our
central hypothesis was that the memorable experience of using cogni-
tive strategies in the scanner and receiving neurofeedback regarding the
impact of those strategies on mood-related brain activation would affect
participant beliefs and behavior. Specifically, we expected
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Fig. 4. Strategy-Neurofeedback Correlations. Note that negative neurofeedback values indicate a reduction in activation from Memory to Strategy Phase (desired
outcome). Neurofeedback was not associated with baseline ratings on any measure (first column). A) Efficacy ratings. Strategies associated with stronger neuro-
feedback (i.e., a larger reduction) were rated as significantly more effective during the scan session and at 1-month follow-up. B) Frequency ratings. Strategies
associated with stronger neurofeedback showed a trend towards being rated as more frequently used at 1-month follow-up. C) Difficulty ratings. Strategies associated
with stronger neurofeedback were rated as easier to use on the day of the scan session, but not at 1-month follow-up.

Table 1

Fixed effects parameter estimates for multi-level model of efficacy ratings at
baseline (1.A) and follow-up (1.B), and change from baseline to follow-up (1.C),
as a function of strategy neurofeedback.

Fixed effects Estimate (SE) ¢t P Lower Upper
1.A. Baseline efficacy ratings 95% CI

Control Strategies (o) 6.05 0.21 838 < 0.001 5.62 6.48
Feedback (between; 3o,) —0.38 0.65 —0.58 0.56 —1.66 0.90
Feedback (within; Bow) —-0.06 0.62 -0.10 0.92 -1.29 116
1.B. Follow-up efficacy ratings 95% CI

Control Strategies (ct;) 5.26 0.22 4.4 < 0.001 4.82 5.71
Feedback (between; 3,,) —1.94 0.68 2.84 < 0.01 —-3.28 -0.59
Feedback (within; B; ) -1.70 0.67 2.53 0.01 -3.02 -0.37
1.C. Change from baseline to follow-up 95% CI

Control strategies (ap—ct;) 0.79 0.20 3.9 < 0.001 0.39 1.19
Between (Bo,,—P1,p) 1.56 0.90 1.74 0.08 -0.21 3.32
Within (Bo,w—B1,w) 1.64 0.88 1.86 0.07 -0.10 3.38

Note: N = 13 persons, 8 strategies per person, 2 timepoints, total of 208 ob-
servations. Due to the small sample size, we took a liberal approach to speci-
fying degrees of freedom, based on the number of observations rather than the
number of subjects. All p-values are two-tailed.

neurofeedback to increase participants' metacognitive awareness of the
efficacy of specific strategies and thereby affect their likelihood of using
those strategies in daily life. The significant correlations between neu-
rofeedback presented in the scanner and the strategy ratings at follow-
up, but not baseline, support this hypothesis: at both the between-
subjects and within-subject level, stronger neurofeedback was asso-
ciated with higher efficacy ratings four weeks after the scan. We pre-
dicted that differentiation of effective vs. ineffective strategies for
neuromodulation would also translate into greater motivation to use
effective strategies outside of the scanner; indeed, at the within-subject
level, there was a marginally significant association between stronger
neurofeedback and higher frequency of use four weeks after the scan.

Two additional pieces of evidence support a causal relationship
between the neurofeedback and post-scan changes in strategy ratings.
First, effectiveness of a strategy in reducing activation in the target ROI
after it had been activated by distressing thoughts and memories was
not predicted by efficacy or frequency ratings obtained at the pre-scan
baseline. Second, neurofeedback selectively affected follow-up ratings
of experimental strategies used in the scanner; no relationship was
observed between neurofeedback and ratings of unscanned control
strategies. Importantly, experimental and control strategies did not
differ in efficacy or frequency ratings at baseline, nor at follow-up; thus,
the experience of using CBT strategies in the MRI session did not boost a
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general belief in the efficacy of all CBT strategies. Rather, only those
strategies that were associated with neurofeedback evidence of their
efficacy were rated as more effective and frequently used; moreover,
these beliefs were still evident four weeks later. In sum, the finding that
neurofeedback was associated with efficacy and frequency ratings only
at follow-up—and only for strategies that worked to reduce brain ac-
tivation in the target ROI—suggests that the context provided by the
scan session made for a powerful learning experience with effects that
generalized beyond the learning context itself.

Our approach diverges from most previous rt-fMRI training studies
because we used neurofeedback as a tool to change beliefs about pre-
viously-learned skills rather than to teach or train a new skill. Time in
the scanner allowed participants to test associations between their ex-
isting repertoire of strategies and changes in brain activation. To our
knowledge, this study is the first to use rt-fMRI in this way as a tool for
metacognitive awareness rather than skill training, and the first to
provide participants who had received CBT with neurofeedback corre-
sponding to their CBT strategy use. This novel approach has both the-
oretical and practical implications. Theoretically, it offers a salient ex-
ample of therapeutic applications of declarative memory for enhancing
metacognition. Pragmatically, it establishes a mechanistic paradigm for
efficacious single-session neurofeedback interventions that could
transform clinical practice.

4.1. Developing a novel therapeutic approach

The current study represents a proof-of-concept for the development
of a novel therapeutic intervention. It demonstrates the feasibility of
providing ACC neurofeedback associated with the use of cognitive
strategies learned in therapy for depression, or elsewhere. More
broadly, it suggests a new avenue for rt-fMRI investigations that move
beyond feedback-based training and take full advantage of a human
participant's ability to draw connections between an objective, biolo-
gically-based signal and subjective internal experience; the potential
applications of such a metacognitive approach are numerous. While the
current study establishes proof of principle and feasibility, future in-
vestigations will be required to demonstrate the efficacy of this novel
approach.

The small sample size in the current study—a consequence of our
decision to recruit graduates of a clinical trial with standardized CBT
experiences—is a significant limitation. Future iterations including a
larger sample and independent control groups are now warranted.
Control groups could receive no neurofeedback (as in Linden et al.,
2012), or receive neurofeedback from a cortical region not ostensibly
involved in mood regulation (as in Young et al., 2014). An additional
limitation is that the results are primarily self-reported behavioral
outcomes, so it is possible that the changes in self-reported efficacy and
frequency ratings could reflect a reporting bias uncorrelated with the
actual experience of use. Although the idea that metacognitions influ-
ence clinical course has significant supporting evidence, the relation-
ship remains to be demonstrated in this application. It is also worth
noting that three potential participants had medical/physical contra-
indications for MRI scanning, and one declined to participate due to
fear of the MRI scan. This points to a potential problem for general-
izability of future rt-fMRI-based interventions, though dedicated edu-
cation about the MRI environment may mitigate such reactions. Finally,
during the pre-scan interview, participants were asked to list effective
strategies for regulating their mood. The emphasis on identifying ef-
fective strategies for use in the study limited the range of efficacy rat-
ings obtained at baseline (see Fig. 4A). While this approach maximized
participants' chances of successful regulation in the scanner, it pre-
cluded our ability to observe neurofeedback-associated changes in
strategies that were considered less effective or ineffective at baseline.

Although the question of whether strategy use after neurofeedback
predicted mood at follow-up is an obvious next step for this research,
here we aimed to test a conceptually novel intervention for
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personalizing and enhancing motivation to use skills learned in CBT. In
our view, an adequate test of the impact of this adjunct intervention on
mood will require both additional controls and modeling of how
strategy choices post-scan reflect the evidence of efficacy perceived by
the participant during neurofeedback. A focus on strategy selection
would be preferable to frequency of use as a behavioral outcome mea-
sure in such research. Indeed, the relationship between frequency of
strategy use and mood symptoms is not straightforward—for example,
frequency of strategy use has been associated with improved mood day-
to-day, but sustained mood improvement after therapy could reduce the
number of occasions requiring mood regulation and thus decrease fre-
quency ratings (Hoet et al., 2018). In addition, future tests of this ap-
proach should measure and control for baseline participant character-
istics (e.g., symptom severity, medication status, time since treatment
completion) which could moderate response to neurofeedback in a
larger sample.

Potentially the most powerful application of this technique would
be adjunct to a course of cognitive therapy. A majority of participants in
the current study were no longer enrolled in therapy, and their memory
of therapy content had likely degraded during the time since com-
pleting treatment. Providing patients with a neurofeedback experience
as strategies are being learned in therapy could iteratively guide perso-
nalization of the therapy as well as motivate generalization of skill use
outside of the session, accelerating treatment progress and improving
long-term remission rates. Generalization of the protocol to different
patient populations is also rational (Adcock et al., 2005), as the same
mechanisms of change should apply trans-diagnostically.

5. Conclusions

Encouraged by these novel findings, we propose that a single-epi-
sode rt-fMRI intervention is a feasible and economical method to en-
hance the clinical impact of previously-learned cognitive strategies. By
linking thoughts and mood states to brain activation, our participants
gained 1) a mechanistic understanding of how mood is instantiated in
the brain, 2) confidence in their ability to modulate their own brain
activity, and 3) information about which strategies were most effective
to guide future beliefs and motivation. Taken together, our findings
offer the promise of a biologically-based, single-episode catalyst of
behavior change that can be flexibly applied to enhance the general-
ization of therapy skills and improve clinical outcomes. We argue that
rt-fMRI protocols such as the one tested here hold promise for helping
patients understand the fundamental relationship between their sub-
jective experience and biology. Indeed, this use of rt-fMRI technology to
explore auto-biology—or self as a biological system (MacDuffie and
Strauman, 2017)—has therapeutic implications for beliefs and behavior
across a range of psychiatric disorders.
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