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Abstract
By exerting pro- and anti-tumorigenic actions, tumor-infiltrating immune cells can profoundly influence tumor progression, as 
well as the success of anti-cancer therapies. Therefore, the quantification of tumor-infiltrating immune cells holds the promise 
to unveil the multi-faceted role of the immune system in human cancers and its involvement in tumor escape mechanisms 
and response to therapy. Tumor-infiltrating immune cells can be quantified from RNA sequencing data of human tumors 
using bioinformatics approaches. In this review, we describe state-of-the-art computational methods for the quantification 
of immune cells from transcriptomics data and discuss the open challenges that must be addressed to accurately quantify 
immune infiltrates from RNA sequencing data of human bulk tumors.
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Abbreviations
CAF	� Cancer-associated fibroblasts
CRC​	� Colorectal cancer
ES	� Enrichment score
GSEA	� Gene set enrichment analysis
H&E	� Hematoxylin and eosin
HLA	� Human leukocyte antigen
HPCA	� Human primary cell atlas
IF	� Immune fluorescence
IHC	� Immunohistochemistry
IRIS	� Immune response in silico
LDA	� Latent Dirichlet allocation
M1	� Classically activated macrophages
M2	� Alternatively activated macrophages
mRNA	� Messenger RNA
NGS	� Next-generation sequencing
NMF	� Non-negative matrix factorization
NNML	� Non-negative maximum likelihood
RMSE	� Root-mean-square error

RNA-seq	� RNA sequencing
ssGSEA	� Single-sample gene set enrichment analysis
SVR	� Support vector regression
TCGA​	� The cancer genome atlas
TPM	� Transcripts per millions
Treg	� Regulatory T cells

Introduction

Tumors are not merely masses of malignant cells, but com-
plex ecosystems composed of different types of cells. Among 
these cells, tumor-infiltrating immune cells play a central 
role in tumor control and response to therapy [1, 2]. For 
instance, cytotoxic CD8+ T cells are the primary effectors 
of anticancer immunity, as they can specifically recognize 
and kill tumor cells bearing neoantigens (i.e., tumor-specific 
antigens arisen from the expression of mutated genes) [3]. 
But immune cells can also exert immunosuppressive func-
tions supporting tumorigenesis and immune evasion, as in 
the case of regulatory T (Treg) cells [4].

Therefore, the quantification of the different types of 
tumor-infiltrating immune cells can shed light on the mech-
anisms underlying the anticancer immune response and 
might help to assess the immunogenic effects of anticancer 
therapies, ultimately guiding the rational design of combi-
nation therapies. Most importantly, provided that immuno-
therapy with immune checkpoint blockers is only effective 
in a limited fraction of patients [5], the quantification of the 
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immune infiltrates in pre- and on-treatment tumor samples 
holds promise to identify novel biomarkers for the monitor-
ing and prediction of response.

So far, the composition of the immune infiltrates of 
human cancers has been investigated mainly with immuno-
histochemistry (IHC), immune fluorescence (IF), and flow 
cytometry. Now that the steep decrease in costs of next-gen-
eration sequencing (NGS) technologies [6] has motivated its 
application to routine oncology and has fostered large-scale 
collaborative efforts like the cancer genome atlas (TCGA) 
[7], we are gaining access to an unprecedented amount of 
RNA sequencing (RNA-seq) data describing the tumor 
microenvironment. The composition of tumor-infiltrating 
immune cells can be characterized from bulk tumor RNA-
seq data using computational approaches based on a set of 
immune-specific marker genes or expression signatures.

The most famous approach for the analysis of maker 
genes is gene set enrichment analysis (GSEA) [8]. GSEA-
based methods compute an enrichment score (ES) that 
is high when the genes specific for a certain cell type are 
amongst the top highly expressed in the sample of interest 
(i.e., the cell type is enriched in the sample) and low other-
wise (Fig. 1a).

Unlike GSEA-based approaches that can only compute a 
semi-quantitative score describing the enrichment of a cell 
type in a sample, deconvolution methods can quantitatively 

estimate the relative fractions of the cell types of inter-
est. Deconvolution algorithms consider gene expression 
profiles of a heterogeneous sample as the convolution of 
the gene expression levels of the different cells, and esti-
mate the unknown cell fractions leveraging on a signature 
matrix describing the cell-type-specific expression profiles 
(Fig. 1b).

In this review, we describe state-of-the-art computational 
methods that quantify immune cells from expression data 
of cell mixtures using marker genes coupled with GSEA or 
other scoring approaches, or leveraging on deconvolution 
algorithms and immune cell expression signatures (Table 1). 
Finally, we discuss the issues and open challenges that must 
be addressed to accurately quantify immune infiltrates from 
bulk tumor RNA-seq data.

Gene set enrichment analysis and other 
scoring methods based on marker genes

The original GSEA approach determines whether an a priori 
defined set of genes shows statistically significant differ-
ences between two biological conditions or states [8]. In 
brief, the genes in the expression data set are ranked consid-
ering their correlation with the condition of interest. Then, 
for each position in the ranked list, a running-sum statistic 

Fig. 1   a Approaches based on gene set enrichment analysis rank 
the genes according to their expression in a sample and compute an 
enrichment score (ES) considering the position of a set of cell-type-
specific marker genes (grey dots) in the ranked list. The ES is high 
when the marker genes are among the top highly expressed genes 
(magenta) and low otherwise (cyan). b Deconvolution algorithms 
model the expression of a gene in a mixture M as a linear combina-

tion of the expression of that gene in the different cell types, whose 
average expression profiles are summarized in a signature matrix S, 
weighted by the relative fractions F of the cell types in the mixture. c 
Cell types with higher amount of total mRNA contribute more to the 
cumulative expression of a heterogeneous sample and might be over-
estimated by deconvolution methods



1033Cancer Immunology, Immunotherapy (2018) 67:1031–1040	

1 3

is increased when one of the genes belonging to the query 
set is encountered and decreased otherwise. Finally, the ES 
is computed as the maximum deviation from zero of the 
running-sum statistic.

In the characterization of tumor-infiltrating lymphocytes 
from expression data, the pre-ranked version of the GSEA 
algorithm (GSEAPreranked) can be used to compute sam-
ple-specific ES. Briefly, gene ranks are calculated for sin-
gle samples considering their (normalized) expression and 
ES are computed similarly to GSEA, but considering gene 
ranks instead of correlations. Using this approach, Angelova 

et al. defined 31 custom gene sets representing genes up-
regulated in specific immune cell sub-populations and used 
GSEAPreranked to characterize tumor-infiltrating immune 
cells in colorectal cancer (CRC) patients [10]. This approach 
was later extended through the definition of 28 pan-cancer 
immune gene sets and used to analyze more than 8000 sam-
ples across 19 different TCGA solid cancers (results avail-
able at https​://tcia.at/) [11].

These approaches were recently integrated in TIminer, 
a user-friendly, computational framework to perform dif-
ferent onco-immuno-genomic analyses, including: human 

Table 1   Features of the computational tools for the quantification of 
tumor-infiltrating immune cells from transcriptomics data considered 
in this review: tool or function name, algorithm type (M = marker 
genes, P = partial deconvolution, C = complete deconvolution), main 

method, cell types quantified using the embedded gene sets or sig-
nature profiles, code availability, name of the method in the CellMix 
package [9], reference publication

Tool Type Method Cell types Code availability CellMix References

TIminer M PrerankedGSEA Different gene sets with 31 
[10], 28 [11], and 64 cell 
types [12]

http://icbi.i-med.ac.at/softw​
are/timin​er/timin​er.shtml​ 
(Docker image)

[13]

xCell M ssGSEA 64 immune and non-immune 
cell types

http://xcell​.ucsf.edu/ (R 
script, web tool)

[12]

MCP-counter M Geometric mean of expres-
sion of marker genes

8 immune cells, fibroblasts, 
and endothelial cells

http://githu​b.com/ebech​t/
MCPco​unter​ (R script)

[14]

– P Linear least squares regres-
sion

17 immune cell types lsfit [15]

– P Constrained least square 
regression

– qprog [16]

DeconRNASeq P Constrained least square 
regression

– DeconRNASeq package 
available on Bioconductor 
(R package)

[17]

PERT P Non-negative maximum 
likelihood

Supplementary material in 
the original publication 
(Octave)

[18]

CIBERSORT P Nu support vector regression 22 immune cell types https​://ciber​sort.stanf​ord.edu/ 
(R script, java executable, 
web tool)

[19]

TIMER P Linear least square regression 6 immune cell types https​://cistr​ome.shiny​apps.io/
timer​/ (web tool)

[20]

EPIC P Constrained least square 
regression

6 immune cell types, fibro-
blasts, endothelial cells, and 
uncharacterized cells

https​://gfell​erlab​.shiny​apps.
io/EPIC_1-1 (R script, web-
interface)

[21]

quanTIseq P Constrained least square 
regression

10 immune cell types, unchar-
acterized cells

http://icbi.i-med.ac.at/softw​
are/quant​iseq/doc/index​
.html (Docker image)

[22]

deconf C Non-negative matrix factori-
zation

- Supplementary material in 
the original publication (R 
package)

deconf [23]

ssKL C Non-negative matrix factori-
zation

– ssKL [24]

ssFrobenius C Non-negative matrix factori-
zation

– ssFrobenius [25]

DSA C Quadratic programming – https​://githu​b.com/zhand​ong/
DSA (R package)

dsa [26]

MMAD C Maximum likelihood over the 
residual sum of squares

– http://sourc​eforg​e.net/proje​
cts/mmad/ (Matlab)

[27]

https://tcia.at/
http://icbi.i-med.ac.at/software/timiner/timiner.shtml
http://icbi.i-med.ac.at/software/timiner/timiner.shtml
http://xcell.ucsf.edu/
http://github.com/ebecht/MCPcounter
http://github.com/ebecht/MCPcounter
https://cibersort.stanford.edu/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://gfellerlab.shinyapps.io/EPIC_1-1
https://gfellerlab.shinyapps.io/EPIC_1-1
http://icbi.i-med.ac.at/software/quantiseq/doc/index.html
http://icbi.i-med.ac.at/software/quantiseq/doc/index.html
http://icbi.i-med.ac.at/software/quantiseq/doc/index.html
https://github.com/zhandong/DSA
https://github.com/zhandong/DSA
http://sourceforge.net/projects/mmad/
http://sourceforge.net/projects/mmad/


1034	 Cancer Immunology, Immunotherapy (2018) 67:1031–1040

1 3

leukocyte antigens (HLA) typing, neoantigen prediction, 
determination of tumor immunogenicity, and quantification 
of tumor-infiltrating immune subsets with GSEAPreranked 
analysis based on three different immune gene set compen-
dia [13].

An alternative approach is single-sample GSEA 
(ssGSEA), which computes an ES representing the degree 
to which genes in a particular gene set are coordinately up- 
or down-regulated within a single sample [28]. With respect 
to the original GSEA framework, ssGSEA ranks the genes 
by their absolute expression in a sample and computes ES by 
integrating the differences between the empirical cumulative 
distribution functions of the gene ranks.

xCell is a recently published method based on ssGSEA 
that estimates the abundance scores of 64 immune cell types, 
including adaptive and innate immune cells, hematopoietic 
progenitors, epithelial cells, and extracellular matrix cells 
[12]. xCell is based on a novel compendium of 489 gene 
sets extracted from large-scale expression data from differ-
ent projects and studies: FANTOM5 [29], ENCODE [30], 
Blueprint [31], Immune Response In Silico (IRIS) [32], 
Human Primary Cell Atlas (HPCA) [33], and Novershtern 
et al. [34]. For each cell type, the xCell abundance scores are 
computed through four main steps: (i) ssGSEA performed 
independently for each of the 489 gene sets using the GSVA 
R package [35]; (ii) averaging of the ES across all gene sets 
belonging to a cell type; (iii) platform-specific conversion 
of ES into abundance scores; and, (iv) corrections of cor-
relations between closely related cell types using a “spillo-
ver” approach similar to that used for flow cytometry data 
analysis. Although the final xCell abundance scores cannot 
be directly interpreted as cell fractions, they showed high 
correlation with the true cell proportions [12].

More recently, Becht et al. developed MCP-counter, a 
method for the quantification of tumor-infiltrating immune 
cells, fibroblasts, and epithelial cells based on a stringent 
and robust set of marker genes [14]. For each cell type and 
sample, the abundance score is computed as the geometric 
mean of the expression values of cell-type-specific genes. 
Since the scores are expressed in arbitrary units, they can-
not be directly interpreted as cell fractions, nor compared 
between cell types. However, quantitative validation using 
well-defined cell mixtures showed high correlation between 
the estimated scores and the true cell fractions, proving the 
value of MCP-counter for inter-sample comparison. To dem-
onstrate the prognostic value of these estimates, MCP-coun-
ter has been used to quantify immune and non-immune cells 
in more than 19,000 samples across 32 non-hematological 
tumors [14].

Additional set of immune cell marker genes are available 
in CellMix, an R package that provides a standardized and 
user-friendly interface for accessing different deconvolution 

algorithms, expression signatures, sets of marker genes, as 
well as benchmark data sets derived from the literature [9].

Deconvolution of cell mixtures using 
expression signatures

The deconvolution problem can be formulated as a system 
of equations that describe the expression of each gene in 
a heterogeneous sample as a linear combination of the 
expression levels of that gene across the different cell sub-
sets present in the sample, weighted by their relative cell 
fractions (Fig. 1b). Although the relationship between the 
expression levels of pure and heterogeneous samples is not 
strictly linear, previous work has shown that the linearity 
assumption is reasonable [36].

Abbas et al. proposed an approach based on linear least 
square regression to solve the deconvolution problem and, 
then, force all negative estimates to zero and re-normalize 
the cell fractions to sum up to one [15]. To test the method 
on the deconvolution of immune cell fractions from micro-
array expression data, they built a signature matrix span-
ning 17 blood-derived immune cell subsets profiled by the 
IRIS project. The approach was validated on mixtures of 
transformed immune cell lines, as well as of blood-derived 
immune cells from patients affected by systemic lupus 
erythematous, using flow cytometry or Coulter counter as 
gold standard technology, respectively. The benchmarking 
proved high correlation between the true and the estimated 
cell fractions, although only a limited subset of the con-
sidered cell types was assessed [15].

Gong et al. used constrained least squares and quad-
ratic programming to identify the deconvolution solution 
with the lowest error while simultaneously forcing the 
cell fractions to be non-negative and to sum up to one 
[16]. The algorithm was tested on the deconvolution of 
whole-blood samples from multiple sclerosis patients 
using microarray-based signatures from [15] (exclud-
ing neutrophils), obtaining a high correlation with flow 
cytometry cell fractions [16]. The constrained-regression 
framework was then adapted by Gong and Szustakowski 
for the analysis of RNA-seq data and implemented in an 
R package called DeconRNASeq [17]. The algorithm was 
validated on simulated data generated by mixing RNA-seq 
data from five human tissues (brain, skeletal muscle, lung, 
liver, and heart) [37] and leveraging on a signature matrix 
built from RNA-seq data of the Illumina’s Human Body 
Map 2.0 project. Although no novel immune signatures 
were developed, the tool can be coupled, in principle, with 
any signature matrix.

Qiao et al. proposed a perturbation model, PERT, to 
account for variability in gene expression due to differ-
ent microenvironmental and developmental conditions 



1035Cancer Immunology, Immunotherapy (2018) 67:1031–1040	

1 3

[18]. PERT tackles the deconvolution problem using 
non-negative least squares and simultaneously perturbs 
the signature profiles to capture the transcriptional vari-
ations in the mixture data with respect to the reference 
profiles. Compared to simple non-negative least squares, 
PERT approach coupled with a signature matrix derived 
from [34] showed superior performance in the deconvolu-
tion of microarray data from uncultured mononucleated 
and Lin− umbilical cord blood samples [18]. PERT also 
outperformed two approaches, NNML and NNMLnp [18], 
based on non-negative maximum likelihood (NNML) 
models and on latent Dirichlet allocation (LDA) [38].

The recently developed CIBERSORT algorithm consid-
ers a signature matrix built from microarray data, which 
describes the expression fingerprints of 22 immune cell 
phenotypes, including different cell types and functional 
states [19]. CIBERSORT estimates the cell fractions using 
nu support vector regression (ν-SVR). For each sample, 
ν-SVR is run with three different ν values (0.25, 0.5, and 
0.75) and the solution providing the lowest root-mean-square 
error (RMSE) between the true expression and the estimated 
expression M̂ = S × F̂ is selected. Also in this approach, the 
coefficients are forced to non-negative values and normal-
ized to sum up to one. Validated on microarray data of cell 
mixtures derived from blood and from lymph node biopsies, 
CIBERSORT proved to have a high accuracy in the simul-
taneous deconvolution of nine and three immune cell sub-
sets, respectively, whereas it showed a lower accuracy in the 
quantification of gamma-delta T cells [19]. Tested on simu-
lated mixtures of four malignant immune cell types, it also 
proved robustness to various levels of noise and unknown 
tumor content. CIBERSORT was applied to about 18,000 
microarray data sets across 39 solid and hematological can-
cers (results available at https​://preco​g.stanf​ord.edu/) [39].

Li et al. developed a multi-step computational approach, 
TIMER, to estimate the abundances of six immune cell types 
in 32 cancer types leveraging on a list of immune-specific 
markers derived from the IRIS database and on immune cell 
expression signatures extracted from the HPCA microarray 
data [20]. Each cancer expression matrix under investiga-
tion, derived from RNA-seq or microarray data, is merged 
with the immune cell expression matrix and normalized 
with Combat [40] to remove batch effects. Signature genes 
are identified separately for each cancer type by selecting 
from the immune cell markers the genes that are negatively 
associated with tumor purity. Finally, for each cancer type, 
the signature matrix is built from the normalized immune 
cell profiles considering the selected immune cell markers. 
TIMER performs deconvolution using the linear least square 
regression approach proposed in [15] and forces all nega-
tive estimates to zeros. The estimation is repeated several 
times with an increasingly smaller set of T-cell markers 
to reduce the correlation between the estimated CD8+ and 

CD4+ T cell proportions. Unlike CIBERSORT, the final esti-
mates are not normalized to sum up to one and, thus, cannot 
be neither interpreted directly as cell fractions [41] nor com-
pared across different immune cell types and data sets [20]. 
TIMER was validated on simulated mixtures, as well as on 
TCGA samples considering as ground truth quantized neu-
trophil abundances estimated from images of hematoxylin 
and eosin (H&E)-stained tissue slides and lymphocytic infil-
tration scores computed from DNA methylation data [20]. 
TIMER was applied to more than 10,000 samples across 32 
cancer types of TCGA (results available at https​://cistr​ome.
shiny​apps.io/timer​/) [42].

Racle et al. recently developed a tool to Estimate the 
Proportion of Immune and Cancer cells (EPIC) [21]. EPIC 
uses constrained least square regression to explicitly incor-
porate the non-negativity constraint into the deconvolution 
problem and to impose that the sum of all cell fractions in 
each sample does not exceed one. The difference between 
one (i.e., 100% of the cells in the mixture) and the sum of 
the deconvoluted cell fractions represents the proportion of 
uncharacterized cells in the mixture that are not accounted 
by the signature matrix used for deconvolution and, in 
RNA-seq data from bulk tumors, represents the tumor con-
tent [21]. EPIC can be run using two RNA-seq-based sig-
nature matrices which describe the expression signatures 
of: (i) six blood-circulating immune cell types, or (ii) five 
tumor-infiltrating immune cell types plus endothelial cells 
and cancer-associated fibroblasts (CAF), whose expression 
signatures were extracted from melanoma single-cell RNA-
seq data [43]. After validation on literature data, EPIC was 
further tested on RNA-seq data from lymph nodes collected 
from four melanoma patients. EPIC estimates showed a high 
agreement with the cell fractions computed with flow cytom-
etry for both the immune and the uncharacterized cells [21].

quanTIseq is, currently, the most recent deconvolution 
tool and is specifically developed for RNA-seq data [22]. 
It is based on constrained least square regression (to con-
sider the non-negativity and sum-to-one constraints) and 
on a novel signature matrix derived from a compendium 
of 51 RNA-seq data sets from purified or enriched immune 
cell types, including also Treg cells and classically (M1) and 
alternatively (M2) activated macrophages. To avoid incon-
sistencies between the mixture and the signature matrix, 
quanTIseq implements a full pipeline for the analysis of 
RNA-seq data, from read pre-processing to deconvolution 
of cell fractions. Moreover, quanTIseq allows complement-
ing the deconvolution output with data from H&E images to 
perform “in silico multiplexed immunodetection”, namely to 
obtain cell density estimates (i.e., cells per mm2) for all the 
considered cell types. quanTIseq obtained a high deconvo-
lution performance not only on literature data sets, blood-
derived immune cell mixtures and simulated data, but also 
on tumor RNA-seq data from different cancer types, and has 

https://precog.stanford.edu/
https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
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been used to quantify the immune cell fractions in more than 
8000 TCGA bulk tumors profiled with RNA-seq (results 
available at https​://tcia.at) [22].

Although this review focuses on methods for the analy-
sis of human data, it is worth mentioning that bioinformat-
ics tools for quantifying and comparing the abundances of 
immune cells in mice samples [44–46] or to infer immune 
cell composition in human tissues leveraging on mouse 
expression data [47, 48] are also available.

Simultaneous deconvolution of cell fractions 
and expression profiles

Deconvolution algorithms described in the previous para-
graph are called “partial”, as opposed to “complete” decon-
volution methods, which estimate relative cell fractions and 
simultaneously disentangle their expression profiles. Start-
ing from the pioneering work of Venet et al. [49], several 
methods have leveraged on non-negative matrix factoriza-
tion (NMF) to alternate least-square estimation of the cell 
proportions and expression profiles [23, 50, 51].

However, NMF is a completely unsupervised approach 
and, thus, it might decompose the mixture matrix into com-
ponents that are not related to the cell types of interest. By 
using well-defined mixtures of four hematological cancer 
cell lines, Gaujoux et al. demonstrated that the incorpora-
tion of prior knowledge from cell-specific marker genes into 
NMF-based methods can dramatically improve the results 
of complete deconvolution [51]. All semi-supervised NMF 
approaches tested by Gaujoux et al. (deconf [23], ssKL [24], 
and ssFrobenius [25]), are implemented in the CellMix R 
package [9].

DSA is a complete deconvolution algorithm that uses 
quadratic programming to infer the cell fractions and the 
expression profiles in complex tissues leveraging on a set 
of marker genes that are highly expressed in specific cell 
types [26]. Tested on microarray data from mixtures of three 
malignant immune cell lines, the algorithm faithfully recon-
structed the true cell fractions and expression profiles [26]. 
Validation on simulated data from mixtures of six different 
immune cell types showed high correlation between the esti-
mated and true expression profiles, except for naïve B cells 
and basophils [26].

MMAD is a deconvolution algorithm that can perform 
both partial deconvolution, when the cell proportions or the 
signature profiles are known, or complete deconvolution 
based on marker genes [27]. In case marker genes are not 
known a priori, MMAD identifies cell-specific genes using 
k-means clustering of the most variable genes in the data set. 
Tested on mixture expression data from four hematological 
cancer cell lines, MMAD accurately inferred the unknown 
cell fractions without relying on known marker genes [27]. 

Moreover, accurate reconstruction of the constituent expres-
sion profiles was demonstrated using simulated data and 
experimental mouse expression data [27].

Complete deconvolution methods are complex but 
promising tools for the in silico dissection of tissues and 
cell mixtures from expression data when a priori knowl-
edge on cell-specific signatures is not available. However, 
to be applied for the immuno-phenotyping of bulk tumors, 
their performance in the quantification of a higher number 
of immune cell types form bulk tumor data characterized 
by variable levels of noise and unknown content must be 
thoroughly assessed.

Deconvolution algorithms that estimate both cell-type 
proportions and expression profiles can be valuable also 
when the contribution of the healthy cells needs to be sub-
tracted from bulk expression data to characterize the pure 
tumor molecular fingerprints (i.e., when stroma, healthy 
tissue, and tumor-infiltrating immune cells are considered 
a confounding factor). The extraction of tumor expression 
signatures from heterogeneous samples is important to guide 
patient treatment, for instance through the identification of 
cancer subtypes and tracking of the site of origin. Compu-
tational methods like ISOpure [52, 53] and DeMix [54] can 
be used to simultaneously quantify tumor purity and disen-
tangle tumor-specific expression signatures from bulk tumor 
expression data. A comparative benchmarking on controlled, 
heterogeneous samples revealed a superior performance of 
DeMix compared to ISOpure in the deconvolution of RNA-
seq data from mixtures of two lung cancer cell lines [55].

Challenges in the quantification 
of tumor‑infiltrating immune cells from RNA 
sequencing data

When dealing with bulk tumors, the first desired feature of 
a deconvolution algorithm is the robustness to the unknown 
tumor content, which usually accounts for the largest frac-
tion of cells in the sample. Although the expression profiles 
of tumor cells are usually not accounted for by the signature 
matrix, they contribute largely to the cumulative expression 
of the bulk tumor sample.

Tested on simulated microarray data characterized by dif-
ferent tumor contents, CIBERSORT demonstrated robust 
deconvolution performance [19]. The NNMLnp approach 
proposed by Quiao et al. infers cell fractions assuming the 
presence in the mixture of an additional, unknown popula-
tion not described in the signature matrix used for decon-
volution [18].

EPIC and quanTIseq use non-negative least squares to 
allow the sum of cell proportions for the subsets consid-
ered by the signature matrix to be lower than one, thus esti-
mating the fraction of uncharacterized cells [21, 22]. EPIC 

https://tcia.at
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showed superior performance to ISOpure in the prediction 
of cancer cell fractions from RNA-seq data [21], whereas 
quanTIseq demonstrated high accuracy in the quantifica-
tion of the unknown tumor content in 1700 simulated data 
sets from bulk tumor RNA-seq [22]. Besides being robust 
to the unknown tumor content, these approaches quantify 
the immune cell fractions referred to the total bulk tissue, 
allowing both intra- and inter-sample comparison; the latter 
is not guaranteed, instead, when cell proportions are referred 
only to the screened immune cell types [56].

Another challenge for deconvolution algorithms is due to 
multicollinearity, i.e., to the high correlation of the expres-
sion profiles of closely related cell types. This issue is exac-
erbated when the gene expression levels in low-abundance 
cell types are masked by the expression of the same gene(s) 
in a more abundant cell subset (i.e., signal dilution [36]).

CIBERSORT simultaneously estimates the proportion of 
22 different cell types and phenotypes leveraging on feature 
selection performed by the ν-SVR framework [19]. Whether 
regularization approaches like those embedded in SVR are 
sufficient to overcome multicollinearity in regression-based 
deconvolution is still an object of debate [41, 57, 58].

TIMER limits the quantification to six immune cell types 
and performs several runs of deconvolution of the CD8+ 
and CD4+ T cell proportions to iteratively decrease their 
correlation [20]. quanTIseq uses an heuristic approach to 
disentangle the fractions of Treg cells and non-regulatory 
CD4+ T cells: a consensus estimation of the Treg cells is 
derived by running deconvolution twice, once with the full 
signature matrix and once excluding the CD4+ T cell sig-
nature [22]. EPIC and MCP-counter, although more limited 
in the number of screened immune cell types with respect 
to CIBERSORT and quanTISeq (see a list of the cell types 
quantified by the reviewed approaches in Supplementary 
Table 1), they allow the quantification of non-immune cell 
types like CAFs and epithelial cells [14, 21].

Albeit, in principle, GSEA-based approaches should ben-
efit by the possibility of quantifying each cell subset indi-
vidually, and the use of gene lists hampers the distinction of 
closely related subtypes.

Finally, besides the technical challenges posed by mul-
ticollinearity, deep deconvolution is further hampered by 
the intrinsically plastic and dynamic nature of the immune 
system, which results in the co-existence of a continuum of 
immune phenotypes and prevents a clear distinction between 
the concepts of cell type and cell state [59].

RNA-seq is currently the reference technology for 
transcriptome-wide quantification of gene expression 
[60]. The “digital” nature and the wider dynamic range 
of RNA-seq data compared to microarrays have fostered 
the development of novel bioinformatics tools and statisti-
cal models [60]. Similarly, the deconvolution of RNA-seq 

data requires dedicated methods or re-adaptation of tools 
designed for microarray data.

We have previously proposed a model to transform 
RNA-seq data to be analyzed, CIBERSORT, which was 
originally developed and validated using only microarray 
data. Specifically, we considered tumor samples from three 
TCGA cancers for which both microarrays and RNA-seq 
data were available and estimated a gene-specific model by 
fitting a smoothing spline with four degrees of freedom to 
transform RNA-seq data, as log-transformed transcripts per 
millions (TPM), into “microarrays-like” data [11]. We then 
used the model to transform RNA-seq data from more than 
8000 TCGA tumors across 19 different cancer types and 
inferred the fractions of tumor-infiltrating immune cells with 
CIBERSORT (results available at https​://tcia.at) [11]. Simi-
larly, Ali et al. [61] analyzed with CIBERSORT more than 
11,000 breast tumor RNA-seq data sets normalized with 
limma voom, a method that transforms RNA-seq log counts 
to enable downstream application of microarray-specific 
methodologies [62].

So far, EPIC and quanTIseq are the only methods specifi-
cally developed for RNA-seq data. quanTIseq, in particular, 
implements a full pipeline for the analysis of RNA-seq data, 
which includes: (i) read pre-processing; (ii) quantification of 
gene expression; and (iii) expression normalization, gene re-
annotation, and deconvolution of cell fractions and densities. 
The controlled handling of the analytical steps that forego 
deconvolution is of paramount importance because they can 
strongly affect deconvolution results by leading to inconsist-
encies between the mixture and the signature matrices or by 
reducing the linearity assumed for the input data [63, 64].

An intrinsic limitation of deconvolution methods based 
on linear regression is that they assume a Gaussian distri-
bution of the input data, whereas un-normalized RNA-seq 
counts are more accurately described by a negative binomial 
distribution [60]. Although data normalization can amelio-
rate this issue [62], future deconvolution approaches might 
exploit methods that do not rely on data normality, like LDA 
models [18, 52].

As different cell types can have significantly different 
mRNA contents [65], expression mixtures and, conse-
quently, deconvolution results can be biased toward cell 
types characterized by a higher mRNA content (Fig. 1c). 
Although this bias is overlooked by several deconvolution 
methods, tools correcting for differences in mRNA content 
are available [21, 22, 27].

Finally, although many of the approaches presented in this 
review are intended for the analysis of expression data from 
various types of heterogeneous samples, the achievement 
of high accuracy in the deconvolution of tumor-infiltrating 
immune cells might require the development of approaches 
optimized for the tissue and disease context under investi-
gation. For instance, as the transcriptional fingerprints of 

https://tcia.at
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immune cells change depending on the microenvironment 
they reside in [4], EPIC uses two different signature matri-
ces: one for the analysis of blood-derived cell mixtures and 
one for the analysis of bulk tumors [21]. However, despite 
some differences in the results obtained with the signa-
ture matrices defined from circulating or tumor-infiltrating 
immune cells, a clear pattern in the performance could not 
be identified [21]. Alternatively, perturbation models like 
that implemented in PERT allow accounting for differences 
from the signature expression profiles due to time- and con-
text-dependent characteristics of the samples of interest [18]. 
Complete deconvolution methods offer even greater flex-
ibility as they do not rely on reference expression profiles, 
but are inevitably limited by the higher complexity of the 
mathematical problem they aim to address.

Overall, to maximize their accuracy in tumor RNA-seq 
data analysis, deconvolution methods might need to be tai-
lored for specific cancer entities to take into consideration 
the tissue and disease context, not only for extracting the 
expression signatures of tumor-infiltrating immune cells, 
but also to optimally select immune cell signature genes 
taking into account tumor-specific aberrant expression. In 
this regard, single-cell RNA-seq can help to reconstruct the 
expression fingerprints of the different cells of the tumor 
microenvironment [21, 66].

Conclusions

The quantification of tumor-infiltrating immune cells has the 
potential to disentangle the multi-faceted role of the immune 
system in tumor control and response to therapy and, ulti-
mately, to maximize the efficacy of anticancer therapies. 
This review portrays the currently available computational 
methods that can be used to quantify the immune infiltrates 
from bulk tumor RNA-seq data. More broadly, these algo-
rithms can be valuable to dissect the cellular heterogeneity 
of different tissues and cell mixtures and can be applied to 
study other human diseases.

Currently, alternative technologies for the quantification 
of tumor-infiltrating immune cells like multiplexed IF or 
IHC [67] are within the reach only of specialized laborato-
ries due to the high costs and complex experimental proce-
dures they entail. Moreover, RNA-seq data generated from 
bulk tumor can be used to simultaneously extract, besides 
immune cell fractions, different immunological features rel-
evant for cancer immunology like HLA types, T- and B-cell 
receptor repertoires, tumor neoantigens [68], and informa-
tion about the cell functional orientation and state, including 
exhaustion or anergy.

Overall, deconvolution algorithms can be used to mine the 
vast amount of tumor RNA-seq data that is being generated 

in small-to-large-scale genomic projects and routine oncol-
ogy—with more than 10,000 cases available through the 
NCI Genomic Data Commons portal alone (https​://porta​
l.gdc.cance​r.gov, Data Release 8.0, August 22, 2017)—and 
might represent, in the near future, powerful tools for the 
opening of new avenues in personalized medicine.
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