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Abstract

NASA’s Soil Moisture Active Passive (SMAP) mission provides global surface soil moisture 

retrievals with a revisit time of 2–3 days and a latency of 24 hours. Here, to enhance the utility of 

the SMAP data, we present an approach for improving real-time soil moisture estimates 

(“nowcasts”) and for forecasting soil moisture several days into the future. The approach, which 

involves using an estimate of loss processes (evaporation and drainage) and precipitation to evolve 

the most recent SMAP retrieval forward in time, is evaluated against subsequent SMAP retrievals 

themselves. The nowcast accuracy over the continental United States (CONUS) is shown to be 

markedly higher than that achieved with the simple yet common persistence approach. The 

accuracy of soil moisture forecasts, which rely on precipitation forecasts rather than on 

precipitation measurements, is reduced relative to nowcast accuracy but is still significantly higher 

than that obtained through persistence.

1. Introduction

The SMAP (Soil Moisture Active Passive, Entekhabi et al. 2010) mission provides 

estimates, across the globe, of moisture in the top several centimeters of soil at a spatial 

resolution of about 40 km and with a revisit time of 3 days or less. To promote the use of the 

data in the community, the data are produced with a mean latency of 24 hours, close to real 

time for many applications. We posit, as motivation for the present paper, that some users of 

these data may find utility in products of even lower latency (soil moisture “nowcasts”, i.e., 

with a latency of 0 hours) as well as in soil moisture forecasts, out several days. Such 

information could benefit, for example, those who use soil moisture to evaluate current and 

near-future ground trafficability or the potential for certain hazards such as flash floods and 

landslides.

The objective of this paper is to describe an approach for deriving improved real-time and 

forecasted surface soil moisture estimates from the SMAP data. Given a soil moisture 

retrieval, WN, on Day N, our approach considers the forward evolution of soil moisture from 

this value using precipitation estimates (either measured or forecasted) in combination with 

a loss function, the latter being derived from a history of SMAP retrievals and precipitation 
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observations. The resulting real-time and forecasted soil moisture estimates are thus data-

driven (independent of land model formulation) and are statistically consistent with the 

original retrieval product, greatly facilitating their use in applications that already utilize 

near-real time SMAP data, at least in areas with adequate precipitation data. (The approach 

will not provide reliable soil moisture estimates where precipitation is poorly measured.)

The datasets used here and the estimation approach are described in section 2. The accuracy 

of the estimates so produced is illustrated in section 3 through quantitative comparisons with 

subsequent SMAP retrievals. For context, this accuracy is compared to that obtained with an 

approach already applied, knowingly or not, by many data users: assuming simple 

persistence, i.e., assuming that the best estimate of the current soil moisture state is the most 

recently measured value for that state, even if that measurement is a day to several days old.

2. Data and Approach

a. Datasets Used

We use SMAP Version 3 Level 2 soil moisture retrievals (O’Neill et al. 2016; Jackson et al. 

2016), which are based on L-band radiometer measurements. These data represent 

volumetric soil moisture in roughly the top 5 cm of soil and are provided on a 36 km equal-

area Earth-fixed grid (Brodzik et al. 2012). As in Koster et al. (2016), we ignore the retrieval 

flag associated with “recommended quality” to allow greater spatial and temporal coverage.

The precipitation data used to derive the soil moisture loss functions are from the Climate 

Prediction Center Unified Gauge-Based Analysis of Global Daily Precipitation (CPCU; 

ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/). As in Koster et al. 

(2016), this 0.5°× 0.5° dataset was converted to the SMAP grid using a conservative 

regridding (areal weighting) approach. In CONUS, a precipitation amount listed for a given 

day corresponds to water falling over the 24 hours up to 12Z on that day; 12Z corresponds to 

6AM in the middle of the country, the approximate local solar time of the SMAP retrievals.

The 2016 precipitation forecasts (also regridded to the SMAP grid) are from the Goddard 

Earth Observing System, Version 5.13.1 (GEOS-5) model (https://gmao.gsfc.nasa.gov/

GMAO_products). For each day considered in the evaluation phase of the study (May-

September of 2016; see below), precipitation forecasts from GEOS-5 are available for the 

following 5 days beginning at 12Z.

b. Estimation Approach

In the following, we assume that a SMAP soil moisture retrieval (in volumetric units, 

m3/m3) for Day N, WN, is available on Day N+1 (given the 24-hour latency) and that we 

require estimates of WN+1 through WN+5. (For example, if the current day is N+1, we 

require a “nowcast” of soil moisture on that day as well as soil moisture forecasts for the 

next four days based on the previous day’s measurement WN.) Our approach involves 

updating W through those five days by integrating equations that address how soil moisture 

increases with precipitation and decreases with evapotranspiration and drainage. Given a 

SMAP retrieval on Day N, we update soil moisture over the next five days (hour by hour) 

with:
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W(t + Δt) = W(t) − L(W(t)) ⋅ Δt + Wadd, (1)

where t is the hour of integration, the time step Δt is set to 3600 s, and L(W(t)) is the 

assumed rate of soil moisture loss via evapotranspiration and drainage (volumetric units per 

second). The term Wadd is the soil moisture increase associated with I (mm/s), the assigned 

infiltration rate:

Wadd = IΔt/D, (2)

where the depth D is set to 50 mm and Wadd is thus in volumetric units. The infiltration rate 

I is in turn set equal to the measured or forecasted precipitation rate P (mm/s) unless that 

rate, if it were to be applied over a full day, would exceed the current soil water deficit:

I = min{P, D(Wmax − W(t))/nd}, (3)

where nd is the number of seconds in a day and Wmax is the assumed maximum allowable 

value for W. If I is set to the second term (associated with the soil water deficit) in (3), the 

excess precipitation water is assumed to run off the surface. The somewhat arbitrary use of a 

daily total to determine the excess reflects in part our lack of knowledge of the sub-diurnal 

character of the daily precipitation.

The precipitation rate P is taken from observations (to the extent possible, up to the present 

time) or from a weather forecast model. Test runs were performed to verify that an hourly 

time step for the integration of the equations is indeed adequate; the results presented in 

section 3 below are essentially reproduced when the time step is decreased, for example, to 6 

minutes.

c. Loss Function Estimation

Using (1)–(3) to update soil moisture requires a description of the loss function L and an 

estimate for Wmax. For this we jointly analyze SMAP soil moisture retrievals and CPCU 

precipitation measurements during May–September 2015. At each grid cell, we determine 

the lowest and highest soil moisture retrieval values, Wlow and Whigh, attained at that cell 

during that period. The low end of the assumed soil moisture range, Wmin, is set to Wlow, 

and the high end of the range, Wmax, is arbitrarily set to Whigh + 0.1*(Whigh-Wmin). We set 

the value of the loss function at the low end, L(Wmin), to 0. At Wmax, we set it to an 

arbitrarily high value: L(Wmax)=Wmax volumetric units per day. Note that such a high loss 

rate cannot be maintained for long – in our simulations with L, unrealistic soil moistures at 

the high end quickly adjust themselves to produce loss rates of reasonable magnitude. We 

tested different high values for L(Wmax) and different definitions for Wmax, with little 

impact on our results.

Koster et al. Page 3

J Hydrometeorol. Author manuscript; available in PMC 2018 June 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



We next identify the three intermediate soil moisture values (WA, WB, and WC) that divide 

the range between Wmin and Wmax into four equal segments. Estimating the loss function 

amounts to determining L at these intermediate moistures; once these values are determined, 

the value of L at any other soil moisture can be estimated through linear interpolation. We 

establish the optimal values of L(WA), L(WB), and L(WC) through brute force. To test a set 

of L values at a given grid cell, we initialize an integration with the first SMAP retrieval at 

the cell in May 2015 and use (1)–(3) along with the 2015 gauge-based precipitation data to 

produce a time series of soil moisture spanning May–September of that year, and we then 

compute the root mean square error (RMSE) between the simulated soil moistures and the 

SMAP retrievals in the cell as they occur. (Note that we could have chosen in these 

integrations to reset W(t) to the SMAP retrieval values as they occurred, after noting the 

error; tests indicate, however, that this modification has very little impact on our results.) We 

test a comprehensive suite of L(WA), L(WB), and L(WC) values in this way, limiting the 

search space by assuming that L never decreases with increasing soil moisture, and find the 

one set that best reproduces the SMAP retrieval time series.

Figure 1 displays the loss functions derived at three representative interior sites. For each 

site, the leftmost panel shows the optimized loss function itself, and the top right panel 

shows the time series (covering May–September 2015) of the SMAP Level 2 retrievals there 

(as red dots) as well as the soil moisture estimates (blue dots) derived with (1)–(3) using the 

loss function in conjunction with CPCU rainfall data. For reference, the rainfall data are 

shown in the bottom right panel.

Although they have the same basic form, the loss functions at the three sites differ, with 

larger soil moisture losses occurring, for example, at low soil moistures for the New Mexico 

site relative to the Arkansas site. The comparisons of the retrievals with the estimated soil 

moistures generally show strong agreement in terms of RMSE and the square of the 

correlation coefficient (r2), indicating that the loss functions do indeed capture the 

hydrological behavior of the near-surface soil. Again, these are representative results for the 

interior of CONUS; as shown in Figure 2, however, the r2 values are a bit lower, and thus the 

optimization of L is more questionable, in the wet and highly vegetated areas of the East 

(perhaps due to the quality of the SMAP retrievals under thick vegetation) and in the very 

dry areas of the Southwest (perhaps due to irrigation impacts or to the low variability of soil 

moisture there during summer).

The concept of loss functions has an extensive history (e.g., Manabe, 1969). Direct estimates 

of loss functions from observations are rare, but where they exist, it is encouraging to note 

that they have the same basic form as those shown in Figure 1, with an increase in L with 

soil moisture at the very dry end, a plateauing out of the relationship in the midrange (as in 

Figure 1b and 1c), and a high sensitivity of L to soil moisture at the wet end (see, e.g., 

Salvucci et al. 2001, their Figure 3; Sun et al. 2011, their Figure 2). Such functions in the 

literature are sometimes normalized by net radiation or potential evaporation to account for 

seasonal variations in the drivers of surface evaporation; we reduce the need for this here 

(and also mitigate snow cover issues) by focusing on the May-September period over 

CONUS.
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d. Simulations Performed and Accuracy Metric

We evaluate soil moisture nowcast and forecast skill obtained with our approach during 

May–September of 2016, a period independent of that used (May–September of 2015) to 

estimate the loss function L at each site. For each SMAP retrieval at each location, we 

integrate (1)–(3) forward in time 5 days (starting with the retrieval value) using two sets of 

precipitation estimates: (i) precipitation forecasts from the GEOS-5 modeling system, and 

(ii) CPCU rainfall measurements, the type of data that might be available for producing soil 

moisture nowcasts. We then compare the resulting soil moisture updates to any later SMAP 

retrievals appearing during the 5-day window. For example, a grid cell with a SMAP 

retrieval on both Day N and Day N+3 effectively produces a data pair ([Westimated(N+3), 

Wretrieved(N+3)]) that can be included in a 3-day-lead RMSE calculation. We compute the 

RMSE over all such 3-day-lead data pairs during May–September of 2016. We similarly 

compute the RMSE for the other leads; at a given grid cell, each RMSE will be based on a 

unique collection of dates. Naturally, our interpretation of accuracy here is tempered by the 

knowledge that SMAP soil moisture retrievals have their own errors; we are, in effect, 

quantifying the skill in predicting a SMAP retrieval before it is available.

Our analyses focus on CONUS (including neighboring parts of Canada and Mexico), a 

large-scale area with two important features: (i) precipitation measurements of suitable 

spatial and temporal coverage, and (ii) climatic regimes that range from very dry (in the 

west) to wet and humid (in the east).

3. Results

For a lead of one day, the leftmost and middle panels of Figure 3a show the accuracy of 

near-surface soil moisture estimates produced with (1)–(3) using, for P, gauge-based rainfall 

data and precipitation forecasts, respectively. For context, the rightmost panel shows the 

results obtained by assuming soil moisture persistence, i.e., by assigning the value of the soil 

moisture retrieval on day N to each of the subsequent five days. The next three rows show 

the corresponding results for leads of 2, 3, and 5 days. Results for a 4-day lead are not 

shown; the number of retrievals separated by exactly 4 days is severely limited over the US 

due to the orbital characteristics of the SMAP observatory.

As expected, soil moisture estimates are more accurate when CPCU data rather than 

precipitation forecasts are used in (1)–(3). Of course, the accuracy levels in the first column 

are only relevant to nowcasts, and only in areas where real-time rainfall measurements are in 

fact available. CPCU data are generally available to users with a latency of 1–2 days, which 

is relatively high. We expect, however, that users in many areas will have more immediate 

access to local rainfall measurements for local nowcast calculations, and some satellite-

based precipitation datasets have low latencies and may prove useful for the nowcasts – 

some components of the IMERG product (Huffman et al., 2014), for example, feature a 

latency of several hours. If precipitation measurements of any kind are not available, soil 

moisture nowcasts will need to rely on precipitation forecasts (or analyzed precipitation 

products), and all soil moisture forecasts must rely on precipitation forecasts; for these, the 

second column in Figure 3 is more relevant. Note that for some estimations, measured 
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precipitation may be available during the first part of the simulation, in which case the 

relevant accuracies would lie in between the first and second columns.

At all leads, RMSE values obtained with the loss function approach tend to lie below 0.04 

m3/m3 in the western part of the continent and in areas along the eastern coast, using either 

rainfall dataset. The higher RMSEs obtained with the loss function approach when using 

forecasted rainfall still lie below 0.06 m3/m3 over most of the continent, particularly for 

leads of 3 days or less. To provide some perspective, the SMAP mission imposes an 

accuracy requirement of 0.04 m3/m3, though this is for evaluations against in situ data, 

something not attempted here.

Using either rainfall dataset, the RMSE values of our soil moisture estimates are lower 

almost everywhere, for all leads, than those obtained with the persistence approach. Again, 

the persistence approach is effectively employed by anyone who uses the most recent SMAP 

retrieval in their particular application. Figure 3 suggests that using the loss function 

approach instead for the application could prove beneficial.

The results are summarized in Figure 4, which shows the average RMSE computed across 

the area at each lead for the different approaches. Again, using gauge-based precipitation in 

(1)–(3) produces more accurate estimates than using precipitation forecasts, and both sets of 

estimates outperform persistence. While persistence performs about as well as the loss 

function approach with forecasted precipitation at a lead of one day (soil moistures do take 

some time to diverge from initial values), the accuracy decreases relatively quickly with 

lead.

4. Summary and Discussion

The nowcasts and forecasts described in section 3 are fair, not being based on information 

from the period following the retrieval. As seen in Figures 3 and 4, integrating (1)–(3) 

forward in time produces nowcasts or forecasts that are more accurate – at least in terms of 

being able to predict the next SMAP retrieval – than those obtained by assuming persistence.

Damped persistence, in which a soil moisture anomaly evolves with an assigned time scale 

toward a climatological value during the forecast period, is another estimation approach, one 

that can be tested once the SMAP data record is large enough to provide a reliable 

climatology. Alternatively, real-time or forecasted soil moistures could be extracted directly 

from weather forecast products. The approach described here, however, has some notable 

advantages. Unlike damped persistence, the loss function approach, which implicitly uses 

locally-optimized damping time scales, also makes use of measured or forecasted 

precipitation information. Unlike weather forecast model soil moisture products, which are 

subject to inaccuracies in model formulation and are characterized, in any case, by model-

dependent statistical moments (Koster et al. 2009), our approach makes direct use of the 

most recent SMAP retrieval and produces data that are, by construction, statistically 

consistent with SMAP retrievals and are thus immediately relevant to applications already 

using SMAP data. Note, however, that raw precipitation forecasts generated with numerical 

weather prediction models can have statistics in conflict with those of the true precipitation 
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at a site (e.g., due to differences in spatial scale), and such deficiencies could affect the 

statistics of the loss function-based soil moisture forecasts discussed herein. As a remedy, 

the forecast precipitation rates could be suitably adjusted with established procedures (e.g., 

Clark et al. 2004, Charba and Samplatsky 2011).

Another important caveat is the fact that the soil moisture estimation approach described 

herein is limited to regions with adequate precipitation estimates, necessary for the 

construction of accurate loss functions. Note that as the size of the SMAP data record 

increases, the accuracy of the derived loss functions in these regions should increase. Also 

worth noting is that the precipitation forecasts used herein were produced by GEOS-5, an 

experimental forecast system; soil moisture forecasts might improve if bias-corrected 

precipitation forecasts from an operational weather center were used instead.

We fully expect that many applications would benefit from more up-to-date (and forecasted) 

soil moisture information than allowed by operational SMAP product latency. Not discussed 

here, but also relevant, is the potential for using the approach to back-fill temporal gaps in 

the SMAP data record – gaps caused by the unavoidable 2–3 day return time of the SMAP 

sensor and potentially exacerbated by, for example, intermittent radio frequency interference 

or by active rainfall during the time of overpass. Given adequate precipitation data and a 

suitable time period over which to fit the functions, the data-driven loss function approach 

indeed has the potential to transform the SMAP data record into a daily record of soil 

moisture with no missing data, all the way up to real time or even a few days into the future.
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Figure 1. 
Representative results from loss function estimation. a. Left panel: derived (optimized) loss 

function for a grid cell in southwestern New Mexico, showing, as a function of volumetric 

soil moisture, how much of that soil moisture (shown here in m3 m−3 day−1) is expected to 

be removed from the near surface through evaporation and drainage. Top right panel: SMAP 

Level 2 soil moisture retrievals (m3 m−3) at the grid cell (red dots) and corresponding 

simulated values obtained using the loss function in conjunction with the observed CPCU 

precipitation data over the time period (blue dots; see text). Bottom right panel: CPCU 

Koster et al. Page 9

J Hydrometeorol. Author manuscript; available in PMC 2018 June 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



precipitation (mm day−1). The x-axis on the rightmost plots begins on May 1, 2015. b. Same, 

but for a grid cell in southwestern Kansas. c. Same, but for a grid cell in central Indiana.
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Figure 2. 
Spatial distribution of the square of the correlation coefficient between the 2015 SMAP 

Level 2 soil moisture retrievals and the soil moisture estimates produced using the loss 

functions fitted to that year’s data. To generate the estimates, soil moisture at each grid cell 

was initialized on 1 May 2015 and then updated through September using the locally 

optimized loss function and the time series of local precipitation.
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Figure 3. 
(a) Skill of 1-day lead soil moisture estimates (computed as the RMSE of estimated soil 

moisture versus SMAP retrieval value, if it exists, one day after a given retrieval) for the loss 

function approach using gauge-measured precipitation (left panel, relevant to soil moisture 

nowcasts), the loss function approach using forecasted precipitation (middle panel, relevant 

to soil moisture nowcasts and forecasts), and the persistence approach (right panel). Results 

are shown for 2016, a period independent of that used to optimize the loss functions. (b) 

Same, but for 2-day lead estimates. (c) Same, but for 3-day lead estimates. (d) Same, but for 

5-day lead estimates.
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Figure 4. 
Areal averages of the RMSE values in Figure 3 as a function of lead for the persistence 

approach (blue), the loss function approach using forecasted precipitation (yellow), and the 

loss function approach using gauge-measured precipitation (red), of relevance to potential 

nowcast calculations.
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