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Targeting dendritic cells in pancreatic 
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Abstract 

Dendritic cells (DC) are an integral part of the tumor microenvironment. Pancreatic cancer is characterized by reduced 
number and function of DCs, which impacts antigen presentation and contributes to immune tolerance. Recent 
data suggest that exosomes can mediate communication between pancreatic cancer cells and DCs. Furthermore, 
levels of DCs may serve as prognostic factors. There is also growing evidence for the effectiveness of vaccination with 
DCs pulsed with tumor antigens to initiate adaptive cytolytic immune responses via T cells. Most experience with 
DC-based vaccination has been gathered for MUC1 and WT1 antigens, where clinical studies in advanced pancreatic 
cancer have provided encouraging results. In this review, we highlight the role of DC in the course, prognosis and 
treatment of pancreatic cancer.
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Background
Ductal adenocarcinoma of the pancreas has the highest 
mortality rate amongst all major human tumors [1]. Due 
to the insidious nature of the disease, approximately 85% 
of patients have advanced disease at presentation. Sur-
vival rates have remained stagnant in the last decades 
and there is a lack of early detection tools and effective 
treatment [2]. In Europe, the median survival for pancre-
atic cancer is 4.6 months and only 3% of patients survive 
beyond 5 years [3]. Metastatic pancreatic cancer confers 
an especially poor prognosis and treatment progress has 
been slow. Multiagent chemotherapy has been shown to 
prolong survival by a few weeks to a couple of months, 
but toxicity remains a challenge and it is still difficult to 
identify responders to treatment [4]. There is an urgent 
need to develop new types of therapy based on individual 
tumor genotype/phenotype in order to increase survival 
rates and reduce overtreatment.

Traditionally, immunotherapy has had little success 
in solid tumors. However, recent progress in immuno-
oncology, especially in melanoma and renal cancer, has 

revitalized the concept of harnessing the patient’s own 
immune system against the tumor [5]. Recent molecular 
mapping has revealed an immunogenic subtype of pan-
creatic cancer that may be targetable through immune 
treatment [6]. Furthermore, extensive immunoprofiling 
has shown that long-term survivors of pancreatic cancer 
are characterized by improved neoantigen quality and 
enhanced immune response [7].

Dendritic cells (DC) are professional antigen-pre-
senting cells at the intersection of innate and adaptive 
immunity, initiating, directing and modulating immune 
responses. DCs are described as a heterogeneous popula-
tion to match a variety of microenvironmental conditions 
[8]. Here, we review the role of DCs in the development, 
progression and potential therapy of pancreatic cancer.

Paucity of dendritic cells in pancreatic cancer
Immune escape is one of the hallmarks of cancer [9]. 
Antigen presentation by DCs is essential to effective anti-
tumor T cell responses. DCs are rare in the pancreatic 
tumor microenvironment and the cells are located at the 
edges of the tumor [10]. Systemically, decreased levels 
of blood DCs have been demonstrated in patients with 
pancreatic cancer [11]. Of note, increased circulating 
levels of DCs have been associated with better survival 
in patients with pancreatic cancer [11–13]. Furthermore, 
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surgical removal of the pancreatic tumor was shown to 
improve blood DC function, supporting a tumor-derived 
influence on immune function [14].

Chronic pancreatitis is a major risk factor for pancre-
atic cancer. However, the molecular mechanisms bridg-
ing these entities are not well understood. It has been 
postulated that chronic inflammation not only promotes 
tumor development through the release of e.g. growth 
factors, but also indirectly by impairing the ability of DCs 
to activate immune responses against the tumor [11].

Mechanisms of dendritic cell suppression
The host immune reaction to pancreatic cancer is 
reported to change from immune surveillance to immune 
tolerance during disease progression. This is mediated by 
CXCL17 and ICAM2 [15]. Furthermore, tumor-derived 
cytokines, such as TGF-beta, IL-10, and IL-6, have been 
reported to suppress DC survival and proliferation [16]. 
Expansion of immature myeloid cells in the circulation as 
well as the spleen might further compromise the immune 
response. Levels of circulating myeloid derived suppres-
sive cells (MDSCs) have been reported to be increased 
in pancreatic cancer, which may promote tumor pro-
gression [17, 18]. MDSCs produce nitric oxide (NO) and 
inhibit DC activation in pancreatic cancer [19].

Subpopulations of dendritic cells
DC can differentiate into distinct subpopulations 
depending on microenvironmental stimuli, leading to 
proliferation of myeloid DCs that induce Th1 cell activa-
tion or plasmacytoid DCs that facilitate immunosuppres-
sive T cell development. Tumor-derived cytokines have 
been reported to induce a tolerogenic plasmacytoid DC 
phenotype [16]. Furthermore, recent data suggest the 
existence of a specific subset CD11b+ DCs that establish 
an immunosuppressive microenvironment, which favors 
metastatic progression through the expansion of regula-
tory T cells (Tregs) and suppression of CD8+ T cells [20]. 
These findings indicate that pancreatic cancer is charac-
terized not only by reduced numbers of DCs, but also a 
complex modulation of DC subpopulations, which affects 
tumor development.

Maturation of dendritic cells
Defective maturation of DCs may contribute to the devel-
opment of a tumor-tolerant immune status. It has been 
found that semi mature blood DCs exist in pancreatic 
cancer patients, likely mediated by inflammatory factors 
released from the tumor [21]. These DCs have lost their 
ability to act as professional antigen presenting cells and 
activate T cell responses, and this leads to suppression of 
adaptive immune responses.

Aberrant antigen presentation
Altered antigen processing and presentation is an impor-
tant mechanism by which cancers evade the immune 
system. Pancreatic tumors are characterized by a loss 
or down-regulation of antigen-processing and antigen 
presenting molecules, including the human leucocyte 
antigen (HLA) class I and transporter for antigen pres-
entation (TAP). Reduction of HLA class I expression was 
observed in 76% of pancreatic cancer cases and 53% of 
cases had reduced TAP expression [22].

Crosstalk between pancreatic cancer cells and dendritic 
cells
Exosomes are nanovesicles of endocytic origin that are 
released by many cell types into the extracellular micro-
environment. Exosomes contain proteins, mRNAs, 
microRNAs and lipids and play a central role in intercel-
lular communication [23]. Pancreatic cancer cells and 
DCs release exosomes that influence the tumor-immune 
function. In a mathematical model, it was reported 
that pancreatic cancer cells shed exosomes that inhibit 
immune responses by DCs, while DCs secrete exosomes 
that induce apoptosis of pancreatic cancer cells [24]. A 
previous study revealed that pancreatic cancer-derived 
exosomes attenuate DC-mediated tumor suppressive 
responses initiated by TLR4 [25]. Furthermore, pan-
creatic cancer-derived exosomes have been shown to 
inhibit regulatory factor X-associated protein expres-
sion through miR-212-3p. This may result in decreased 
expression of major histocompatibility complex (MHC) II 
and lead to immune tolerance of DCs [26]. Thus, tumor-
derived exosomes regulate host immunosuppression by 
influencing the function and differentiation of DCs [27].

Prognostic role of dendritic cells
The numbers of circulating DCs have been found to be 
an independent prognostic factor for prolonged survival 
in pancreatic cancer [12, 13]. However, distinct subsets of 
DCs may have diverging prognostic potential. For exam-
ple, an increased level of immune tolerant immature DCs 
were shown to result in shorter survival [28].

Treatment with dendritic cell‑based vaccines
The basic idea of tumor vaccination is to confront (pulse) 
antigen presenting cells such as DCs with tumor-associ-
ated antigens to achieve presentation and thereby induce 
cytotoxic T cells. Different methods exist to pulse DCs: 
(a) synthetic peptides or purified proteins, (b) DNA, RNA 
or viruses (transfection), (c) tumor lysates or autophago-
somes or (d) fusing tumor cells with DC (Fig. 1).

The use of peptides, DNA or RNA as a pulsation media 
results in a highly specific immune response. However, 
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the applicable antigens need to be present in the patient, 
which reduces the range of treatable cases and requires 
genetic/proteomic analyses. Even so, a risk of cross-reac-
tivity remains. Furthermore, peptides are restricted to a 
specific antigen presenting HLA molecule, which in turn 
narrows the number of benefiting patients. Genomic 
media allows for a broader selection of presenting HLA 
molecules and might therefore benefit a wider range 
of patients. However, (c)DNA requires entry into the 
nucleus and RNA is unstable, which are known limita-
tions [29].

Tumor lysates allow for a broad selection of tumor 
associated antigens (TAAs) and thereby a more com-
prehensive tumor attack. However, the exact mecha-
nisms and target structures of this method often remain 
unclear, and the risk of cross reactivity might be high.

Fusion of tumor cells with DCs is an interesting method 
to improve tumor antigen presentation. The approach 
also results in a wide range of presented antigens, but 
clinical studies are necessary to assess efficacy.

Tumor associated antigens in pancreatic cancer
To date, different TAAs in pancreatic cancer have 
been discovered and are currently under investigation. 
Despite mostly having been investigated in  vitro or in 
animal models, the first clinical data are already present 
(Table 1).

MUC1
MUC1 is a glycoprotein that is expressed in nearly all 
pancreatic cancers [30]. Transfected DCs with liposomal 
MUC1 cDNA were evaluated as a vaccine in 10 patients 

Fig. 1  Principles of dendritic cell-based immunotherapy in pancreatic cancer, including extraction, priming and re-injection of dendritic cells. CTL 
cytotoxic T lymphocyte, DC, dendritic cell, PDAC pancreatic ductal adenocarcinoma
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with metastatic breast, pancreatic and ampullary cancer 
[31]. The study showed the feasibility and toleration of 
tumor vaccination and reported an increased cytotoxic 
T-lymphocyte (CTL) response in the pancreatic cancer 
patients. The clinical benefit of MUC1-DCs and MUC1-
CTLs was evaluated in 20 patients with unresectable or 
recurrent pancreatic cancer. Complete response was 
noted in 1 patient, and stable disease noted in 5 patients. 
The mean survival was 9.8  months [32]. Another study 
evaluated the clinical efficacy of a MUC1 peptide-loaded 
DC vaccine in 12 pancreatic and biliary cancer patients 
following surgical resection. The vaccine was well tol-
erated and no toxicity was observed. Four vaccinated 
patients are alive up to 5 years after surgery [33]. MUC1-
peptide-pulsed DCs were evaluated in the treatment of 7 
patients with metastatic or recurrent pancreatic cancer. 
The vaccination was well tolerated and capable of induc-
ing immunological response, but no clinical benefit was 
noted [34]. Combination therapy using MUC1-mRNA-
transfected DCs, MUC1-CTLs and gemcitabine was 
evaluated in 42 patients with unresectable or recurrent 

pancreatic cancer. Mean survival was 13.9  months. 
Patients who received high dose MUC1-DCs and MUC1-
CTLs had significantly enhanced survival (16.5  months 
vs 5.7  months; p < 0.001) [35]. These data suggest that 
MUC1 is a promising TAA, considering both the 
reported feasibility and to some extend the effectiveness 
of DC-based MUC-1 specific immunotherapy.

WT1
Wilms tumor gene (WT1) encodes a zinc finger tran-
scription factor that plays an important role in cell 
growth and differentiation. The WT1 protein is highly 
expressed (75%) in pancreatic cancers [36]. Treatment 
with DCs pulsed with WT1 peptides and chemotherapy 
in advanced pancreatic cancer has been evaluated in sev-
eral small series from Japan [37–40]. The protocol was 
subsequently presented as a retrospective, multicenter 
analysis including 255 patients [41]. The median overall 
survival from diagnosis was 16.5 months and 9.9 months 
following treatment with standard chemotherapy com-
bined with peptide-pulsed DC vaccines. The median 

Table 1  Published series on dendritic cell-based immunotherapy in pancreatic cancer

PD progressive disease, R partial or complete response to therapy, SD stable disease
a  Only patients with pancreatic cancer were considered.
b  Mean survival time

Tumor-associated antigen Year Na Stage Pulsation R SD PD Median 
survival 
(months)

MUC1

 Pecher et al. [31] 2002 2 Unresectable cDNA 0 2

 Kondo et al. [32] 2008 20 Unresectable Peptide 1 5 14 9.8b

 Lepisto et al. [33] 2008 12 Resectable Peptide 4 26

 Rong et al. [34] 2012 7 Unresectable Peptide 0 7

 Shindo et al. [35] 2014 42 Unresectable mRNA 4 22 16 13.9

WT1

 Koido et al. [37] 2014 10 Unresectable Peptide 7 3

 Takakura et al. [39], Tsukinaga et al. [40] 2015 7 Unresectable Peptide 6 1 10.8

 Mayanagi et al. [38] 2015 10 Unresectable Peptide 6 4 8.3

 Okamoto et al. [41] 2016 255 Unresectable Peptide 9.9

Mesothelin

 Thomas et al. [43] 2004 14 Unresectable Peptide Immunological response in 3 patients

KRAS

 Gjertsen et al. [45] 1996 5 Unresectable Peptide 3 2 5

hTERT, CEA, survivin

 Mehrotra et al. [55] 2017 12 Unresectable Peptide 7.7

CEA, HER2, WT1

 Kimura et al. [56] 2012 49 Unresectable Peptide 7 10 32 11.8

CEA, MUC1

 Nakamura et al. [59] 2009 12 Unresectable Peptide, lysate 9

Tumor cell lysate

 Bauer et al. [61] 2011 12 Unresectable Lysate 1 2 9 10.5
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survival time of the patients with positive delayed type 
hypersensitivity skin reaction was significantly prolonged 
compared to that of the patients with negative reaction 
(p = 0.015). These findings based on WT1-specific immu-
notherapy are promising, but more research is needed to 
stratify patient and determine responders.

Mesothelin
Mesothelin has been found to be overexpressed in the 
majority of pancreatic tumors, with a detection rate rang-
ing from 60 to 100% [30, 42]. A vaccine with allogeneic 
GM-CSF-secreting pancreatic tumor cell lines was found 
to induce delayed type hypersensitivity responses in 3 out 
of 14 treated pancreatic cancer patients [43]. The vaccine 
was found to recruit DCs to the site of vaccination and 
stimulate CD8+ T cells by a cross-priming mechanism 
involving mesothelin.

KRAS
KRAS is mutated in more than 90% of pancreatic cancer 
and is a central driver of pancreatic tumor growth and 
progression [44]. Synthetic RAS peptide has been used 
as a vaccine in 5 patients with advanced pancreatic car-
cinoma. An immune response against the immunizing 
RAS peptide could be induced in 2 patients [45]. The 
median survival was 10.5  months for the 2 responding 
patients, compared to 4.5 months for the non-responding 
patients. Most KRAS mutations in pancreatic cancer are 
located in codon 12, while mutations in codon 13 and 61 
are much less common [46]. Development of new vaccine 
protocols that target the individual patient’s specific RAS 
mutation may further improve immunogenicity and ulti-
mately prove clinically beneficial.

Other antigens
Other peptides and proteins have been used to pulse DCs 
in order to induce a tumor-specific immune response. 
CA 19-9 is a classic tumor marker, present in approxi-
mately 80% of pancreatic cancer patients [47]. It has 
been found that DCs pulsed with the CA 19-9 protein 
or CA 19-9 containing serum have the ability to induce 
cytotoxic activity against pancreatic cancer cells in vitro 
[48, 49]. Further preclinical data support the immu-
nogenic potential of Trop2 [50], MUC-4 [51], patho-
logical bile salt-dependent lipase (pBSDL) [52, 53] and 
α-Enolase [54]. In patients, human telomerase reverse 
transcriptase (hTERT) [55], carcinoembryonic antigen 
(CEA) [55–57], survivin [55], HER2 [56, 57], CA-125 
[56] and α-fetoprotein [57] have also been tested in small 
series. Most of these antigens have been tested in a com-
binatorial approach using multiple peptides as targets 
for DC-based vaccination. This is a promising approach, 
which addresses the problem of impaired range of targets 

in peptide-, DNA- or RNA-based vaccination protocols. 
However, there is also need to compare the efficacy of 
individual peptides.

Tumor cell lysate
In addition to the use of peptides as pulsation substance, 
lysed tumor cells can be used. Tumor lysate can be gen-
erated by multiple freeze–thaw cycles or UV-irradiation 
of tumor cells. The potential benefits include a broader 
selection of TAAs and thereby a more comprehensive 
tumor attack, but the exact mechanisms and target struc-
tures of this method often remain unclear. Also, it can-
not be excluded that non-tumor-specific antigens are 
expressed by DCs within this method, resulting in cross- 
or auto-reactive CTLs [58]. Nonetheless, whole tumor-
lysate for pulsing DCs has been shown to be feasible, 
safe and potentially beneficial as a vaccination-method 
in pancreatic cancer [59–62]. This strategy provides a 
reproducible pool of most tumor antigens suitable for 
patient use, independent of MHC haplotypes or autolo-
gous tumor tissue availability. However, optimizing autol-
ogous tumor cell lysate preparation is crucial in order to 
enhance efficacy.

Cellular fusion
Fusion of DCs with pancreatic tumor cells potentially 
acts synergistically to improve antigenicity and antigen 
presentation in order to induce tumor-specific cytotoxic 
immunity. So far, most data using these cellular hybrids 
have been reported in experimental settings of pancreatic 
cancer [63–65].

Conclusion
Pancreatic cancer is associated with an immune tolerant 
state, which is mediated by a complex shift in the num-
ber, phenotype and function of multiple immune cells, 
including DCs. Subpopulations of DCs are altered in pan-
creatic cancer related to effects by the tumor cells as well 
as the microenvironment. Pulsation of DCs with a wide 
range of antigens has been shown to be effective in ini-
tiating adaptive, antigen-specific immune responses, but 
there remain many unresolved questions. For example, 
more research needs to be conducted into the optimal 
sequence and interval of vaccination, the role of immune 
adjuncts and the potential synergies with conventional 
treatment such as surgery, chemotherapy and radiation. 
In the future, the use of novel vaccine protocols based 
on the individual patient’s tumor phenotype may lead to 
long-term clinical benefit.
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