Skip to main content
. 2018 Jun 19;19:233. doi: 10.1186/s12859-018-2220-4

Table 3.

Performance of PREDICT and SCMFDD on PREDICT Dataset

Methods AUPR AUC SN SP ACC F
PREDICT 0.1507 0.9020 0.3414 0.9929 0.9915 0.1437
SCMFDD-Che-GS 0.3141 0.9005 0.3663 0.9988 0.9974 0.3753
SCMFDD-Che-Phen 0.3153 0.9038 0.3678 0.9988 0.9974 0.3769
SCMFDD-SE-GS 0.3157 0.9082 0.3663 0.9988 0.9974 0.3753
SCMFDD-SE-Phen 0.3176 0.9109 0.3678 0.9988 0.9974 0.3769
SCMFDD-GP-GS 0.3210 0.9129 0.3720 0.9988 0.9975 0.3811
SCMFDD-GP-Phen 0.3224 0.9157 0.3714 0.9988 0.9975 0.3806
SCMFDD-GO-GS 0.3147 0.9035 0.3678 0.9988 0.9974 0.3769
SCMFDD-GO-Phen 0.3159 0.9065 0.3678 0.9988 0.9974 0.3769
SCMFDD-GW-GS 0.3249 0.9173 0.3389 0.9991 0.9977 0.3843
SCMFDD-GW-Phen 0.3284 0.9203 0.3776 0.9988 0.9975 0.3870

For drugs, Che Chemical fingerprints Similarity, SE Side Effect Similarity, GP Genes-Perlman Similarity, GO Genes- Ovaska Similarity, GW Genes-Waterman Similarity. For diseases, GS Gene Signature Similarity, Phen Phenotypic Similarity