
A confidence building exercise in data and identifiability: 
Modeling cancer chemotherapy as a case study

Marisa C. Eisenberga,1,* and Harsh V. Jainb,1,*

aEpidemiology and Mathematics, University of Michigan, United States

bMathematics, Florida State University, United States

Abstract

Mathematical modeling has a long history in the field of cancer therapeutics, and there is 

increasing recognition that it can help uncover the mechanisms that underlie tumor response to 

treatment. However, making quantitative predictions with such models often requires parameter 

estimation from data, raising questions of parameter identifiability and estimability. Even in the 

case of structural (theoretical) identifiability, imperfect data and the resulting practical 

unidentifiability of model parameters can make it difficult to infer the desired information, and in 

some cases, to yield biologically correct inferences and predictions.

Here, we examine parameter identifiability and estimability using a case study of two 

compartmental, ordinary differential equation models of cancer treatment with drugs that are cell 

cycle-specific (taxol) as well as non-specific (oxaliplatin). We proceed through model building, 

structural identifiability analysis, parameter estimation, practical identifiability analysis and its 

biological implications, as well as alternative data collection protocols and experimental designs 

that render the model identifiable. We use the differential algebra/input-output relationship 

approach for structural identifiability, and primarily the profile likelihood approach for practical 

identifiability. Despite the models being structurally identifiable, we show that without 

consideration of practical identifiability, incorrect cell cycle distributions can be inferred, that 

would result in suboptimal therapeutic choices. We illustrate the usefulness of estimating 

practically identifiable combinations (in addition to the more typically considered structurally 

identifiable combinations) in generating biologically meaningful insights. We also use simulated 

data to evaluate how the practical identifiability of the model would change under alternative 

experimental designs.

These results highlight the importance of understanding the underlying mechanisms rather than 

purely using parsimony or information criteria/goodness-of-fit to decide model selection 

questions. The overall roadmap for identifiability testing laid out here can be used to help provide 

mechanistic insight into complex biological phenomena, reduce experimental costs, and optimize 

model-driven experimentation.
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1. Introduction

Identifiability addresses the question of whether (and with what degree of certainty) it is 

possible to uniquely estimate parameters for a given model and data set. Within the 

framework of identifiability, there are two categories that are commonly considered: 

structural identifiability (sometimes just referred to as identifiability) considers whether the 

parameters can be estimated uniquely, in the best-case scenario of noise-free, perfectly 

measured data. While this is unrealistic, it is a prerequisite to successful estimation from 

real-world data. Practical identifiability (also termed estimability (Jacquez and Greif, 1985; 

McLean and McAuley, 2012)) expands on this best case scenario to examine how noise, 

sampling frequency, and other real-world considerations may hinder our ability to uniquely 

estimate the parameters. Issues of parameter unidentifiability and uncertainty are highly 

common in mathematical biology—even for very simple models— and yet they are not 

often examined in practice. For example, simple cell population growth and treatment 

models are ubiquitous in cancer, however their identifiability properties are not often 

considered. Given that these models often form the backbone of many more complex, 

multiscale approaches (e.g. compartmental, network, partial differential equation, or hybrid 

models (Byrne, 2010), with the ODE model used for parameter estimation), under standing 

the identifiability properties of such simple models is all the more relevant.

When mechanistic models are fitted to experimental data without consideration of any 

underlying identifiability issues, it may be impossible to correctly infer important clinical or 

mechanistic parameters from a given model and data set, and hinder our ability to predict or 

infer specific variables (e.g. if using an unidentifiable model to infer the fraction of cells 

which are resistant to treatment). As dynamic models often have many parameters and must 

contend with relatively little data, issues of practical identifiability have the unfortunate 

combination of being relatively ubiquitous and also potentially highly problematic for 

estimating parameters from data. Indeed, given some of the common features of biological 

models, there are some identifiability issues that are likely to be frequently encountered 

(DiStefano and Landaw, 1984; Stroberg and Schnell, 2016).

For example, Hill, Michaelis–Menten, and sigmoid types of functions (e.g. the Michaelis–

Menten function, y = Vmax x/(Km + x)) are frequently employed in systems biology models 

to represent the switch-like and saturating behavior so commonly seen in biological systems. 

Such models have common practical identifiability issues if the full range of the nonlinearity 

is not captured in the data—for example, the linear ((Vmax/KM) x) and saturated (Vmax) 

forms seen in the Michaelis–Menten function at low and high dose ranges (x values) 

respectively. In each of these cases, if the model does not cover a wide enough range of 

values for x, it may become practically impossible to separately estimate the parameters 

Vmax and Km (i.e. they may become practically unidentifiable or inestimable) (Holmberg, 

1982).
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Similarly, it is common to measure sums of cell types which are resolved by the model, so 

that cells in different states or locations are combined to represent the experimental 

measurement. A model may distinguish between cells that are in different stages of the cell 

cycle, resistant to a particular treatment, or otherwise play different roles, yet experimental 

data used for quantifying a model often only gives the total cell count at a particular time. 

For example, tumor xenograft experiments typically only report total tumor volume over 

time. This opens up the potential for identifiability issues as the details of which cells 

account for the total at different points in the trajectory can be obscured.

The above discussion illustrates how questions of confidence and uncertainty in the 

parameters must be answered concurrently with biological or clinical considerations. In 

particular, what can experimental data really tell us about our parameters, and which 

experiments are most useful for quantifying the biology? These questions inform how to use 

models to optimize experimental resources, and how to ensure that the resulting models can 

make the clinical and mechanistic predictions we need. A wide range of identifiability and 

uncertainty methods have been developed in the literature to address such questions (e.g. 

Audoly et al., 2001; Jacquez and Greif, 1985; Raue et al., 2009, or see reviews (Chis et al., 

2011; Miao et al., 2011; Raue et al., 2014)). These range from more analytical approaches 

focused on structural (theoretical) identifiability properties (Audoly et al., 2001; Meshkat et 

al., 2014; Villaverde et al., 2016), to numerical methods using the profile likelihood and 

Fisher information (Jacquez and Greif, 1985; Jacquez and Perry, 1990; Raue et al., 2009; 

2011). Alone or in combination, such methods can be used to interrogate which parameters 

can be estimated, determine measurement scenarios to ensure identifiability (Anguelova et 

al., 2012; Cheung et al., 2013), improve predictions of different variables and dynamic 

patterns (Kreutz et al., 2012; Vanlier et al., 2012b), and evaluate the structure of 

dependencies between estimated parameters (Janzén et al., 2016; Raue et al., 2014). In the 

case of unidentifiability, such dependencies can often be used to reduce or reparameterize 

the model to ensure identifiability (Maiwald et al., 2016; Meshkat and Sullivant, 2014). 

Several studies have evaluated structural and/or practical identifiability for intracellular 

cancer regulatory network models (Bachmann et al., 2012; Raue et al., 2014), and the 

literature examining identifiability of compartmental models in pharmacokinetics and 

pharmacodynamics is quite extensive (e.g. Audoly et al., 2001; Cobelli and DiStefano, 1980; 

DiStefano and Landaw, 1984; Janzén et al., 2016 among others).

In this manuscript, we apply and build on these approaches to examine identifiability using 

compartmental models of cancer chemotherapy as a case study. Indeed, mathematical 

modeling has a long history in the field of cancer therapeutics, and continues to rapidly 

expand. It is increasingly being recognized that quantitative tools such as mathematical 

modeling can help elucidate the various mechanisms that underlie a growing tumor’s 

response to treatment. Such models can not only be used to check the validity of hypotheses 

that are postulated to explain experimental observations, but also improve experimental 

design by making testable predictions or revealing counter-intuitive physical principles 

(Altrock et al., 2015; Byrne, 2010). These models utilize various approaches such as 

ordinary or partial differential equations, cellular automata, branching processes and optimal 

control theory (Altrock et al., 2015; Byrne, 2010; Gatenby and Maini, 2003). Common to 

any of these approaches is the need to connect models with data in order to generate useful, 
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quantitative predictions (sometimes even at the individual patient level) (Brouwer et al., 

2016; Byrne, 2010; Hirata et al., 2012; Kuznetsov et al., 1994). This need to ‘develop 

mechanistic models that provide real insights into critical parameters’ has been highlighted 

by Gatenby and Maini (2003). We remark that structural identifiability questions have been 

examined more thoroughly for multi-stage clonal expansion models which are commonly 

used with population-level cancer data (Brouwer et al., 2016; Heidenreich et al., 1997; 

Luebeck and Moolgavkar, 2002). However, these models often do not consider more 

detailed mechanistic formulations at the cellular level.

Here we walk through the process of postulating a model that incorporates drug mechanisms 

of interest and estimate parameters from real data. We then highlight issues of 

unidentifiability even when the data might appear sufficient and demonstrate how neglecting 

consideration of these issues could lead to incorrect predictions. Finally, the analysis reveals 

novel experiments that would resolve the model identifiability and allow us to answer 

additional biological questions of interest. A detailed roadmap of the analysis process used 

in the manuscript is given in the Methods.

2. Materials and methods

We begin by outlining a roadmap of the analyses that follow in the next sections. While the 

specific methods and details needed for each situation may vary, these general steps are 

useful for a wide range of problems: 1) establishing the biological questions of interest and 

model development; 2) experimental data setup; 3) structural identifiability analysis; 4) 

parameter estimation; 5) practical identifiability analysis and examining how parameter 

uncertainty affects model predictions; 6) evaluating practically identifiable combinations; 7) 

determining alternative data collection strategies to resolve key parameters. As we will 

discuss later, in practice it may be more advantageous to use simulated data and perform this 

analysis prior to data collection. This would allow modelers and experimentalists to 

collaborate to generate tailor-made models and data to answer biological questions. Example 

code for model simulation, parameter estimation, and identifiability analysis is available at 

https://github.com/marisae/cancer-chemo-identifiability.

2.1. Mechanistic model development

The models proposed here are based on those developed in Jain et al. (2014) and Jain and 

Meyer-Hermann (2011). These models are relatively simple, but can be directly applied to 

examine treatment approaches, combination therapy, and drug targeting (Jain and Meyer-

Hermann, 2011; Jain et al., 2014), making them an ideal case-study with which to evaluate 

unidentifiability issues. It should also be noted that these models can be improved or 

expanded upon (or other mechanisms proposed instead), and the same estimation and 

identifiability methods may be applied. The growth and response to chemotherapy of solid 

tumors is described in mathematical terms by a system of coupled nonlinear ordinary 

differential equations (ODEs) that govern the temporal dynamics of key model variables. 

These include: P (t), the number of cells in G2/M phase of the cell cycle; R (t), the number 

of cells in G1/S phase of the cell cycle; AP (t), the number of cells arrested in G2/M due to 

drug action; and AR (t), the number of cells arrested in G1/S due to drug action. We also 
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designate by T, the administered dose of taxol, and by C, the administered dose of 

oxaliplatin, both of which are assumed to be constant for the duration of the experiments. 

The equations governing the dynamics of these species are explained below.

2.1.1. Control model equations—Cancer cells in the G2/M phase of the cell cycle are 

assumed to undergo cell division at a rate λ resulting in two new daughter cells in the G1/S 

phase. From G1/S, cells re-enter G2/M on completion of DNA synthesis. Our model takes 

into account limited availability of space for cells to occupy in the following manner. As the 

amount of free space decreases, cells are more likely to enter quiescence (Norton and Popel, 

2014). However, for simplicity we do not include a separate compartment representing these 

cells; instead the rate at which cells re-enter G2/M from G1/S is assumed to be dependent on 

the available free space, and goes down as space becomes limited.

Combining these processes, we arrive at the following equations governing the growth of 

cancer cells in the absence of treatment.

dP
dt = − λ P + αRP R

VF
θ

V0
θ + VF

θ ,

dR
dt = 2 λ P − αRP R

VF
θ

V0
θ + VF

θ ,

(1)

where, VF (t) = VT − P (t) − R (t) refers to the current free space in the experimental system, 

VT is the total amount of free space, and θ determines how rapidly cells begin to detect 

crowding effects. We remark that in the above equations, the rate at which cells in G1/S 

progress to G2/M is maximized when VF is maximumized.

2.1.2. Taxol treatment—A schematic of taxol action is presented in Fig 1A. Taxol is an 

anti-mitotic compound that works by stabilizing microtubules in dividing cells. This results 

in mitotic arrest followed by either apoptosis or a return to the proliferating population via a 

process known as ‘slippage’ (Gascoigne and Taylor, 2008; Weaver, 2014). Because this is 

cell-cycle specific, we assume that it only affects cells in the G2/M phase. Therefore, a 

single arrested cell compartment is added, with cells in the G2/M phase undergoing cell-

cycle arrest at a rate dependent on the amount of therapy administered. This rate is assumed 

to be an increasing and saturating function of drug concentration, with the maximum rate of 

arrest being αP and the half-saturation constant kα.

From an arrested state, cells may undergo apoptosis or recover to the proliferating 

population. Cell cytotoxicity is assumed to be dependent on the amount of therapy 

administered, and is taken to be an increasing and saturating function of drug concentration, 

with δ0 representing the maximum rate of death and kδ the half-saturation constant. Finally, 

arrested cells may return to their original state as a result of slippage, at a rate ρ0.

Combining these processes, we arrive at the following equations governing the response of 

cancer cells to treatment with taxol.
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dP
dt = − λ P + αRP R

VF
θ

V0
θ + VF

θ − αP
Ta

kα
a + TaP + ρ0AP,

dR
dt = 2 λ P − αRP R

VF
θ

V0
θ + VF

θ ,

dAP
dt = αP

Ta

kα
a + TaP − δ0

Tb

kδ
b + Tb AP − ρ0AP,

(2)

where, as before, VF (t) = VT − P (t) − R (t) − AP (t) refers to the current free space in the 

experimental system. The exponents a and b determine the steepness of the Hill functions 

for drug effects on the cells.

2.1.3. Oxaliplatin treatment—Oxaliplatin is a cell-cycle nonspecific (Baker, 2002) 

platinum-based compound that interacts with DNA to form DACH-Pt DNA adducts, 

resulting in DNA damage. This damage is recognized by a number of candidate proteins and 

eventually leads to cell-cycle arrest, followed by apoptosis or recovery to the proliferating 

population based on the extent, and hence reparability, of DNA damage (Alcindor and 

Beauger, 2011; Raymond et al., 2002).

To model the effects of oxaliplatin on cancer cells, two additional compartments 

representing arrested cells are added to the cell population, a schematic of which is 

presented in Fig 1B. Upon drug application, cells in both G2/M and G1/S phase undergo 

cell-cycle arrest at rates dependent on the amount of therapy administered. These rates are 

assumed to be increasing and saturating functions of drug concentration, with the maximum 

rate of arrest from G2/M being αP and from G1/S being αR. For simplicity, the half-

saturation constant kα is assumed to be the same in both instances.

From an arrested state, cells may undergo apoptosis or recover to the proliferating 

population. Cell cytotoxicity is assumed to be dependent on the extent of DNA damage. 

Further, cell cytotoxicity has been found to be linearly correlated with the amount of 

platinum bound to the DNA (Siddik, 2003). Consequently, the rate of cell death from either 

arrested compartment is assumed to be (the same) increasing and saturating function of drug 

concentration, with δ0 representing the maximum rate of death and kδ the half-saturation 

constant. Finally, arrested cells that have successfully repaired any DNA-damage may return 

to their original states upon recovery, at a rate ρ0.

Combining these processes, we arrive at the following equations governing the response of 

cancer cells to treatment with oxaliplatin.

Eisenberg and Jain Page 6

J Theor Biol. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dP
dt = − λ P + αRP R

VF
θ

V0
θ + VF

θ − αP
Ca

kα
a + CaP + ρ0 AP,

dR
dt = 2 λ P − αRP R

VF
θ

V0
θ + VF

θ − αR
Ca

kα
a + Ca R + ρ0 AR,

dAP
dt = αP

Ca

kα
a + CaP − δ0

Cb

kδ
b + Cb AP − ρ0 AP,

dAR
dt = αR

Ca

kα
a + Ca R − δ0

Cb

kδ
b + Cb AR − ρ0 AR,

(3)

where, VF (t) = VT − P (t) − R (t) − AP (t) − AR (t) refers to the current free space in the 

experimental system. The exponents a and b determine the steepness of the Hill functions 

for drug effects on the cells.

2.2. Experimental data

Parameters relating to the effect of taxol on cancer cells were estimated from in vitro tumor 

spheroid growth assays described in Terzis et al. (1997), while those relating to the effect of 

oxaliplatin on cancer cells were estimated from in vitro cell growth inhibition assays 

described in Jang et al. (2002). We describe these data sets in further detail below.

2.2.1. Taxol data—We consider five time course data sets of tumor spheroid growth (using 

human glioma cell line D-54Mg) under treatment and control conditions, from Terzis et al. 

(1997). Tumor spheroids were generated by seeding cells in the presence of culture medium 

in agar-coated tissue culture flasks for a period of 10 days. Spheroids with diameters 

between 200 and 250 μm were selected, and time course responses of spheroid growth 

inhibition in response to drug application were generated by continuously exposing the 

spheroids to four constant concentrations of taxol (0.005 μg/ml, 0.01 μg/ml, 0.04 μg/ml, 0.1 

μg/ml) or no drug (control). The volume of the spheroids was recorded at five time points 

over a period of 15 days, with the data shown in Fig. 2A. Assuming that spheroid volume is 

proportional to the number of cells it contains, we can estimate total cell number (N(t) = P 
(t) + R (t) + AP (t)) as a function of time for the different drug concentrations from this data.

2.2.2. Oxaliplatin data—The growth inhibitory effects of oxaliplatin on the human gastric 

cancer cell line SNU-1 were measured in a series of experiments described in Jang et al. 

(2002), with data shown in Fig. 2B. Three time series data sets of cell growth in response to 

drug application were generated by culturing cells in control medium for 24 h, followed by 

exposure to: 2 different constant concentrations of oxaliplatin (0.75 μM and 7.55 μM) or no 

drug (control) for 72 h. At five time points, the number of viable cells were counted (Fig. 

2B, top left). The two treatment time courses were analyzed by flow cytometry to determine 

the cell cycle distribution at each time point (Fig. 2B, bottom panels). This data provides us 

with total cell number (N(t) = P (t) + R (t) + AP (t) + AR (t)) as well as the numbers of cells 

in G2/M (P (t) + AP (t)) and in G1/S (R (t) + AR (t)) as functions of time, for the different 

drug concentrations.
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In the same set of experiments, dose response curves were generated by exposing cells to 

nine concentrations of oxaliplatin for 72 hours, and measuring viable cells (as a percentage 

of control) at the end of this period (Fig. 2B, top right panel). For each dose of oxaliplatin 

administered, the percentage of viable cells can be expressed as 100 × N(t = 72)
Ncontrol(t = 72) .

2.3. Parameter estimation

Parameter values for the model equations in each case (control + taxol and control + 

oxaliplatin) were chosen so that tumor cell counts best fit the experimental data described 

above in a weighted least squares sense (using weights equal to the average of each data set 

in order to avoid over-weighting any particular time course). This was implemented in 

Matlab using the curve-fitting tool ‘lsqcurvefit’ coupled with the built-in ordinary 

differential equation solver ‘ode23s’. We remark that the model exponents θ, a and b are all 

taken to be positive and, for parsimony, the lowest value of each exponent is chosen which 

yields an optimal fit to the data. The exponents are then held fixed for the remainder of the 

simulations (see Results for an explanation).

Control data relating to each set of experiments and simulated by equations (1) was used to 

estimate: λ, the tumor cell division rate; αRP, the rate parameter controlling transition from 

G1/S to G2/M; VT, total free volume available; and V0, sensitivity of cells in G1/S to over-

crowding. After initial estimation, for simplicity we assumed these parameters were fixed. 

While there may be issues of uncertainty in the control parameters as well, there is less room 

for examining alternative data collection strategies (as we cannot give alternative doses). 

Additionally, it is possible to directly experimentally measure the parameters for the control 

model (i.e. the duration of each cell cycle stage can be determined, as can the total volume 

of the experimental system). Thus, for the purposes of this study, these parameters are not 

varied.

Treatment data for taxol, simulated by equations (2), was used to estimate: αP, the maximum 

rate of arrest of cells in G2/M; kα, the sensitivity of proliferating cells to taxol; δ0, the 

maximum rate of arrested cell death; kδ, the arrested cell death rate half-saturation constant; 

and ρ0, the rate of arrested cell recovery to the proliferating pool. As initial conditions for 

the taxol model, we note that the initial data value gives the initial condition for N, and the 

initial condition for P can be estimated from the slope of the first two data points by noting 

that d N/d t = λP. From these, we can get estimates of both P (0) and R (0), where AP (0) is 

assumed to be zero at the beginning of the experiment.

Finally, treatment data for oxaliplatin, simulated by equations (3), was used to estimate: αP 

and αR, the maximum rates of arrest of cells in G2/M and G1/S respectively; kα, the 

sensitivity of proliferating cells to oxaliplatin; δ0, the maximum rate of arrested cell death; 

and kδ, the arrested cell death rate half-saturation constant. The rate of recovery from either 

arrested compartment to the proliferating pool (ρ0) was estimated to be 0.4005 per day from 

Zhen et al. (1992), and was held fixed in our numerical simulations. Since arrest begins only 

after the treatment starts, the initial data values of the numbers of cells in each stage give the 

initial conditions P (0) and R (0), with AP (0) = AR (0) = 0.
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2.4. Structural identifiability

Structural identifiability analysis examines the identifiability properties inherent to the 

model structure given a particular form or type of data, without considering issues of data 

quantity or quality. Structural identifiability addresses whether model parameter estimates 

are unique for a given observation model (e.g., if you can only measure a subset or 

combination of state variables) assuming noise-free, perfectly measured data for all time 

points. As noted above, structural identifiability thus forms a best-case scenario in that it 

corresponds to the maximum possible parameter information for a given type or form of 

data.

A wide range of analytical methods have been developed for examining structural 

identifiability (Audoly et al., 2001; Chappell et al., 1990; Cobelli and DiStefano, 1980; Miao 

et al., 2011; Raue et al., 2009; Vajda et al., 1989). In this paper, we used the differential 

algebra approach (Audoly et al., 2001; Eisenberg et al., 2013; Margaria et al., 2001; Ollivier, 

1989), as it gives global structural identifiability information and is applicable to the types of 

rational function differential equation models developed here. For a more complete review 

of the method, the reader is referred to Audoly et al. (2001) ; here we give a brief overview.

Consider a model of the form:

dx
dt = f (x, u, t, p)

y = g(x, t, p)

(4)

where x is the vector of unobserved state variables, y the vector of observed output variables 

(i.e. variables which are measured), u the vector of known (observed) input functions to the 

system, and p the vector of unknown parameters to be estimated.

Because there may be specific degenerate parameter values or initial conditions for which an 

otherwise identifiable model is unidentifiable (e.g. if all initial conditions are zero), 

structural identifiability is often defined for almost all parameter values and initial 

conditions (Audoly et al., 2001; Eisenberg et al., 2013). A model is then said to be uniquely 

identifiable if p can be recovered uniquely from y and u, for almost all initial conditions and 

parameter values. This can be framed more formally as follows:

Definition 1: A parameter pi in p (Eq. (4)) is globally or uniquely structurally identifiable if, 

for almost all values p* and almost all initial conditions, the equation y (x, t, p) = y (x, t, p*) 

implies pi = pi
∗. In other words, the observation of an output trajectory uniquely determines 

the parameter value, so that only one value of pi could have resulted in the observed output. 

Similarly, a parameter pi is said to be locally or non-uniquely structurally identifiable if y (x, 
t, p) = y (x, t, p*) implies that pi has a finite number of solutions (i.e. that only finitely many 

values of pi could result in the observed output). We note that this implies that a globally 

identifiable parameter is also locally identifiable, however usually identifiability is only 

remarked upon as local if it is non-global.
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Definition 2: A model is said to be globally (or uniquely) structurally identifiable if every 

parameter pi is globally structurally identifiable. Similarly, a model is locally (or non-

uniquely) structurally identifiable if every parameter is at least locally identifiable (i.e. they 

may be globally or locally identifiable).

Equivalently, a model is said to be uniquely structurally identifiable if the map from 

parameter values p to input and output trajectories (u (t, p), y (t, p)) is injective almost 

everywhere, locally structurally identifiable if this map is finite-to-one, and unidentifiable if 

the map is infinite-to-one (Meshkat and Sullivant, 2014). If a model contains any parameters 

which are not structurally identifiable, it is said to be structurally unidentifiable. In this case 

there typically exists a set of identifiable combinations of parameters that represent the 

dependencies between parameters.

The differential algebra approach was developed to determine structural identifiability and 

identifiable combinations for polynomial or rational function ODE models. In our case we 

also have some exponent parameters which are unknown; these can be dealt with separately 

as discussed in the Results section. The differential algebra approach can be briefly 

summarized as follows (for a more complete overview, see Audoly et al., 2001): given the 

model and measurement equations (Eq. (4)), construct the input-output equations for the 

model. These are monic differential polynomials in the input and output variables and their 

derivatives, with rational coefficients in the parameter vector p (i.e. with the state variables x 
and all of their derivatives eliminated from the equations). The input-output equations can be 

generated in many ways, such as via Ritt’s pseudodivision, Groebner bases, or other general 

solution methods (Audoly et al., 2001; Eisenberg et al., 2013; Meshkat et al., 2012), some of 

which are freely available in software packages for evaluating identifiability (Bellu et al., 

2007 ; Meshkat et al., 2014). Once generated, the coefficients of these equations form a 

complete set of identifiable combinations for the model, and contain all structural 

identifiability information for that model and measurement setup. Structural identifiability of 

the parameters can then be inferred by testing injectivity of the map from the parameters to 

the coefficients. To illustrate, we use an even simpler form of the control model in which we 

assume no space limitations:

dP
dt = − λ P + αRP R,
dR
dt = 2 λ P − αRP R,

assuming that we measure N(t) = P (t) + R (t). The equations can be rewritten to explicitly 

include the measured variable N :

dN
dt = λ P,
dP
dt = − λ P + αRP(N − P) .

Then, to determine the input output equation, we solve the dN/dt equation for P and 

substitute this in the dP/dt equation, yielding:

Eisenberg and Jain Page 10

J Theor Biol. Author manuscript; available in PMC 2018 June 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



N̈
λ = − λ N

.

λ + αRP N − N
.

λ .

Clearing denominators and collecting terms yields a monic differential polynomial only in 

terms of the measured variable N and unknown parameters—i.e. an input-output equation:

0 = N̈ + (λ + αRP)N
.

− αRP λN .

Coefficients of input output equations are identifiable combinations (Audoly et al., 2001; 

Ollivier, 1989), which in this case tells us that both λ + αRP and αRP λ are structurally 

identifiable. Then if both of these combinations are known, we see that we can solve for λ 
and αRP individually, so that we have a locally structurally identifiable model (with two 

possible solutions for λ and αRP, as their values can be swapped).

2.5. Practical identifiability

While structural identifiability captures the maximum possible parameter information, 

additional analysis is needed to examine practical identifiability of a model using real, noisy 

data. A structurally identifiable model may still be practically unidentifiable for a variety of 

reasons—for example, if the model identifiability is sensitive to measurement error in the 

data or if measurements are taken too sparsely and miss key features of the system 

dynamics. In such cases, practically identifiable combinations can often be found (e.g. as 

seen in models of cholera (Eisenberg et al., 2013; Lee et al., 2016)). Because the degree of 

practical unidentifiability can range across a spectrum, customarily one defines a threshold 

for practical identifiability, e.g. requiring 95% confidence intervals less than a desired width, 

or a percent coefficient of variation (%CV) less than some threshold. There are many 

numerical approaches to examining identifiability (Cintrón-Arias et al., 2009; Jacquez and 

Greif, 1985; Jacquez and Perry, 1990; Raue et al., 2009); here we introduce two common 

methods, the Fisher information matrix and profile likelihood (Eisenberg and Hayashi, 

2014). We also expand the use of profile likelihoods to consider practically identifiable 

combinations using a real-world data set.

2.5.1. Fisher information matrix—The Fisher Information Matrix (FIM) F (Edgeworth, 

1908; Fisher, 1922) is a symmetric matrix that represents the amount of information 

contained in the data about the model parameters (Jacquez and Greif, 1985; Jacquez and 

Perry, 1990). Often, F is calculated using numerical approximations of the parameter 

sensitivities. The rank of the FIM gives the number of identifiable parameters or 

combinations in the model (Cintrón-Arias et al., 2009; Cobelli and DiStefano, 1980; 

Komorowski et al., 2011; Rothenberg, 1971).

Inverting the FIM results in the Cramér-Rao bound Covariance Matrix, C, whose diagonal 

entries correspond to asymptotic estimates of the parameter variances. If F is singular, the 

model is unidentifiable, in which case C does not properly exist; however it can usually be 

calculated numerically in spite of this (as the determinant of F is generally extremely small 

but numerically nonzero). Following Eisenberg and Hayashi (2014), we take the coefficient 
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of variation (given by % CV = 100 · SD/p, where p is the value of the parameter) to be our 

parameter uncertainty measure, as this accounts for the size of the parameter value when 

evaluating parameter uncertainty. Similarly, we consider % CV > 100% to indicate practical 

unidentifiability (so that if the uncertainty is larger than the magnitude of the parameter it is 

considered practically unidentifiable), and > 106 for structural unidentifiability.

2.5.2. Profile likelihood—One potential issue with FIM-based confidence intervals for 

practical identifiability results is that they are asymptotic and based on the local curvature of 

the likelihood; profile likelihood-based confidence intervals may be preferred if the quantity 

or quality of data is insufficient. The profile likelihood (Murphy and Van der Vaart, 2000; 

Venzon and Moolgavkar, 1988) approach ‘profiles’ a single parameter pi by fixing pi across 

a range of values, and estimating all remaining parameters for each fixed value of pi. The 

maximum value of the likelihood function (or minimum sum of squares if least squares are 

used as equivalent to the negative log likelihood) for each parameter value constitutes the 

likelihood profile for the fixed parameter. The profile likelihood can generally reveal both 

structural and practical identifiability issues, although because the method is numerical 

rather than analytical, the structural identifiability information it generates is necessarily 

local rather than global. Structural unidentifiability manifests as a completely flat likelihood 

profile, while practical unidentifiability appears as a profile with a shallow and often one-

sided minimum (i.e. forming an L-shaped rather than bowl-shaped curve, as will be seen for 

the δ0 and kδ profiles in the Results below).

The profile likelihood can be used to calculate confidence intervals based on a likelihood 

threshold—the parameter values at which the profile crosses the threshold (on either side of 

the optimal parameter value) define the confidence interval at a particular level of 

significance. Given a likelihood function L, the confidence interval for pi at level of 

significance α is {pi : log (L (p̂)) − log (L (pi)) < Δα}, where Δα = χ2 (α,df)/2 is given by a 

chi-squared distribution with df the number of model parameters (Raue et al., 2009).

A key advantage of the profile likelihood approach is that it can also reveal the form of 

identifiable combinations between parameters (Raue et al., 2009), which can provide 

mechanistic insight into why they are unidentifiable and what biological information can be 

extracted from the data. In general, the shape traced by the estimated parameters as one 

changes the fixed (profiled) parameter can be used to reveal the form of identifiable 

combinations between the profiled parameter and other parameters. (Raue et al., 2009). This 

can be problematic if more than two parameters are involved in a given combination 

(Eisenberg and Hayashi, 2014), in which case it may be advantageous to generate profiles 

using only particular subsets of the parameters at a time, to better elucidate the combination 

structure (see Eisenberg and Hayashi, 2014 for details). The idea of identifiable 

combinations is most commonly applied in the case of structural unidentifiability, but 

practical unidentifiability can result in parameter combinations/dependencies as well 

(Eisenberg and Hayashi, 2014; Eisenberg et al., 2013). However, as we will explore below, 

in the case of practical identifiability, many of the parameter relationships are less clear, and 

in particular it can be more difficult to disentangle combinations formed from more than two 

parameters at a time (since, e.g. the FIM often gives inconsistent results and ranks when 

faced with practical unidentifiability).
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3. Results and discussion

3.1. Structural identifiability

We begin by examining the structural identifiability of the model in the control case (Eq. (1), 

i.e. with only P and R as variables). We assume that all parameters are positive and real.

Proposition 1: The control model (Eq. (1)) is structurally identifiable from data on total 
cancer cells, N = P + R.

Proof: The control form for the model (Eq. (1) can be rewritten in terms of P and N as:

P
.

= − N
.

+ αRP R
(VT − N)θ

V0
θ + (VT − N)θ ,

N
.

= λ P .

(5)

To make the parameter θ a coefficient rather than an exponent, we can define an additional 

variable X = (VT − N)θ/V0
θ, and write a differential equation for X :

P
.

= − N
.

+ αRP (N − P) X
1 + X ,

X
.

= − θ λXP
VT − N ,

N
.

= λ P .

(6)

From here, the standard differential algebra approach (similar to the example given in the 

Methods) yields the input-output equation:

0 = λ2( − VT)N
. 2 + (θ + 1)λ2NN

. 2 −
θλ(αRP + λ)N

. 3

αRP

+ λ2VTNN̈ − λ2N2N̈ + λ( − VT)N
.
N̈

+ (θ + 1)λNN
.
N̈ −

θ(αRP + 2λ)N
. 2N̈

αRP
+ VTN̈2

− NN̈2 − θN
.
N̈2

αRP
+ λVTNN⃛

− λN2N⃛ − VTN
.
N⃛ + NN

.
N⃛ .

(7)
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Solving from the coefficients yields unique solutions for all four parameters, so that λ, VT, 

θ, and αRP are uniquely structurally identifiable. To establish the identifiability of V0, we 

use Eq. (5), plugging in P = Ṅ/λ into the P equation to yield:

N̈
λ = − N

.
+ αRP (N − N

.

λ )
(VT − N)θ

V0
θ + (VT − N)θ

.

As all parameters except V0 are identifiable, and N is known, we can solve for V0 to show it 

is also identifiable, yielding identifiability for the model.

We next examine the model in the two experimental cases of taxol and oxaliplatin. Because 

the control data will allow for identification of αRP, λ, V0, VT, and θ, we assume these 

parameter values are known. We also note that while the drug inputs used in the 

experimental data are constant, time course data was taken for multiple drug concentrations, 

which we assume are sufficient to capture the range of low to high dose effects.

Proposition 2: Assume the control-case parameters from Proposition 1 are known. Then the 
taxol model (Eq. (2)) is structurally identifiable from time-course cancer cell count 
(measuring N(t) = P (t) + R (t) + AP (t)) data sets in response to multiple (≥2) constant drug 
concentration inputs.

The proof proceeds entirely analogously to that of Proposition 3, given below.

Proposition 3: Assume the control-case parameters from Proposition 1 are known. Then the 
oxaliplatin model (Eq. (3)) is structurally identifiable from time-course cancer cell count 
(measuring N(t) = P (t) + R (t) + AP (t) + AR (t)) data sets in response to multiple (≥2) 
constant drug concentration inputs.

Proof: First, we rewrite the model equations (Eq. (3)) similarly to the proof of Proposition 

1 :

dN
dt = λ P − δ0

Cb

ks
b + Cb (AP + AR),

dP
dt = − λ P + αRP

VF
θ

V0
θ + VF

θ R − αP
Ca

kα
a + CaP + ρ0 AP,

dAP
dt = αP

Ca

kα
a + CaP − δ0

Cb

kδ
b + Cb AP − ρ0 AP,

dAR
dt = αR

Ca

kα
a + Ca R − δ0

Cb

kδ
b + Cb AR − ρ0 AR,

(8)
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As the control parameters for the model are assumed to be known, and N is measured 

(assumed to be known for all times), the values of the term αRP
(VT − N)θ

V0
θ + (VT − N)θ

 are thus 

completely known at all times as well. Then, to simplify our analysis, we denote this 

function by u (t), which we assume to be a known input to the system.

Next, note that for any particular single dose, the oxaliplatin (C) concentration is constant, 

so that we can combine terms to let:

α∼P: = αP
Ca

kα
a + Ca

α∼R: = αR
Ca

kα
a + Ca

δ
∼

0: = δ0
Cb

kδ
b + Cb

(9)

Let us consider the identifiability of the model in this form (with unknown parameters ρ0, 

α̃P, α̃
R, and δ0̃) from a single dose response time course data set (i.e. N (t) measured in 

response to a single constant drug concentration C). By simply following the standard 

differential algebra approach, we generate an inputoutput equation in terms of only the 

known/measured variables, their derivatives, and the parameters. The resulting input-output 

equation contains 50 monomial terms, and testing the coefficients reveals that the parameters 

ρ0, α̃
P, αR̃, and δ̃ 0) are indeed identifiable from any single dose response time course data 

set.

Next, we note that Hill functions of the form y = Axn

Bn + xn  are structurally identifiable from 

multiple (x, y) pairs (although for practical identifiability, such points should span the linear-

to-saturated ranges of the function). Then from the multiple drug dose data sets, we can 

identify multiple values for each of α̃
P, α̃

R, and δ̃0, from which the individual parameters αP, 

αR, kα, δ0, kδ, a, and b are identifiable, making the entire model structurally identifiable.

3.2. Practical identifiability

Parameter Estimation: Model fits for both the taxol and oxaliplatin models (control and 

experimental) are shown in Fig. 2, with parameter estimates given in Table 1. For parsimony, 

we chose the lowest values of the exponents a and b in 0.5 increments (i.e. so that each 

exponent is in {0. 5, 1, 1. 5, 2, . . .}) that yielded an optimal fit to the data, as the exponents 

were relatively insensitive once we were in a broad range.

3.2.1. Taxol model results

Fisher Information: Calculation of the FIM from the best fit parameter estimates resulted 

in a full rank matrix (rank 5), confirming the structural identifiability of the model. The 

parameter percent coefficient of variations (%CVs, given in Table 2) were mostly < 100%, 
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which would indicate practical identifiability, although two were either greater than 100% or 

very nearly so.

Profile Likelihoods: The profile likelihoods for the taxol model are given in Fig. 3 and 

parameter relationships in Supporting Information Fig S1. The profiles show practical 

unidentifiability for δ0 and kδ, with the lower side of the profile crossing the threshold for 

the 95% confidence bounds, but the opposing side appears quite flat. The remaining 

parameters (αP, kα, and ρ0) show finite confidence bounds indicating practical identifiability, 

although we note that the confidence bounds are fairly wide for αP and ρ0, indicating high 

uncertainty that might be improved by further data or experimental measurement of one of 

the parameters.

Practically Identifiable Combinations: Given that the only two fully practically 

unidentifiable parameters in Fig. 3 are δ0 and kδ, we focused on these two in examining 

potential practically identifiable combinations (Fig. 4). Fig. 4 shows the parameter 

relationship between kδ and δ0 that results when profiling either of these two parameters, 

which indicates that there is a consistently strong correlation between them. The 

mathematical form of this identifiable combination can be determined by plotting on a log-

log scale (shown in Supporting Information Fig S3). The plot shows a wide linear region 

beginning just to the right of the estimated value for kδ (around kδ ≈140), with a best-fit 

slope of 4.

This combination is consistent with the model equations—even though the Hill function for 

cell death may not be in the low-dose linear range (as can be determined by fitting the 

linearized, reduced model to data, which results in significantly worse model fit (not shown), 

the two Hill function parameters may still approximately compensate for one another, 

resulting in their practical unidentifiability. The log-log linear slope of 4 is precisely 

consistent with the combination we would expect from the low-dose linear approximation to 

the Hill function, δ0/kδ
4. This suggests that while the compensation between δ0 and kδ is 

nonlinear at the estimated value, once kδ increases above the estimated value (119.14), it 

becomes large enough compared to the maximum drug dose given (100 ng/mL), that the 

linear form of the Hill function becomes a close approximation, resulting in the apparent 

trade-off to the right of the estimated value.

Fig. 4 shows the fit of this combination, given by δ0/kδ
4 = exp( − 19.2), to the profiled 

parameter relationship. This is close— but does not exactly match—the linear form of the 

Hill function at the estimated parameters, which would yield δ0/kδ
4 = exp( − 18.8). The 

apparent discrepancy is due to the fact that the Hill function does not match up to the linear 

range until slightly above the estimated value of kδ.

Proposed Experimental Data to Resolve Identifiability: A useful consequence of 

knowing which parameters are involved in identifiable combinations is that we can evaluate 

experimental data collection strategies to resolve the model undentifiability. Here, 

experimental measurements of either δ0 or kδ (e.g. using live/dead staining with taxol 

treatment at different levels) would in result in finite confidence bounds for all parameters. 
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Often modelers may simply fix one of the parameters to its estimated value— however, this 

must be done with the understanding that the resulting estimate of the non-fixed parameter is 

really estimating the conserved quantity approximately equal to the combination (in this 

case δ0/kδ
4). Indeed, fixing δ0 to its estimate yields finite confidence bounds (i.e. practical 

identifiability) for all parameters, as shown in Fig. 4 and Supporting Information Fig S2.

We remark that, while fixing δ0 does generate finite confidence bounds for all parameters, it 

does not improve the width of the confidence bounds for αP or ρ0. Thus, we also considered 

how the uncertainty of the parameters could potentially be improved by additionally fixing 

either of these two parameters. As noted in the Parameter Estimation section for oxaliplatin, 

it is possible to experimentally measure ρ0, the recovery rate for cells (Jang et al., 2002). We 

therefore tested an additional scenario in which we fixed both ρ0 and δ0 to their estimated 

values (e.g. supposing both were experimentally measured to be those values). This yielded 

quite narrow confidence bounds for the remaining three parameters, as shown in Fig. 4.

3.2.2. Oxaliplatin model results

Fisher Information: Calculation of the FIM from the best fit parameter estimates resulted 

in a full rank matrix (rank 5), confirming structural identifiability of the model. For all but 

one parameter, the percent coefficient of variations (%CVs, given in Table 2) were < 100%, 

which would indicate practical identifiability, although all parameter CV’s were also above 

50%.

Profile Likelihoods: The overall profile likelihoods for the oxaliplatin model are shown in 

Fig. 5. In spite of the structural identifiability of the model and mid-range %CV values given 

by the FIM, the broader exploration of the parameter space using the profile likelihood 

reveals a lack of practical identifiability. Four of the five parameters cross the threshold for 

the 95% confidence interval only on the left side, while the fifth parameter remains below 

threshold for the entire 6-fold change region examined. All profiles have large relatively flat 

regions, often with a lower boundary due to poor fits when the parameter values approach 

zero.

Interestingly, the kδ profile appears to actually decrease slightly to the left of the estimated 

parameter value, seemingly in contrast with the FIM results (although there is a small, very 

local minimum not visible in the profile plot). This result suggests that it might be possible 

to improve the practical identifiability issues by fixing kδ = 0. However, the profiles after 

setting kδ = 0 (Supplementary Information Fig S4) reveal worsening of the unidentifiability 

for αR, with the profile below threshold on both sides. This potential simplification also 

yields unrealistically high estimates for the maximum arrest rate from G2/M (αP 

approximately 15 per day), making this simplification biologically unfeasible.

Implications for Predicting Unobserved Variable Trajectories: Even if models have been 

derived mechanistically, and we have confidence in the model structure, parameter 

unidenifiability can lead to erroneous conclusions in the model inferences, predictions, and 

parameter estimates. The difference between the FIM-based and profile-based confidence 

bounds raises the possibility that if only FIM-based confidence bounds are considered (as is 
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often used in practice), one might draw false confidence in the ability of the data to inform 

the biological or mechanistic predictions of the model. In particular, predicting or inferring 

the trajectories of clinically important variables that are not separately measured in the data 

can be quite fraught in the presence of unidentifiability.

To illustrate this, we plotted the individual trajectories of arrested vs. non-arrested and G1/M 

vs. G2/S (that is, four variables, P, R, AP and AR), using different values of the parameters 

drawn from the kδ profile (Fig. 5E). All three profiled parameter sets tested had essentially 

the same fit the data, but yield sharply different predictions of the fractions of cells in 

different states, as shown in Fig. 6. While some trajectories are relatively conserved across 

the three parameter sets tested (for instance, G2/M arrested cells), the other cell type 

trajectories are markedly different. In the current setting (cancer chemotherapy), this is of 

especial concern since platinum-based drugs are frequently combined with taxanes in 

treating solid tumors (Bunn and K, 1998; Pavlidis and Pentheroudakis, 2012; Utsunomiya et 

al., 2006). Taxanes are cell-cycle specific and it is therefore important to know the cell cycle 

distributions resulting from exposure to one or the other drug accurately in order to 

successfully predict optimal combination dosing strategies.

Practically Identifiable Combinations: Returning to the full five-parameter model, all 

parameter relationship plots appear to be strongly correlated with one another, making 

determination of specific combinations within the larger set of five somewhat difficult (a 

subset is shown in Fig. 7 and the full set in Supplementary Information Fig S5). This 

illustrates some of the difficulties in characterizing identifiable combinations in the case of 

practical unidentifiability, as there are many compensating parameter relationships, and the 

shape or structure of parameter relationships can change across the profiled parameter space.

However, similar to the taxol model, we note the positive combination relationships between 

αP, αR and kα (see Fig. 7A, lower panel). These suggest that it may be possible to (for 

example) compensate for an increase in αP by also increasing kα and αR (so that the overall 

values of both Hill function terms are approximately preserved). Thus, while the dose 

response functions show that the Hill functions are not fully in the linear range, there may 

still be some compensation between the Hill function parameters, yielding two practically 

identifiable combinations between αP − kα and αR − kα. Additionally, we see a positive 

relationship between δ0 and kδ. This overall combination structure is illustrated as a 

parameter graph (Eisenberg and Hayashi, 2014) in Fig. 7A.

Because these combinations are practical rather than structural, it is not a binary, yes-or-no 

question whether two parameters are in a combination—rather, all parameters may be 

correlated to varying degrees. The identifiability properties that emerge with real data may 

be more graduated, but nonetheless, by examining the parameter relationships further, we 

may be able to discern useful and biologically meaningful combinations. Verily, in 

examining the profiled parameter relationships in Supporting Information Fig S5, it is 

notable that many correlations between pairs of parameters take different forms depending 

on which parameter is profiled (e.g. if δ0 is profiled the relationship with αR looks quite 

different than if αR is profiled with the resulting δ0 values plotted). This is not necessarily 

surprising—since all parameters appear to have correlations with one another, there is no 
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particular reason the same compensation must occur in each case. However, the parameters 

in the Hill-function-based subsets described above ({αP, αR, kα}, and {δ0, kδ}) give (at least 

qualitatively) consistent results regardless of which parameter in a given pair is profiled 

(shown in the highlighted pairs in Supplementary Information Fig S5). This suggests that the 

correlation/identifiable combination structure for these parameters may be more consistent 

or strong for these parameters.

If we examine the form of the combinations traced between the Hill-function parameters in 

Fig. 7A, we see that the αP − kα and αR − kα combinations are reasonably well 

approximated by the combination structures 
αP

kα
a = 1.7 and 

αR

kα
a = 0.6. These take the same 

form as the linear approximation of the Hill function, although as in the taxol model, the 

values of the combination are slightly different from the values generated if we simply use 

the parameter estimates (1.87 and 0.65 respectively). The analogous linear combination for 

δ0 and kδ would be 
δ0
kδ

= 0.1, i.e. kδ = 10δ0, which fits well for the lower values of δ0 

profiled (Fig. 7A), but the combination then becomes nonlinear at higher values of δ0. These 

deviations from the exact linear form of the combination may illustrate the fact that they are 

practical rather than structural—there need not be a single exact polynomial or rational 

function form for a practical combination, as there would for a structural combination with 

this type of model.

Typically, when faced with structural unidentifiability and structurally identifiable 

combinations, one would attempt to reparameterize the model in terms of the combinations 

(Evans and Chappell, 2000; Meshkat and Sullivant, 2014). In the case of practical 

unidentifiability, this may not always be possible, as the combination structures need not 

follow consistent relationships across parameter space. Another common approach involves 

fixing parameters to reduce the degrees of freedom to one parameter per combination (Chis 

et al., 2011; Eisenberg and Hayashi, 2014), although it is important to note that this does not 

truly resolve the underlying unidentifiability if the fixed parameter values are not 

experimentally measured. The combination structures here suggest that one way to resolve 

the practical unidentifiability would be to fix one parameter from each subset, i.e. one from 

{αP, αR, kα} and one from {δ0, kδ}. We chose to fix kα as it appears in both of the proposed 

combinations (one could rearrange to write the combinations in terms of any two pairs, but 

the Hill function-based form shown here is most natural). For {δ0, kδ}, either would suffice 

to ensure identifiability; we chose kδ here. The resulting profiles do indeed yield practical 

identifiability with finite confidence bounds on both sides, shown in Fig. 7B. We also note 

that fixing only one of the parameters does not resolve the identifiability issues, as shown in 

the Supporting Information Fig S6. This also illustrates that even when the FIM may not be 

informative enough to use the full methods proposed in Eisenberg and Hayashi (2014), we 

can often explore the identifiability structure of the system by profiling specific subsets of 

parameters and examining which parameter confidence bounds become finite. In this case, 

fixing one of {δ0, kδ} does not change the confidence bounds for the {αP, αR, kα} set, and 

vice versa, confirming the distinct subsets of dependent parameters shown in Fig. 7A. 
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Similarly, fixing kα resolves the identifiability for both αP and αR, confirming that these 

three parameters have the proposed structure in Fig. 7A.

Biological Insights From the Identifiable Combinations: Although our analyses 

demonstrate that additional data is necessary to resolve the model parameters and predict 

cell cycle distributions, nonetheless some biologically relevant conclusions can still be 

drawn. We noted previously that while oxaliplatin affects all cell cycle stages, there may be 

important differences in sensitivity which could help to explain any observed synergy or 

antagonism between the two drugs. If we examine the estimates in Table 1, it would appear 

that oxaliplatin predominantly arrests glioma cells from the proliferating state (since αP is 

nearly three times αR). It would appear that no real conclusions can be drawn since both 

parameters are practically unidentifiable. However, evaluating the form of the identifiable 

combinations showed that both parameters have the same form of combination with kα (i.e. 

αP/kα
a and αP/kα

a), which implies that the difference in magnitudes of the two arrest rates is 

meaningful. The three-fold difference in estimates of αP and αR suggests that the 

combination of oxaliplatin with drugs that arrest cells in G1/S may be sub-optimal (i.e. less 

than additive). This could help to save valuable experimental and clinical resources in 

developing combination therapies.

Parameter estimates often have biological or clinical implications, and without identifiability 

analysis one might draw spurious conclusions from point estimates of unidentifiable 

parameters. On the other hand, a useful facet of identifiability analysis is that the identifiable 

combination structure can sometimes ‘rescue’ meaningful parameter information from 

unidentifiable parameters, as was the case here. If one only examined the uncertainty of the 

parameters and not the practically identifiable combinations, this would be obscured, and the 

parameter estimates would appear less informative than they are.

Alternative Data Collection Strategies: It is notable that the taxol model fits, which had 

fewer types of data but more doses, showed better initial identifiability than did the 

oxaliplatin model (finite confidence intervals for three of the five parameters as opposed to 

unidentifiability for all five parameters). One could resolve the unidentifiability here by 

experimentally measuring two parameters (as explored above and in the Taxol Results 

section), but these two data sets also raise the possibility of conducting alternative time 

course experiments. We simulated several data collection strategies measuring different 

model variables, using the best fit parameter estimates from Table 1. In each case we 

generated data by running model simulations and sampling at the same frequency as the 

original data (that is, at 12, 24, 36, 48, and 72 h). While we consider only a few specific 

alternatives here, this highlights the use of identifiability and uncertainty analysis in testing 

possible experiment designs. For more detailed examination of the ways that identifiability 

can inform experiment design and data collection strategies, the reader is referred to Kreutz 

et al. (2012), Skanda and Lebiedz (2010), Anguelova et al. (2012), Cheung et al. (2013), 

Chu and Hahn (2008), Apgar et al. (2010), Banga and Balsa-Canto (2008), Vanlier et al. 

(2012a) and Liepe et al. (2013) (which include FIM, Bayesian, and information theoretic 

methods).
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Apoptotic Cell Data: In this simulated data set, we used the existing two oxaliplatin doses 

and added simulated time course data for apoptotic cells (that is, the cumulative total cells 

that have died following arrest). This simulated data is motivated by the identifiable 

combination of cell death parameters δ0 and kδ, with the idea that adding data about the cell 

death process might resolve this unidentifiability. Such data could be obtained 

experimentally via live/dead staining or other apoptosis assays such as a cell death ELISA or 

caspase 3 activity assay. The resulting profiles are shown in Supplementary Information Fig 

S7, and confirm that adding apoptotic cell data yields identifiability for δ0 and kδ. However, 

adding this data does not improve identifiability issues with the parameters relating to cell 

arrest from the G1/S or G2/M phases of the cell cycle.

Arrested Cell Data: To resolve the unidentifiability of the cell arrest parameters, we 

considered an alternative data collection strategy in which we replace collection of data on 

cell cycle distribution with data on cell arrest. DNA damage induced by Oxaliplatin leads to 

the phosphorylation and activation of the checkpoint kinases CHK1/2 (Bartek and Lukas, 

2003; Pires et al., 2010) resulting in cell arrest. Activation of these kinases could be 

measured in vitro (e.g. via immunofluorescence imaging), allowing experiments to evaluate 

the fraction of cells which are arrested. Measuring the overall fraction of cells arrested 

allows us to still split the total cell population, but by arrest status rather than cell cycle 

status. We initially tested this using the same two treatment arms as in the original 

oxaliplatin data, however we found this did not significantly alter the uncertainty on the 

parameters, so we added two additional treatment arms at doses bisecting the existing doses 

(to yield the same total number of treatment arms as for the taxol model; see Supplementary 

Information Fig S8. This resulted in identifiability (finite confidence bounds) for all 

parameters (though the confidence interval for kα was fairly wide).

Arrested and Apoptotic Cell Data: As a third potential approach, we considered an 

oxaliplatin data set where we replaced both the cell cycle distribution and the dose response 

curve with the arrested and apoptotic cell data described in the previous two data sets. For 

simplicity, we supposed that in this case we add three additional treatment arms (i.e. for five 

treatment and one control). In each arm, we simulated measurement of the corresponding 

numbers of apoptotic and arrested cells. This also yielded full identifiability of the model 

parameters (shown in Supplementary Information Fig S9, but reduced the number of doses 

needed (for the dose response curve). This highlights how alternative data collection 

strategies may be able to provide the same amount of information about the parameters, but 

one experimental strategy may be simpler, less costly, or more efficient.

These simple exploratory studies highlight how identifiability and uncertainty analysis can 

be used to help design experiments and optimize the use of resources to best estimate 

clinically relevant parameters. While in this case we are simulating potential data collection 

strategies post hoc, this type of approach could be used to design initial experiments or to 

inform follow-up experiments that build upon the data used here. We found that even though 

the model is resolved at the level of both cell cycle and cell arrest, the cell cycle distribution 

data adds relatively little to the parameter estimation, while data on apoptosis or arrest is 

much more informative. Increasingly, we have seen tighter linkage between model and 
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experimentation, with models often driving experimental measurements and vice versa. 

These types of explorations using simple simulated data can be run in a systematic way and 

on a larger scale to help decide optimal experiment design to maximize parameter 

identifiability. This will help to ensure that key clinical or treatment related parameters 

needed from the models can be measured effectively.

4. Conclusions

Dynamical models are increasingly being recognized as a valuable tool with which to 

uncover mechanistic details that drive complex biological phenomena such as cancer growth 

and response to treatment. However, imperfect data and the resulting practical 

unidentifiability of model parameters can make it impossible to infer important mechanistic 

information. Additionally, it is always possible to postulate mechanistic models that are in 

excellent agreement with experimental data, but which give misleading conclusions since 

parameter unidentifiability issues haven’t been addressed (Cortez and Weitz, 2013; 

DiStefano, 1982; Eisenberg et al., 2015; Hines et al., 2013; Hopkins and Leipold, 1996; 

Kitching et al., 2006; May, 2004). In this study, we discussed a general framework to 

address these issues using a range of identifiability methods (Audoly et al., 2001; Jacquez 

and Greif, 1985; Raue et al., 2009; 2011), starting from model building, parameter 

estimation, identifiability analysis and its biological implications, as well as alternative data 

generation strategies that render the model identifiable. We illustrate how practically 

identifiable combinations can be more difficult to characterize compared to structural 

combinations, and propose some general strategies for examining combinations in the 

practical unidentifiability case.

To illustrate the overall approach, we used two compartmental models of cancer 

chemotherapy and fit them to time course treatment data sets using oxaliplatin and taxol as 

the drugs of choice. We found that while both models were structurally identifiable from the 

proposed data, practical identifiability remained a roadblock to successful parameter 

estimation. In particular, both models illustrated the limitations of asymptotic confidence 

bounds based on the FIM (Raue et al., 2009)—these provide a lower bound for parameter 

uncertainty, but the profile likelihood analysis revealed much wider uncertainty in both the 

parameters and model predictions. By examining the practically identifiable combination 

structure of the profile likelihoods, it was possible to determine what parameter 

combinations can be successfully estimated, and what new data would need to be collected 

to resolve the estimation of individual parameters. We also highlighted the potential pitfalls 

of not fully analyzing the identifiability of a model, such as incorrect biological predictions.

Effort s to optimize the number and timing of measurements have long been studied in 

optimal experiment design (Emery and Nenarokomov, 1998; Forssell and Ljung, 2000; 

Pukelsheim, 1993), and are often linked to resolving unidentifiability and uncertainty issues 

(Cheung et al., 2013; Skanda and Lebiedz, 2010). Here we evaluated the experimental 

design post hoc, proposing alternative data collection strategies using an existing data set. 

However, as more joint data collection occurs by both modelers and experimentalists, these 

analyses would be best applied in concert with experiment design, so that data generation 

can be optimized to answer the questions of interest. The analyses shown here illustrate how 
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different types of data (e.g. apoptotic vs. arrested cells) improve the uncertainty of particular 

parameter sets.

Our results highlight the importance of understanding the underlying mechanisms rather 

than purely using parsimony or information criteria/goodness-of-fit to decide model 

selection questions. Many mechanistic models will be practically unidentifiable, particularly 

given that the pressures of evolution push cells towards more robust behaviors, which 

intrinsically means less identifiability (i.e. the ability to reproduce the same behavior for 

many parameter values). Thus, lower dimensional models may outcompete more detailed 

mechanistic ones in model selection, however this can result in parameter values that are 

outside of realistic biological ranges. For example, the practical unidentifiability of the 

oxaliplatin model could seemingly be resolved by fixing kδ = 0, however, this resulted in 

biologically unrealistic estimates for the remaining parameters. In general, one must take 

care to understand what mechanistic parameters or features are being collapsed when a more 

identifiable, lower dimensional model is used in place of a more mechanistic one—it can be 

difficult to discern when model simplification indicates mechanism versus when it indicates 

insufficiently informative data.

A common pattern in the parameter uncertainty of these models was a one-sided profile that 

was quite flat for larger values but increased for smaller values to generate a tighter lower 

bound (often indicating that the parameters yield poor fits near zero), shown in Figs. 3 and 5 

(this type of profile is often observed in practical unidentifiability (Raue et al., 2009; 2011)). 

This curvature resulted in smaller FIM-based asymptotic confidence bounds (as these are 

symmetric and based on the local curvature of the likelihood), which may be misleading for 

the relatively small amounts of data often used in fitting models in mathematical biology. 

This profile shape is in part due to the Hill function structure of the models, wherein the 

functions are nearly in the saturated or linear range, but not quite. Given the ubiquity of Hill-

like functions in biological applications, this type of practical unidentifiability is likely to be 

a frequently encountered issue.

The oxaliplatin model also illustrated how evaluating the underlying practically identifiable 

combination structure can be a challenge—the profiled parameter relationships showed 

strong correlations between all parameters, and the FIMs are not useful in determining the 

appropriate subsets (e.g. using the approach developed in Eisenberg and Hayashi, 2014). In 

this work, we found that qualitative consistency of the parameter relationships regardless of 

which parameter was profiled (e.g. the same relationship between kδ and δ0 regardless of 

which parameter was profiled vs. estimated) was a useful initial indicator of combination 

structure. However, future studies are needed to evaluate the generalizability of this finding, 

and to convert what was presented here as a somewhat ad hoc approach into a more 

procedural algorithm. More broadly, the gradiated nature of practical unidentifiability (a 

model may have finite confidence bounds for one significance level but infinite for another) 

means that there are choices that must be made for what level of uncertainty is acceptable 

(i.e. where the line is drawn between identifiable vs. not). Most approaches to identifiable 

combinations focus on structural identifiability, as this has a clearer formulation; however 

practically identifiable combinations present an important but incompletely addressed 

challenge. Knowledge of the practically identifiable combinations can generate biological 
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insights, such as allowing us to evaluate arrest rate differences across the cell cycle even if 

the individual parameters for the Hill function are unidentifiable. These two models also 

illustrated one of the tensions between structural and practical identifiability: nonlinearity in 

the model structure lends itself towards structural identifiability (DiStefano, 1982), but if 

that nonlinearity is not fully observed or utilized in the data, then it does not help (or can 

even hamper) the practical identifiability of the model.

While we began to examine the potential for alternative data collection strategies and 

therapeutic implications, we did not explore synergy and antagonism between taxol and 

oxaliplatin. This is both because the cell types and experimental conditions used in the 

example data sets are different, and the model unidentifiability precluded determining the 

cell cycle distributions. We plan to address these questions in future work. The methods for 

rigorous, practical identifiability illustrated in this case study can also be used more broadly 

to help provide mechanistic insight into complex biological phenomena, reduce 

experimental costs, and speed up translation of treatment strategies from bench to bedside in 

clinical settings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Model schematic. (A), Taxol treatment affects cells in G2/M phase of the cell cycle, leading 

to arrest and subsequent cell death or recovery to original state. (B), Oxaliplatin treatment 

affects cells in both G1/S and G2/M phases of the cell cycle, leading to arrest and 

subsequent cell death or recovery to original state.
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Fig. 2. 
Model fits to data. (A), taxol model fitted to control and treatment data on total cancer cells 

over time, with treatment doses ranging from 0.005 μg/ml to 0.1 μg/ml. (B), oxaliplatin 

model fitted to data for control and treatment cases. Clockwise from top left: model 

trajectory when estimated using control and treatment data on total cancer cells over time, 

dose response to oxaliplatin, model fit to fractional breakdown of cells in G1/S and G2/M 

for 7.55 μM (right) and 0.75 μM (left) doses.
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Fig. 3. 
Profile likelihoods for the taxol model. Profile likelihoods (solid lines) for: (A), αP ; (B), kα; 

(C), ρ0 ; (D), δ0 ; (E), kδ. Thresholds for 95% confidence intervals shown as dashed red 

lines, and the parameter estimates given in Table 1 are shown as asterisks (*). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 4. 
Parameter relationships and subset profiles for the taxol model. (A) and (B): Parameter 

relationships between αP and ρ0 (A) and between kδ and δ0 (B). Parameter estimates from 

the profile likelihoods are shown as blue squares, and the black squares indicate the overall 

optimal parameter estimates from Table 1. The 95% confidence intervals from Fig. 3 are 

shown as shaded grey regions. In (B), the low-dose approximation to the Hill function (red 

line) matches quite well for δ0 and kδ
4, as these two parameters were fully practically 

unidentifiable. For (A), the parameter relationship for lower values of αP appears to follow 

an approximate exponential relationship with ρ0 (red line), but then switches to a near-linear 

relationship approximately for higher values. This lack of consistent combination structure is 

likely due to the fact that αP and ρ0 were practically identifiable but had fairly large 

confidence intervals. The estimated local practically identifiable combinations are shown as 

solid red lines. (C)–(E): Profile likelihoods where only the parameter set αP, kα, and kδ are 

considered, assuming that ρ0 and δ0 are known via experimental data. The profiles now 

show practical identifiability with narrow confidence bounds for all three parameters. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.)
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Fig. 5. 
Profile likelihoods for the oxaliplatin model. Profile likelihoods (solid lines) for A: αP, B: 

αR, C: kα, D: δ0, E: kδ. Thresholds for 95% confidence intervals shown as dashed red lines, 

and the parameter estimates given in Table 1 are shown as asterisks (*). (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 6. 
Model predictions by cell type for the oxaliplatin model. Model simulations for proliferating 

G1/S (A) and G2/M (B) cells, and arrested G1/S (C) and G2/M (D) cells. In each case, 

trajectories are shown for three different profiled parameter sets with different values of kδ, 

all of which yield very similar fits the data but different predictions for cell dynamics.
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Fig. 7. 
Parameter relationships and subset profiles for the oxaliplatin model. (A) Identifiable 

combination structure for oxaliplatin model. Top: parameter graph for the practically 

identifiable combinations in the oxaliplatin model. We consider two sets of combinations, 

{αP, αR, kα}, and {δ0, kδ}. Within these sets, the combinations proposed are highlighted in 

red, blue, and yellow ovals. The corresponding combinations are plotted as blue squares, 

with potential combination forms plotted as red dashes. For the {αP, αR, kα} set (yellow and 

blue), the combinations approximately fit the forms 
αP

kα
a = 1.7 and 

αR

kα
a = 0.6. For δ0 and kδ 

(red), the combination appears nonlinear, but the combination structure given by the linear-

range approximation of the Hill function, δ0/kδ, approximately matches the profiled 

relationship for low values of δ0. (B) Profile likelihoods for the oxaliplatin model, using only 

a subset of the parameters. Profile likelihoods (solid lines) for the parameter subset αP, αR, 

and δ0, assuming kα and kδ are fixed (i.e. known, e.g. from experimental data). Thresholds 

for 95% confidence intervals are shown as dashed lines, and the parameter estimates given in 

Table 1 are shown as asterisks (*). (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.)
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