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Abstract

Key to understanding the neuronal basis of consciousness is the characterization of the neural signatures of changes in
level of consciousness during sleep. Here we analysed three measures of dynamical complexity on spontaneous depth elec-
trode recordings from 10 epilepsy patients during wakeful rest (WR) and different stages of sleep: (i) Lempel–Ziv complexity,
which is derived from how compressible the data are; (ii) amplitude coalition entropy, which measures the variability over
time of the set of channels active above a threshold; (iii) synchrony coalition entropy, which measures the variability over
time of the set of synchronous channels. When computed across sets of channels that are broadly distributed across multi-
ple brain regions, all three measures decreased substantially in all participants during early-night non-rapid eye movement
(NREM) sleep. This decrease was partially reversed during late-night NREM sleep, while the measures scored similar to WR
during rapid eye movement (REM) sleep. This global pattern was in almost all cases mirrored at the local level by groups of
channels located in a single region. In testing for differences between regions, we found elevated signal complexity in the
frontal lobe. These differences could not be attributed solely to changes in spectral power between conditions. Our results
provide further evidence that the level of consciousness correlates with neural dynamical complexity.
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Introduction

There is increasing evidence for a strong correlation between
signal complexity of human electrophysiological activity and
the level of consciousness. This is largely irrespective of the

precise definition of complexity, which is variously given in
terms of diversity and/or unpredictability of some signal feature
across spatial regions and/or time in either spontaneous signals
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(Zhang et al., 2001; Burioka et al., 2005; Ferenets et al., 2006, 2007;
Liu and Sun, 2015) or the response signals to perturbation via
transcranial magnetic stimulation (TMS) (Sar�a and Pistoia, 2010;
Casali et al., 2013; Sarasso et al., 2015). The relevant studies con-
sider levels of consciousness that differ either due to pharmaco-
logical action (Zhang et al., 2001; Ferenets et al., 2006, 2007;
Casali et al., 2013; Sarasso et al., 2015), chronic disorders of con-
sciousness (Sar�a and Pistoia, 2010; Casali et al., 2013) or natural
sleep states (Burioka et al., 2005; Casali et al., 2013; Ab�asolo et al.,
2015; Liu and Sun, 2015; Andrillon et al., 2016). These observa-
tions support integrated information and complexity theories of
consciousness that emphasize diversity of phenomenology
(conscious experience) as a key property of consciousness to be
reflected in its neural correlates (Tononi et al., 1994; Tononi and
Edelman, 1998; Seth et al., 2006; Tononi, 2008).

In a recent study, we found evidence for a robust and spa-
tially uniform decrease in three distinct flavours of spontaneous
multi-dimensional electroencephalogram (EEG) complexity
during propofol-induced general anaesthesia (Schartner et al.,
2015). These three distinct flavours were captured by: (i) a form
of Lempel–Ziv complexity (LZc), which derives from the (lack of)
compressibility of the data matrix; (ii) amplitude coalition en-
tropy (ACE), which reflects the entropy over time of the consti-
tution of the set of most active channels; (iii) synchrony
coalition entropy (SCE), which reflects the entropy over time of
the constitution of the set of synchronous channels.

In this study, we applied these measures to depth electrode re-
cordings taken during non-rapid eye movement (NREM) sleep,
rapid eye movement (REM) sleep and wakeful rest (WR) from 10 epi-
lepsy patients undergoing pre-surgical evaluation. Complementing
our analysis of spontaneous complexity of EEG under propofol, we
here capitalize on this new dataset to (i) investigate complexity
changes during sleep phases and (ii) examine regional versus
global complexity changes, taking advantage of the high spatial
resolution of depth electrodes compared to scalp EEG. Electrode lo-
cations varied across participants, and spanned cortical and sub-
cortical regions. We tested the extent to which changes in the com-
plexity measures were consistent and detectable irrespective of
which regions were covered. This regional analysis of signal com-
plexity is relevant for comparison with other signatures of the dif-
ferent sleep stages, some of which have been reported to differ
strongly across cortical regions [e.g. slow-wave and sleep spindle
propagation (Andrillon et al., 2011; Nir et al., 2011)], while other sig-
natures are exhibited more evenly across the cortex [e.g. average
power spectra (Cavelli et al., 2015)].

A recent study of avalanche events during wake and sleep
states has suggested that the diversity of spatiotemporal scales
under which neural dynamics unfold is preserved during NREM
sleep (Priesemann et al., 2013). Given the similarity of our data
set with the one studied in (Priesemann et al., 2013), we addi-
tionally replicated their analysis on our data, and discuss the
implications in conjunction with the observed behaviour of the
complexity measures.

We found that all three complexity measures scored sub-
stantially lower in all participants during NREM than during
WR, when computed across sets of channels broadly distributed
across multiple cortical and sub-cortical regions. This global
pattern was in almost all cases mirrored at the local level when
analysing the measures across groups of channels located in
just a single region. These differences persisted when control-
ling for changes in spectral power across changes in conscious
level. We also found evidence for higher signal complexity in
the frontal lobe than the other cortical lobes and, further, an
increase in large avalanches during NREM.

Methods
Ethics statement and data protection

In agreement with the HORIZON 2020 requirement, the protocol
used to collect the data analysed here has been drawn up in accor-
dance with the EU standards of good clinical practice and with the
Declaration of Helsinki (current revision) and is approved by the
Ethics Committee of the Niguarda Hospital of Milan (protocol num-
ber: ID 939, Niguarda Hospital, Milan, Italy). All data related to the
study participation are treated confidentially in compliance with
good clinical practice as well as in compliance with Italian specific
national laws on the protection of individuals. Participants are in-
formed that personal data are collected and stored electronically,
which can be used for purposes of scientific research, and that dis-
semination of the results can take place only in an anonymous and/
or aggregate form. Participants are informed that they have the right
to access the stored data, and to update or modify erroneous data.

Participants and data acquisition

The data were derived from a data set collected during the pre-
surgical evaluation of 10 neurosurgical patients with a history
of drug-resistant, focal epilepsy. All participants were candi-
dates for surgical removal of the epileptogenic zone. The record-
ings were obtained from stereotactically implanted depth
multi-lead electrodes (stereo-EEG, SEEG), inserted for the precise
localization of the epileptogenic zone and connected areas
(Cossu et al., 2005). The investigated hemisphere, the duration
of implantation, the location and number of recording sites
were determined based on non-invasive clinical assessment.

SEEG activity was recorded from platinum–iridium semi-flexi-
ble multi-contact intracerebral electrodes, with a diameter of 0.8
mm, a contact length of 1.5 mm, an inter-contact distance of 2 mm
and a maximum of 18 contacts per electrode [(Dixi Medical,
Besancon France), see Fig. 1]. The individual placement of the elec-
trodes was ascertained by post-implantation computerized tomo-
graphic imaging scans (post-CT), and Montreal Neurological
Institute (MNI) coordinates obtained for each contact. Full details
on the contact localization procedure can be found here (Arnulfo
et al., 2015). Briefly, post-CT was co-registered to pre-implant mag-
netic resonance imaging (MRI) by an algorithm based on rigid af-
fine transformation and mutual information. Next, the post-CT
scan was thresholded and skull-stripped in order to find and re-
move radiological artefacts. Given the planned entry points on the
skull and electrode pin dimensions, the axis direction was esti-
mated and each recording position iteratively computed. A region-
of-interest around each contact was defined and a most probable
anatomical label assigned, using the Destrieux atlas. Single partici-
pant channel positions were projected to MNI space by internal
transformation files defined in the Matlab toolbox Freesurfer.

In addition, scalp EEG activity was recorded from two platinum
needle electrodes placed during surgery on the scalp at standard
10–20 positions Fz and Cz. Electroocular activity was recorded from
the outer canthi of both eyes, and submental electromyographic
activity was also recorded. Both EEG and SEEG signals were re-
corded using a 192-channel recording system (NIHON-KOHDEN
NEUROFAX-110) with a sampling rate of 1000 Hz. Data were re-
corded and exported in EEG Nihon Kohden format. Recordings
were referenced to a contact located entirely in the white matter.

Selection of recording contacts and data preprocessing

In each participant, recordings were made from up to 194 con-
tacts (blue dots in Fig. 1c). For the present analysis, selection of
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recording sites was based on the following criteria: we excluded
from the analysis those contacts that (i) were located in the epi-
leptogenic zone (as confirmed by post-surgical assessment), (ii)
were located over regions of documented alterations of the corti-
cal tissue (e.g. Taylor dysplasia), as measured by the radiographic
assessment, or (iii) exhibited spontaneous or evoked (Valentin
et al., 2002) epileptiform SEEG activity during wakefulness or
NREM. Contacts located in white matter, assessed by MRI, were
also excluded from analysis. Data samples were taken from each
participant from four different states: WR, non-rapid eye move-
ment sleep early at night (NREMe), non-rapid eye movement
sleep late at night (NREMl) and REM. Sleep scoring was obtained
as in Silber et al. (2007), using one scalp EEG derivation together
with one bipolar electrooculographic (EOG) and one electromyo-
graphic (EMG) derivation. WR recordings were taken at various
times of day between 8 am and 6 pm, and the subjects were sit-
ting on a bed with eyes closed. All NREM epochs were collected
during stage N3, as defined in Silber et al. (2007). NREMe corre-
sponds to the first stable NREM (stage N3) episode and NREMl to
the last stable NREM (stage N3) episode of the night (Pigorini
et al., 2015). By using only NREM in stage N3, possible fluctuation
of the level of consciousness due to subliminal processing in
NREM stages N1 and N2 (Andrillon et al., 2016) were avoided. The
data samples were imported from EEG Nihon Kohden format into
Matlab and converted using a customized Matlab script.

Bipolar montages were calculated by subtracting the signals
from adjacent contacts of the same-depth electrode (see Fig. 1a)
to minimize common electrical noise and to maximize spatial
resolution (Cash et al., 2009; Gaillard et al., 2009). To further min-
imize volume conduction artefacts, at most every third (bipolar)
channel from each electrode was retained for analysis. The
number of retained channels per participant varied between 18
and 31 (red crosses in Fig. 1c show an example choice of contact
pairs; this is participant 1 in Fig. 2). For most analyses we used
18 channels per participant, selected as follows. A first electrode
was chosen at random and the m channels on that electrode
were all selected, ordered from the innermost outwards. The
process was repeated until 18 channels had been selected (see
Fig. 1c for an illustration of this ordering). Figure 2 depicts the
channels’ anatomical locations.

The data from the selected channels was further prepro-
cessed as follows. No epochs were removed, as visual inspec-
tion did not result in the detection of severely artefacted
epochs. The data samples were downsampled to 250 Hz and di-
vided into 10 s segments. Linear de-trending, baseline

subtraction and normalization by standard deviation was per-
formed for each channel of each segment. After preprocessing,
the length of the retained data sample for each participant and
state varied between 7 and 16 min. Figure 3 illustrates represen-
tative channel activity for the different states.

LZc

We compute LZc following our previous study (Schartner et al.,
2015). Briefly, for a given segment of data, LZc quantifies the
number of distinct patterns of activity in the data, so that it is
maximal for completely random data. It can be thought of as be-
ing proportional to the size of a computer file containing the
data, after applying a compression algorithm. Computing the
Lempel–Ziv compressibility of data requires a binarization of
the multidimensional time series. Our threshold was based on
the instantaneous amplitude of the Hilbert transform, i.e. the
absolute value of the analytic signal of the channel’s time se-
ries, in order to capture the amplitude of the activity. The
threshold Ti for the ith channel was chosen as the mean of the
absolute value of the analytic signal of the ith channel. The data
segment is then treated as a binary matrix, with rows corre-
sponding to channels (time series) and columns corresponding
to time (observations). A Lempel–Ziv compression algorithm ob-
tains a list of words (binary subsequences that appear at least
once) in the data matrix, as sketched in Fig. 4. The LZc is then
proportional to the number of binary words. The greater the de-
gree of randomness, the greater the number of different sub-
sequences that will be present, and thus the higher the LZc.

LZc is obtained by rearrangement of the binarized multidi-
mensional time series, observation-by-observation, into a bi-
nary one-dimensional sequence as described in Fig. 4, and then
applying a standard open-source Lempel–Ziv compression algo-
rithm (Rosetta Code) to this sequence. LZc tells us how much
variety there is in the patterns of activations over time.

We normalize LZc by dividing the raw value by the value ob-
tained for the same binary input sequence (k in Fig. 4) randomly
shuffled. LZc’s raw score for a binary sequence of fixed length is
maximal if the sequence is entirely random. (The standard devi-
ation of LZc for 50 different shufflings of the same input se-
quence was less than 0.002% of the mean value, thus the data
matrices we analysed were sufficiently large such that there
was negligible variance arising from basing the normalization
on just a single random shuffling). Thus the normalized LZc val-
ues indicate the level of complexity on a scale of 0–1.

Figure 1. Depth electrode dimensions, location and channel definition. a) Outline of a multi-lead intracerebral electrode. b) Horizontal section of
MRI scan coregistered to CT scan of participant 1, showing a multi-lead intracerebral electrode (visible inside the red rectangle) (Arnulfo et al.,
2015). c) In MNI space in millimetres, the location of initial contacts (blue dots) are partially overlaid by red crosses, marking the contacts cho-
sen for bipolar-montage. Numbers index the resulting channels as used for analysis. Channels were obtained by applying bipolar-referencing
to neighbouring contact pairs that were not discarded (see text for details).
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Figure 2. Channel locations for the 10 participants. For each participant, coloured dots indicate the positions of channels that were used for
analysis. The locations are plotted using MNI coordinates on a standard glass brain [python nilearn (Abraham et al., 2014)]; see text for details.
Numbers in black blocks indicate participant number, coloured digits count channels per participant and region.

Figure 3. Sample segments from five channels for each state. Segments are shown after pre-processing, prior to normalization by standard devi-
ation. The recordings for NREMe display visibly stronger slow-waves (low-frequency components) as compared to those for REM or WR.
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ACE

ACE is defined as in Schartner et al. (2015) as the entropy (over
time) of the constitution of the set (coalition) of channels that
are ‘active’, given the binarization scheme described above for
LZc for defining ‘active’/ ‘inactive’ channels. As for LZc we nor-
malize ACE by its value for a random shuffling of the data (see
section ‘LZc’). This measure is a variant of that first introduced
in Shanahan (2010) and Wildie and Shanahan (2012); see
Schartner et al. (2015) for further discussion.

SCE

Synchrony coalition entropy (SCE) is also defined as in
Schartner et al., 2015 as the entropy over time of the constitu-
tion of the set of channels that are in synchrony (see Fig. 4 for a
schematic). For data Xt consisting of channels Xi;t; i ¼ 1; . . . ;n;
we consider two channels to be in synchrony at time t if the ab-
solute value of the difference between their instantaneous
Hilbert phases is less than 0.8 radians (�45�). Then we define co-
alition time series WðiÞt by WðiÞj;t taking the value 1 if channels i and
j are synchronized at time t and taking the value 0 otherwise.
The coalition entropy of Xt with respect to channel i is the en-
tropy of WðiÞt (over time), normalized as a proportion of its maxi-
mum possible value N:

SCEðiÞ ¼ � 1
N

X

w

pðWðiÞt ¼WÞ log pðWðiÞt ¼WÞ: (1)

The overall SCE is then the mean value of the SCEðiÞ across
channels. The upper bound SCE would arise from completely
random coalition time-series in which each entry is 1 with prob-
ability 0.5. Such time-series are generated (with the same di-
mensions as those chosen for the data) to obtain the
normalization factor N. Note that SCE does not score exactly 1
for shuffled input data—unlike ACE and LZc—as the probability

at a given time point of two shuffled channels being in syn-
chrony is less than 0.5.

Phase-randomized surrogate renormalization

In order to exclude that any changes in complexity merely re-
flect changes in spectral properties of the data, we also consid-
ered the complexity measures renormalized by their values for
phase-randomized surrogate data. The procedure for carrying
out the renormalization was previously described in Schartner
et al. (2015), and is as follows. From the complete data of a
given participant in a given state, a segment was randomly
chosen. Each channel was then expressed as a superposition
of sinusoids using fast Fourier transform. Then the phase of
each sinusoid was independently and randomly changed,
before applying an inverse Fourier transform. The complexity
measure was computed for 100 such phase-randomized data
segments, and then the mean of these 100 scores was used to
normalize the measure’s score for the original data
segments. Averaging over 100 such data segments sufficed to
obtain negligible randomness in the normalization factor.
Phase-randomized surrogate normalized measures are
denoted with a subscript N.

Statistics

Analyses were performed using non-overlapping segments of
length 10 s for a total length between 7 and 16 min of SEEG re-
cording per participant and per state. The mean and standard
error of the complexity measures’ scores were computed over
these segments. At the single participant level, the effect size of
differences between states was measured using Cohen’s d
(Cohen, 1992). We call an effect size high if d> 0.8. For group
level comparisons, a t-test was applied, with correction for false
discovery rate (FDR) via the Benjamini–Hochberg procedure.

Figure 4. Schematic of the computation of LZc and SCE. LZc: a) xi is the activity of the ith channel and ai is the (Hilbert) amplitude of xi. b) bi is ai

binarized, using the mean activity of ai as binarization threshold. c) The data after binarization of all n channels. d) The multidimensional time
series is concatenated observation-by-observation into one binary sequence k, and then e) a list of distinct patterns is obtained and listed as a
dictionary of binary words via a Lempel–Ziv algorithm. LZc is proportional to the size of this dictionary. SCE: a) Two time series. b) The analytic
signals of these two, which are complex signals, with the real part being the original signal and the imaginary part being the Hilbert transform
of the original signal. c) A binary synchrony time series is created for this pair of signals; 1 indicates that the phases of the complex values of
the analytic signals are similar (absolute difference of less than 0.8 modulo 2p.) d) Such time series are obtained to represent each channel’s
synchrony with seed channel i. e) SCEðiÞ is the entropy over observations in the resulting data matrix Wi. The overall SCE is then the mean value
of SCEðiÞacross choices of seed channel i.
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Results
Global analyses

We first computed the complexity measures across broadly dis-
tributed sets of channels. Specifically, for each participant we
used the first 18 channels (out of the 18 to 31 available; see sec-
tion ‘Methods’ for channel ordering), whose precise sets of loca-
tions varied across participants, but which spanned at least two
cortical regions (see Fig. 2). Figure 5a shows the mean values
across 10 s segments of LZc, ACE and SCE for each participant
during WR, NREMe, NREMl and REM, normalized to scores for
WR. Classification of effect sizes for differences between states
at the single participant level are shown in Table 1. For all par-
ticipants, the three measures ACE, SCE and LZc score higher for
WR than NREMe with high effect size (Cohen’s d> 0.8). For all
but one measure and participant, scores were also higher for
REM than NREMe with high effect size. Values for NREMl typi-
cally lie in between those for WR or NREMe, with high effect
sizes for most participants (see state pair NREMl/NREMe in
Table 1). The exception is LZc for NREMl versus NREMe, for
which the effect size is small for most participants. The differ-
ence in values between WR and REM is small for most cases
(d< 0.8). Overall, signal complexity across all available brain re-
gions is higher for REM and WR—states associated with con-
sciousness—as compared to NREMe and NREMl.

In the Supplementary Material, the behaviour of the com-
plexity measures is compared to that of normalized spectral
power in the various frequency bands (d, h, a, b, c), that of a sim-
ple correlation measure, sumCov, which equals the mean of the
absolute values of the correlation coefficients between each
pair of channels, and that of LZsum, the mean LZc of single
channels (see Supplementary Table S1). As expected, normal-
ized delta power is consistently substantially higher in NREMe
than WR, while beta and gamma power are in almost all cases
substantially lower. The high delta band power during NREM
sleep reflects the presence of slow-waves (Alain et al., 1999;
Massimini et al., 2004; Nir et al., 2011; Tom, 2013; Vyazovskiy and
Harris, 2013; Buzs�aki et al., 2013).

It was important to verify that the observed changes in com-
plexity during NREM sleep are not merely reflecting well-known
changes in spectral properties of the data, in particular the in-
crease in delta power. To address this we performed a surrogate
data analysis, following our previous study (Schartner et al.,
2015). Specifically, we computed the measures normalized by
their values for phase-randomized surrogate data, denoted by
ACEN; SCEN and LZcN, see section ‘Phase-randomized surrogate
renormalization’. When repeating the above analyses with the
phase-randomized surrogate normalization, the consistency of
the measures’ behaviour was somewhat reduced, yet impor-
tantly at the group level all three measures still scored signifi-
cantly higher for WR and REM than NREMe, see Fig. 5c. (See
Supplementary Fig. S8 for plots showing the individual partici-
pants.) Thus, we conclude that the observed changes in com-
plexity partly reflect spectral changes, but in particular the
difference in complexity between WR/REM and NREMe goes sig-
nificantly beyond that which can be accounted for by the differ-
ence in power spectrum.

For each state we further investigated the extent to which
the complexity measures’ scores across subjects correlated with
each other, as well as with normalized spectral power in the
various frequency bands. Figure 6 indicates the pairs of mea-
sures and states that showed the strongest correlations
(Pearson coefficient r of absolute value >0.7) across subjects.
Strong positive correlations (r > 0.7) were found for ACE/SCE

for all states, and ACE/LZc for all states except REM. Weaker, yet
still significant correlations were observed between SCE and LZc
(see Supplementary Table S2). The complexity measures SCE
and ACE also showed strong negative correlations (r < �0:7)
with delta power during NREM sleep states, but only weaker
correlations during WR and REM, and r > 0.7 was observed for

Table 1. Effect size comparison per measure and state pair

ACE SCE LZc

WR/NREMe 10, 0, 0 10, 0, 0 10, 0, 0
WR/NREMl 8, 2, 0 8, 2, 0 8, 2, 0
WR/REM 4, 5, 1 2, 8, 0 1, 9, 0
REM/NREMe 10, 0, 0 10, 0, 0 9, 1, 0
REM/NREMl 9, 1, 0 8, 2, 0 8, 2, 0
NREMl/NREMe 7, 2, 1 8, 2, 0 2, 8, 0

For each measure and state pair, the three numbers correspond to how many

participants out of 10 had higher score for the left state with Cohen’s d > 0.8

(left digit), no substantial difference, d < 0.8 (middle), and higher score for the

right state with Cohen’s d > 0.8 (right), computed across segments. The results

were obtained from applying the measures to 10 s segments from 18 channels

as in Fig. 5.

Figure 5. LZc, SCE and ACE computed across broadly distributed sets
of 18 channels. a) Individual participant plots. Plotted points show
mean over 10 s segments. Scores are normalized by the score for WR
(in addition to each measures’ normalization as specified in their
definition). The measures score higher for WR as compared to
NREMe or NREMl, consistently across participants. The measures
score similar values for REM and WR. Error bars indicate standard er-
ror across segments. See Table 1 for effect sizes at the single partici-
pant level. b) Mean scores across the 10 participants. For each
measure, the mean and standard error across participants are dis-
played, here not normalized relative to scores for WR. Significant dif-
ferences between state pairs are shown by a solid line if P< 0.01 and
a dotted line if P< 0.05 (t-test, FDR corrected for multiple compari-
sons). c) For comparison, the three complexity measures normalized
by their values for phase-randomized surrogate data, demonstrating
that complexity changes across conscious states are not due to
changes in the spectral power profile alone.
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SCE versus gamma power during NREMl. Weaker, yet still signif-
icant correlations were observed for LZc versus delta power,
ACE versus gamma power and LZc versus gamma power (see
Supplementary Table S2). The imperfect correlation between all
the complexity measures indicates that they are capturing not
entirely equivalent properties of the dynamics.

From one participant, data from NREM sleep stage N2
(NREM2) were available in addition to N3 (NREM3), obtained
from a whole night recording. For each of the states REM, WR,
NREM2 and NREM3, we concatenated all corresponding epochs
of the whole night recording and obtained mean values for each
complexity measure across 10 s segments, see Fig. 7. In line
with a recent study demonstrating that LZc indexes different
stages of NREM sleep when applied to scalp EEG (Andrillon et al.,
2016), we found for all three measures that WR scored higher
than NREM2, which scored higher than NREM3. Perhaps surpris-
ingly REM scored slightly higher than WR, although given that
this did not extend across the whole set of 10 participants (Fig.
5), we do not discuss this further.

Local analyses

Differences between states
Figure 5 shows that, when computed across widely distributed
sets of channels, ACE, SCE and LZc take lower values during
NREM than WR. In order to test if, or to what extent, there are
regional differences in the decrease of complexity with NREM
sleep, we carried out the following more local analyses.

First, we applied ACE, SCE and LZc to individual regions, fol-
lowing the classification in Fig. 2. For each participant, each re-
gion with four or more channels was analysed; where there
were more than four channels, a quartet was picked at random.
Depending on the participant-specific distribution of electrodes,
there were two, three or four regions analysed per participant.
The results (just for WR and NREMe) are shown in Fig. 8, and in
general mirror the global result. The scores for LZc and ACE
were in almost all cases greater for WR than for NREMe with
large effect size. The consistency of SCE was weaker than for
the other two measures (see Supplementary Table S3 for score
counts). Importantly however, despite several instances of SCE
showing increased values during NREMe, there was no region
for which this was observed for more than one participant. We
repeated this analysis using the phase-randomized surrogate
normalization. With this alternative normalization, LZc still
scored higher for WR than NREMe in almost all cases, although

Figure 6. Thresholded correlations between complexity measures and
frequency bands for each state. For a given state and participant the
Pearson correlation between pairs of measures was computed
across 10 s segments. For each state and measure pair (ACE, SCE, LZc
and spectral power in the five canonical frequency bands, correla-
tion of two spectral power bands not shown) a point is displayed if
the absolute value of the Pearson correlation r, averaged across par-
ticipants, is> 0.7. (These correlations are all significant at P< 0.05,
corrected for false discovery rate.)

Figure 7. Complexity changes between NREM2 and NREM3. ACE, SCE
and LZc calculated for one participant (number 2) for WR, REM,
NREM2, NREM3. Epochs for each state throughout the whole night
were concatenated and the measures computed for 10 s segments,
all three scoring higher for NREM2 than NREM3. Solid lines indi-
cate substantial (Cohen’s d > 0.8) differences in scores between
states.

Figure 8. ACE, SCE and LZc scores computed for channel quartets re-
stricted to single regions. The results for WR (white) and NREMe
(red) were here obtained from applying the measures to quartets of
channels within single regions, here specified by the first three let-
ters of the label (as listed in Fig. 2). LZc and ACE score for all regions
and participants higher for WR than NREMe (with just a single ex-
ception for ACE); SCE behaves less consistently here.
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ACE and SCE no longer exhibited a consistent difference be-
tween these two states (see Supplementary Fig. S9). This further
mirrors the global result that the observed change in complexity
between these states is partly but not entirely reflecting spectral
changes.

Secondly, in order to perform an analysis on the maximum
possible number of regions for each participant, we computed
the LZc of each single channel (LZs, same computation as LZc
with trivial concatenation). Averaged across all channels per re-
gion and participant, LZs scored for 48 out of 50 region/partici-
pant pairs lower during NREMe than WR (see Supplementary
Table S3 and Supplementary Fig. S2). Considering individual
channels further, we noted also that normalized delta power is
higher for NREMe than WR for 49 out of 50 region/participant
pairs (compare Supplementary Fig. S2 with Fig. S3).

Thirdly, we investigated the complexity of the interaction of
a channel in one region with a group of channels in another re-
gion. To this end we utilized the local SCE, SCEðiÞ, of a group of
target channels in one region with respect to a seed channel i in
another region (see section ‘Methods’ and Supplementary Fig.
S4). When taking three target channels we observed lower val-
ues during NREMe than WR for 107 out of 129 choices of seed
and target regions for all participants. Despite this inconsistent
decrease of SCEð3Þ with NREM sleep, there were no exceptional
choices of seed and target region that went against the trend for
more than one participant (Supplementary Fig. S5). Similar re-
sults were obtained when taking two target channels
(Supplementary Fig. S6), with 109 out of 143 choices of seed and
target regions for all participants showing lower values during
NREMe than WR, also without discernible pattern for the 34
exceptional cases with LZs higher for NREMe than WR. We con-
clude that there is no consistent local deviation from the global
behaviour of SCE. Finally, we tested complexity of synchrony
(CS) between pairs of channels, defined as the LZc of their syn-
chrony time series (see Supplementary Material and
Supplementary Fig. S7 for details). CS scored higher for WR than
NREMe for 122 out of 139 pairs of regions.

In summary, all locally applied complexity measures behave
predominantly according to the main trend, with just a few
anomalies (Supplementary Table S3). There was no consistent
pattern to anomalies across regions or participants.

Differences between regions for a given state
Differences in complexity scores between regions were overall
less pronounced and less consistent than differences in com-
plexity between states (see Supplementary Fig. 8). Here we in-
vestigate whether there are trends of regional complexity
differences at the group level.

Mean scores for LZc, ACE and SCE were computed from
channel quartets restricted to each of the four cortical lobes. All
measures scored higher in the frontal lobe compared to other
lobes for REM and WR, although an analysis of variance
(ANOVA) test for a significant variation across the lobes gave a
significant P value (< 0.05; P values uncorrected in this section)
only for LZc when pooling across states (F¼ 4.1; P¼ 0.01). Given
the available data, this analysis had n ¼ 4; 5; 9; 3, respectively for
frontal, parietal, temporal and occipital cortex.

We repeated the analysis with LZs (single-channel LZc),
computable whenever the participant has just one or more
channels located in the given lobe. This led to the slightly larger
sample sizes of n ¼ 7; 9; 9; 7, respectively for frontal, parietal,
temporal and occipital cortex. For each state, LZs scored highest
for the frontal lobe, see Fig. 9. A one-way ANOVA test
for significant variation between lobes yielded ðF; PÞ ¼ ð2:3; 0:10Þ;

ð1:9; 0:15Þ; ð0:8; 0:49Þ; ð1:6; 0:20Þ for state WR, REM, NREMl,
NREMe, respectively (F is the statistic, P the associated P-
value from the F-distribution). A t-test as a post hoc analysis indi-
cated a significant difference at P< 0.05 (uncorrected) between
the frontal and temporal lobe in states WR and REM. When
pooling values from all states for a given lobe, the ANOVA test
did indicate a significant variation of LZs across lobes,
with ðF; PÞ ¼ ð4:5; 0:005Þ. By contrast, an ANOVA across lobes for
the difference LZs(WR)-LZs(NREMe) yielded ðF; PÞ ¼ ð1:6; 0:2Þ,
confirming that the drop in complexity with NREMe does
not differ substantially across lobes. For comparison, an
ANOVA between lobes for delta power yielded
ðF; PÞ ¼ ð1:8; 0:16Þ; ð2:2; 0:11Þ; ð0:4; 0:74Þ; ð0:85; 0:47Þ, with a signifi-
cant (t-test, P< 0.05, uncorrected) difference between the frontal
and temporal lobe (delta higher in temporal) in states WR and
REM; pooled across states we found ðF;PÞ ¼ ð2:7; 0:05Þ.

In summary, we found evidence for greater dynamical com-
plexity in the frontal lobe compared to the other cortical lobes,
and confirmed that complexity changes across states are more
pronounced than across regions.

Complexity in different frequency bands

To test whether the relationship between complexity and con-
scious level is restricted to specific frequency bands, we re-
analysed the LZc, SCE and ACE complexity measures on the
data after frequency filtering (using Butterworth filters). The re-
sults for 18 channels per participant (chosen as above) are
shown as average scores across participants in Fig. 10 for 6 dif-
ferent frequency bands and for 6 different high-pass cut-offs.
Figure 10a shows that the elevated complexity of ACE, SCE and
LZc in the WR state is most pronounced in the delta (1–4 Hz)
and alpha (8–13 Hz) ranges, and the general trend is at least
weakly present in all bands. Also in Fig. 10b, higher signal com-
plexity in WR than NREMe is visible for all high-pass cut-offs,
yet this difference becomes smaller with increasing high-pass
cut-off.

Figure 9. Mean LZs scores for the four cortical lobes in each state. For
each participant, LZs scores were averaged across all channels from
the given lobe. The mean of these scores across participants is dis-
played with standard error across participants for each state. The la-
bels on the X-axis give the first three letters of the lobe name
(frontal, parietal, temporal, occipital), and for each lobe, there were
data from 7, 9, 9 and 7 participants respectively. LZs scores higher
for the frontal lobe than for the other lobes. ANOVA pooled across
states for difference between regions gives F¼4.5 and P¼0.005; t-
tests for differences between pairs of lobes came out non-significant
(P > 0.05) except for between Fro and Tem for states WR and REM
(uncorrected for multiple comparison).
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In summary, higher signal complexity in WR than NREMe is
present for almost all tested frequency bands and high-pass
cut-offs, and it is strongest when frequencies smaller than 4 Hz
are left in the signal. This shows that the decrease of signal
complexity with NREMe is amplified by an increase of
low-frequency waves, yet still exists after most of the applied
frequency filters (see also Supplementary Fig. S8).

Avalanche statistics

Recent studies of avalanche events have shown that avalanche
size distributions follow a power law to good approximation
over a wide range of scales, during both wake and sleep states
(Ribeiro et al., 2010; Priesemann et al., 2013). This maintenance
of a diversity of scales in the neural dynamics during NREMe
contrasts with the robust decrease in the three flavours of com-
plexity that is the main observation of this article. Since the pre-
sent data set is similar in structure to the one analysed in
Priesemann et al. (2013), we replicated from that study some
analyses of the distribution of avalanche events during wake
and sleep states.

We defined events and avalanches of events in the same
way as in Priesemann et al. (2013), in brief as follows. For each

positive deflection between two zero crossings of a channel
time series, the area under the deflection was calculated. An
event was said to have occurred whenever this area exceeded a
threshold. The threshold was set for each channel such that
there was the same event rate of 13 events per second for all
channels. The time series is then binned [we took the bin size to
be half the mean inter-event interval as in (Priesemann et al.,
2013)], assigning a 1 to a bin if an event occurs in it, and a 0 oth-
erwise. An avalanche is defined as a cluster of events: in each
time bin during an avalanche, there is an event occurring in at
least one channel. Avalanches are preceded and followed by
time bins in which there are no events. Three quantities that
characterize avalanches are analysed: (i) avalanche size s,
which is the total number of binary events that occur during the
avalanche; (ii) avalanche duration d, which is the number of
time bins spanned by the avalanche; (iii) the branching parame-
ter r, which is the average number of events in one time bin di-
vided by the number of events in the preceding time bin, given
that there was at least one event in the preceding time bin.

For the avalanche analyses, we used 18–31 channels per par-
ticipant, selected and pre-processed as described in the
‘Methods’ section. We successfully replicated the findings of
Priesemann et al’s (2013) study, that mean size �s and duration �d
of avalanches, and the mean branching parameter �r for ava-
lanche events were all greater during NREM sleep (we used
NREMe only) than during WR or REM, see Fig. 11a. Further, for
all states, the avalanche distribution exhibited no upper size
bound, indicative of a maintenance of neural dyamical scale

(a)

(b)

Figure 10. ACE, SCE and LZc for frequency filtered data. a) Bandpass
filtering (frequency ranges indicated in each column). b) High-pass
filtering (frequency cut-offs indicated in each column). Scores were
obtained from applying the measures to 10 s segments of frequency
filtered data from 18 channels and then averaging across all seg-
ments from all participants. WR is in white and NREMe in red.
Significant differences between state pairs are shown by a solid line
if P < 0.01 and a dotted line if P < 0.05 (uncorrected t-test across par-
ticipants). Error bars show standard error computed from the mean
scores for each of the 10 participants.

Figure 11. Avalanche analysis as introduced by Priesemann et al.

(2013), Figs 7 and 4, for the present data set. a) States shown are
NREMe, REM and WR. Scores of each measure (mean avalanche size
�s, mean avalanche duration �d, mean branching parameter �r across
10 participants) are shown for each state, normalized by mean score
across all three states. Error bars indicate standard error across 10
participants. All three indices have substantially higher scores for
NREMe than WR or REM (P < 0.01, FDR corrected t-test across partici-
pants). b) The avalanche size distribution for each state (not normal-
ized) approximates a power law. Large avalanches are more
frequent in NREMe than in WR or REM.
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diversity across states (Fig. 11b). [Note however, that this result
is possibly biased due to the small number of channels com-
pared to other more detailed studies (Priesemann et al., 2009;
Touboul and Destexhe, 2010; Priesemann et al., 2013)]. We dis-
cuss these findings in conjunction with our findings for the
complexity measures in the section ‘Discussion’.

Controls

Given that our analyses depended on a random selection of
channels, we checked that our results could be replicated for
other selections of channels. We repeated the complexity mea-
sure analysis for different sets of 10 channels, each set chosen
randomly across all available channels per participant, and
found that for each of 10 different channel sets, the scores of all
three measures are higher for WR than NREMe for all partici-
pants, substantially so (Cohen’s d> 0.8) for all but at most two
participants (Supplementary Table S4). This channel-
independent decrease in signal complexity for NREMe is in line
with the single-channel Lempel–Ziv complexity (LZs) analysis,
for which 48 out of a total of 50 channels across participants
gave higher LZs scores for WR than NREMe.

We carried out a control test for dependence of the main re-
sult on sampling rate, computing ACE, SCE and LZc for data
sampled at 10, 50, 150, 350, 500, 750 and 1000 Hz. The segment
length and channel number was fixed at 2500 observations and
18 channels, respectively. All three measures scored for all par-
ticipants higher for WR than NREMe, for a sampling rate of at
least 150 Hz. Consistency of the measures was considerably
weaker for the sampling rate of 50 Hz, and the measures be-
came fully inconsistent across participants for 10 Hz, see
Supplementary Fig. S11.

We also tested for effect of segment length (fixing the num-
ber of channels at 18 and the sampling rate at 250 Hz). We found
that, for a length of 500 observations (2 s), all measures still
scored for all participants higher in WR than NREMe, as was
found above in the main analyses for 2500 observations (10 s).
For 100, 50 and 30 observations per segment (0.4 s, 0.2 s and 0.12
s, respectively) there were at most two participants showing
higher scores for NREMe than WR for each measure. At seg-
ments that were 15 observations long (0.06 s), inter-participant
consistency was lost for all three measures, see Supplementary
Fig. S12. Note that for fewer observations the influence of spa-
tial complexity—as opposed to temporal complexity—on the
score increases.

Finally, when omitting bipolar referencing as a pre-
processing step, results are not substantially different
(Supplementary Fig. S10). This shows that bipolar referencing as
a pre-processing step of the data is not crucial for the detection
of complexity changes in WR/NREMe.

In summary, our main results are robust to modification of
sampling rate and segment length, provided one stays within
reasonable limits, respectively to ensure the full physiological
range of frequencies is sampled, and to maintain statistical
power. This is in keeping with similar controls carried out in our
previous study on scalp EEG data (Schartner et al., 2015).

Discussion

We have analysed the behaviour of three measures of dynami-
cal complexity on spontaneous depth electrode data recorded
during WR and diverse sleep states: LZc, ACE and SCE. All three
of these measures scored substantially lower (high effect size,
d> 0.8) during NREMe sleep than during WR in all 10

participants. This is in spite of the recordings being taken from
different sets of regions in each participant (as prescribed by
clinical requirements for epileptic focus detection). For the ma-
jority of participants, LZc, ACE and SCE scores during NREMl
sleep were in between those for NREMe and WR. By contrast,
there was no overall significant difference in the scores of any
of the measures between WR and REM sleep.

Our results complement the recent finding by Andrillon et al.
(2016) that LZc of scalp EEG decreases during NREM sleep, and
obtains its lowest scores during periods of deep sleep when
slow-waves are present. However, in contrast with our study,
Andrillon et al. did report a small but significant decrease in LZc
also during REM sleep compared to the waking state. This could
have been due to the fact that in the Andrillon et al. study partic-
ipants were engaged in a task during the waking state, whereas
the participants in this study were sitting at rest with eyes
closed.

Scores for the three complexity measures tended to be im-
perfectly positively correlated across participants, indicating
that they are capturing similar yet not entirely equivalent signal
changes. This is in line with model simulations in Schartner
et al. (2015), which show SCE behaving in some cases differently
from ACE and LZc. Further, both ACE and SCE strongly corre-
lated inversely with delta power. The complexity measures do
however capture more than just spectral changes between
states. This was explored in detail in Schartner et al. (2015), and
we confirmed this again on the present data set, via re-
computation of the measures on surrogate phase-randomized
data, see Fig. 5c and Supplementary Fig. S8. When analysing the
measures on frequency restricted data, we found that the
changes in complexity were most pronounced in the delta and
alpha frequency bands.

The pattern of results obtained was in almost all cases pre-
served when the measures were computed across groups of
channels restricted to a single cortical lobe (or specified sub-
cortical region, see Fig. 8). Scores for NREMe were almost always
lower than for WR, and exceptions to this followed no discern-
ible anatomical pattern.

We also tested whether there were observable differences in
local dynamical complexity between different cortical lobes. We
found that on average the measures score higher for channels
located in frontal cortex compared to parietal, temporal or oc-
cipital cortex, irrespective of the state. Given that there are sub-
stantial differences in anatomical structure between brain
regions—e.g. notably structural connectivity tends to be much
more dense within more anterior cortical regions (Modha and
Singh, 2010; Van Den Heuvel and Sporns, 2011)—our results are
suggestive of the denser connectivity of frontal cortex support-
ing increased dynamical complexity.

Significant differences in NREM sleep electrophysiology be-
tween cortical lobes have been observed by Andrillon et al.
(2011) and Nir et al. (2011), namely inhomogeneities in the direc-
tion of propagation and frequencies of synchronous sleep spin-
dles and slow-waves. However, when comparing different
regions in terms of the magnitude of the difference in complex-
ity between WR and NREMe, we found no evidence for differ-
ences between regions. Thus, any inhomogeneities in sleep
spindle and slow-wave events are unlikely to have significantly
affected complexity scores in our data. This is likely due to the
complexity measures’ scores being averages across channels
and segments, and thus being sensitive to steady state proper-
ties and not to transient events like spindles. Other studies on
slow-waves did also find regional differences in slow-wave
propagation, e.g. waves originating more frequently in frontal
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regions, (Sheroziya and Timofeev, 2014), but brain areas consis-
tently recruited by the slow oscillation have not been identified
(Dang-Vu et al., 2008). This is in line with our observations on
the homogeneity of delta power for single channels in the
Supplementary Material (Supplementary Fig. S4) and a study by
Cavelli et al. (2015), showing that sleep-stage-dependent spec-
tral coherence varied equally across the cortex.

Recent studies of avalanche events have shown that ava-
lanche size distributions follow a power law to good approxima-
tion over a wide range of scales, during both wake and sleep
states (Ribeiro et al., 2010; Priesemann et al., 2013), while large
avalanches are more frequent in NREM than WR. We replicated
the summary statistics from the study in Priesemann et al.
(2013), which utilized a data set similar to the present one.
Specifically, we found mean avalanche size, duration and
branching parameter all to be greater during NREMe sleep than
WR or REM, and for all states no upper size bound for ava-
lanches. The maintenance of a diversity of scales in the neural
dynamics during NREMe sleep contrasts with the robust de-
crease in the three flavours of complexity that is the main ob-
servation of this article. The presence of larger avalanches
during NREMe sleep contrasts with the finding that the EEG re-
sponse to TMS is less widespread during NREM sleep than WR
(Casali et al., 2013). However, this holds for low-intensity TMS
perturbations only; for higher intensity TMS the response signal
spreads as far as during WR , but in a less complex, more stereo-
typical manner. A possible explanation is that widespread sub-
cortical drive is responsible for the increase in large avalanches,
while a simultaneous decrease in cortico-cortical effective con-
nectivity is responsible for the drop in responsiveness to TMS
stimulation. This would be in keeping with relay models of
thalamo-cortical interaction (Coulon et al., 2012; McCormick
et al., 2015). Further, if the sub-cortical drive results in more ste-
reotypical cortical activity, then that could explain the decrease
in dynamical complexity as measured by ACE, SCE and LZc. We
are presently exploring such potential mechanisms with com-
puter simulations.

In summary, we have found that three measures of dynami-
cal complexity, capturing distinct aspects of signal diversity in
space and time, all robustly decrease during NREM sleep, across
local and global brain networks. Our application of these com-
plexity measures represent new contributions to the statistical
characterization of cortical signals for different sleep stages,
providing well-defined signatures. Importantly, complementing
decreased complexity of cortical response activity to TMS stim-
ulation (Casali et al., 2013), our measures provide direct evidence
for a breakdown of differentiation between regions and diver-
sity of brain states explored, during states of unconsciousness,
as predicted by integrated information and complexity theories
of consciousness (Tononi and Edelman, 1998; Seth et al., 2006).
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