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Abstract

Background: Treatment-induced neuroendocrine prostate cancer (tNEPC) is an aggressive variant of late-stage metastatic
castrate-resistant prostate cancer that commonly arises through neuroendocrine transdifferentiation (NEtD). Treatment
options are limited, ineffective, and, for most patients, result in death in less than a year. We previously developed a
first-in-field patient-derived xenograft (PDX) model of NEtD. Longitudinal deep transcriptome profiling of this model
enabled monitoring of dynamic transcriptional changes during NEtD and in the context of androgen deprivation. Long
non-coding RNA (lncRNA) are implicated in cancer where they can control gene regulation. Until now, the expression of
lncRNAs during NEtD and their clinical associations were unexplored. Results: We implemented a next-generation
sequence analysis pipeline that can detect transcripts at low expression levels and built a genome-wide catalogue (n =
37,749) of lncRNAs. We applied this pipeline to 927 clinical samples and our high-fidelity NEtD model LTL331 and identified
821 lncRNAs in NEPC. Among these are 122 lncRNAs that robustly distinguish NEPC from prostate adenocarcinoma (AD)
patient tumours. The highest expressed lncRNAs within this signature are H19, LINC00617, and SSTR5-AS1. Another 742 are
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associated with the NEtD process and fall into four distinct patterns of expression (NEtD lncRNA Class I, II, III, and IV) in our
PDX model and clinical samples. Each class has significant (z-scores >2) and unique enrichment for transcription factor
binding site (TFBS) motifs in their sequences. Enriched TFBS include (1) TP53 and BRN1 in Class I, (2) ELF5, SPIC, and HOXD1
in Class II, (3) SPDEF in Class III, (4) HSF1 and FOXA1 in Class IV, and (5) TWIST1 when merging Class III with IV. Common
TFBS in all NEtD lncRNA were also identified and include E2F, REST, PAX5, PAX9, and STAF. Interrogation of the top
deregulated candidates (n = 100) in radical prostatectomy adenocarcinoma samples with long-term follow-up (median 18
years) revealed significant clinicopathological associations. Specifically, we identified 25 that are associated with rapid
metastasis following androgen deprivation therapy (ADT). Two of these lncRNAs (SSTR5-AS1 and LINC00514) stratified
patients undergoing ADT based on patient outcome. Discussion: To date, a comprehensive characterization of the dynamic
landscape of lncRNAs during the NEtD process has not been performed. A temporal analysis of the PDX-based NEtD model
has for the first time provided this dynamic landscape. TFBS analysis identified NEPC-related TF motifs present within the
NEtD lncRNA sequences, suggesting functional roles for these lncRNAs in NEPC pathogenesis. Furthermore, select NEtD
lncRNAs appear to be associated with metastasis and patients receiving ADT. Treatment-related metastasis is a clinical
consequence of NEPC tumours. Top candidate lncRNAs FENDRR, H19, LINC00514, LINC00617, and SSTR5-AS1 identified in
this study are implicated in the development of NEPC. We present here for the first time a genome-wide catalogue of NEtD
lncRNAs that characterize the transdifferentiation process and a robust NEPC lncRNA patient expression signature. To
accomplish this, we carried out the largest integrative study that applied a PDX NEtD model to clinical samples. These NEtD
and NEPC lncRNAs are strong candidates for clinical biomarkers and therapeutic targets and warrant further investigation.

Keywords: neuroendocrine prostate cancer; transdifferentiation; small cell carcinoma; long non-coding RNA

Introduction

Prostate cancer (PCa) is the most common cancer affecting men
and is the third highest cause of cancer death in developed
countries globally [1]. Advances in detection and treatment for
PCa have translated to many men being successfully treated
by surgery and/or radiation. Concomitantly, androgen depriva-
tion therapy (ADT) has resulted in significant survival gains for
men with metastatic PCa. Commonly administered therapeu-
tics include Enzalutamide, Bicalutamide, and Abiraterone [2].
These drugs inhibit the androgen signaling axis, a growth and
differentiation-inducing pathway mediated by the androgen re-
ceptor (AR). Despite these successes, with the steady accumula-
tion of facilitating genomic and epigenomic aberrations, a more
aggressive tumour capable of growing in castrate levels of testos-
terone can develop [3], termed castration-resistant prostate can-
cer (CRPC). Three main classes of treatment resistance to AR-
targeted therapies exist, falling into two broad categories asso-
ciated with AR signaling [4]. The majority of CRPC reactivate the
AR signaling axis (AR+ CRPC). However, some tumour cells lever-
age their inherent plasticity and progress to an AR-negative state
(AR− CRPC), circumventing AR dependence. AR− CRPC is highly
heterogeneous, but a major established aggressive subtype is
neuroendocrine prostate cancer (NEPC) [5]. NEPC is pathologi-
cally and clinically similar to small cell carcinoma of the prostate
(SCPC), which has been defined as a distinct morphological sub-
type of PCa with neuroendocrine differentiation [6]. Xenograft
NEPC models have shown expression of a dominant and irre-
versible neuronal-like phenotype [7] where conventional CRPC
therapies are ineffective. Platinum-based chemotherapy is only
transiently effective, resulting in poor overall survival [8] with
most patients surviving ∼7 months [9]. Molecular pathology
markers include expression of chromogranin A (CHGA), synap-
tophysin (SYP), neuron-specific enolase (NSE) [10], cell-surface
marker CEACAM5 [11], and negative (or low) levels of AR and AR-
regulated genes such as PSA [7]. NEPC can arise de novo but much
more commonly occurs as a consequence of ADT via an adap-
tive process termed neuroendocrine transdifferentiation (NEtD)
[7, 12] and frequently metastasizes to visceral organs [13]. Pre-
disposing aberrations for NEtD include loss of RB1 [14], TP53 [15],
mutation of Trp53 [16], and/or PTEN inactivation [17, 18]. Emerg-

ing data suggest drivers include splice factor SRRM4 [19–21],
master neural transcription factor BRN2 [22], and forkhead box
A1 (FOXA1) [23]. NEPC tumours have been characterized with (1)
gains in MYCN and AURKA [5]; (2) overexpression of PEG10 [24],
HP1α [25], N-Myc [26, 27], SOX2 [28], and SOX11 [18]; (3) down-
regulation of PHF8, KDM3A [29, 30], REST [31], and SPEDF [32];
and lastly (4) disease dependency on GPX4 [33]. Discoveries such
as these continue to define the protein-coding transcriptome
of NEPC. The process of transdifferentiation, however, is highly
complex and likely involves multiple layers of genetic and epi-
genetic regulation.

Dysregulation of long non-coding RNAs (lncRNAs) could pro-
vide an additional mechanism for the gene expression alter-
ations that occur during NEtD. LncRNAs are broadly defined as
large (>200 nucleotides/nt) RNA transcripts, with the most abun-
dant subtypes classified as antisense RNAs, pseudogenes, and
long intergenic noncoding RNAs (lincRNA) [34]. They are impli-
cated in a variety of diseases, and their association with cancer
progression is reported through mechanisms such as remod-
eling of chromatin, transcriptional co-activation or repression,
modulation of protein activity, post-transcriptional regulation,
or as decoy elements [35–37]. LncRNAs form an important regu-
latory layer in global gene expression and, as such, alterations of
lncRNAs in cancer are identified as one of the driving forces for
tumorigenesis [38, 39], cancer progression, and metastasis [40,
41]. More specifically in PCa, lncRNAs have been reported to play
critical roles at every stage, including the transformation of nor-
mal prostate cells to prostate intraepithelial neoplastic cells, the
development of localized tumours, and finally progression to ad-
vanced metastatic disease [42]. These roles in initiation and pro-
gression are due to aberrant lncRNA expression, which changes
the balance of protein-coding genes involved in processes such
as proliferation and apoptosis, thereby facilitating cellular trans-
formation.

We recently developed a first-in-field transplantable patient-
derived xenograft (PDX) model of NEtD: a treatment-naı̈ve ade-
nocarcinoma (LTL331) that upon host castration initially re-
gresses (LTL331–8 and 12 week) but then rapidly relapses as ter-
minally differentiated NEPC (LTL331R) [7]. In our previous study
using this model, we demonstrated a lack of evidence for NEPC
cells before host castration and the conservation of genome
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characteristics pre- and post-castration, strongly suggesting a
phase transition or state change from adenocarcinoma to NEPC
[24]. With this model we have identified protein-coding tran-
scripts such as PEG10 [24], SRRM4 [19], and HP1α [25] that are
active in the phase transition and validated the discovery of
BRN2 [22]. In addition to these, our model has led to the iden-
tification of candidate biomarkers and therapeutic targets for
NEPC, including the DEK proto-oncogene [43] and epigenetic reg-
ulators CBX2 and EZH2 [44] (members of the polycomb group
family of transcriptional repressors). We now report the com-
prehensive characterization of lncRNAs in our NEtD model. In
the current study, we used the longitudinal genomic profiling
of our PDX-based NEtD model focusing on lncRNA transcripts.
We hypothesized that lncRNA expression across the “time se-
ries” would associate with the development of NEPC. Our objec-
tive was to comprehensively characterize the dynamic lncRNA
landscape of NEtD and NEPC, identify putative functional motifs
within lncRNA sequences, determine the clinical relevance of
lncRNA expression, and identify associated clinicopathological
features. To accomplish this, we implemented a sequence anal-
ysis pipeline optimized for the detection of lncRNAs, identified a
clinical signature that can robustly distinguish NEPC from ade-
nocarcinoma (AD) tumours, and identified four NEtD-associated
lncRNA expression profiles. We also identified significant en-
richment of well-known transcription factor motifs within the
lncRNA sequences. Lastly, we observed that a subset of these
lncRNAs is associated with rapid metastasis in treated patients
and can stratify tumours based on patient outcome. We present
here for the first time a comprehensive landscape of NEPC lncR-
NAs and their clinical associations.

Results
Comprehensive catalogue of lncRNAs in NEPC

To identify lncRNAs involved in NEPC, we performed next-
generation polyadenylated RNA sequencing on the PDX CRPC
models and patient samples. We implemented a sequence anal-
ysis pipeline composed primarily of algorithms from the Tuxedo
suite of analysis tools [45]. Typically, lncRNAs are expressed at
low levels, so the pipeline was augmented to include windowed-
adaptive quality control corrections (see Methods and Supple-
mentary Figs S1 and S2) that increase the ability to detect low
abundance transcripts. We applied this pipeline to all PDX (n =
10) and clinical specimens (n = 117) acquired from the Vancou-
ver Prostate Centre (VPC) and Weill Cornell Medicine (WCM) (Ta-
bles 1 and 2). Using a quasi de novo mapping strategy combined
with amalgamating all sample transcriptome assemblies, we
identified 210,999 annotated transcripts spanning 38 Ensembl
transcript classes. Defined by Ensembl’s core biotypes, tran-
scripts are classified as either protein-coding RNAs, lncRNAs,
short ncRNAs, or pseudogenes, which totaled 102,334 (48%),
82,846 (39%), 9,803 (5%),and 16,016 (8%), respectively (Fig. 1A,
pie chart 1–2). Within lncRNA, seven subclasses exist: processed
transcripts (n = 31,142), retained intron (n = 28,455), lincRNA
(n = 12,047), antisense (10,012), sense intronic (n = 821), sense
overlapping (n = 340), and three prime overlapping ncRNA (n
= 29) (Fig. 1A, pie chart 3; due to their small totals, sense in-
tronic, sense overlapping, and three prime overlapping ncRNAs
are labeled as “Other”). Despite pseudogenes not being included
within Ensembl’s lncRNA classes (listed above), they are by def-
inition considered under the umbrella of lncRNA [34].

For each of the eight lncRNA subclasses and their corre-
sponding transcripts, we performed unsupervised hierarchi-
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Figure 1: Transcriptome composition and study design. A) Proportions and totals of transcripts detected using our sequence analysis pipeline. Transcripts were
separated into protein coding (mRNA) or non-coding RNA (ncRNA) and as defined by Ensembl’s core biotypes as either mRNA, lncRNA, short ncRNA, or pseudogene.

Within lncRNA, there exist seven classes, including processed transcripts, retained intron, lincRNA, antisense, sense intronic, sense overlapping, and three prime
overlapping ncRNA (the last three labelled as “other”). Transcript totals are denoted around each pie slice. B) The three transcript classes used in this study due to their
ability to separate AD and NEPC tumours, which collectively totalled 37,749 lncRNAs. ∗The pseudogene total was the combination of eight pseudogene subclasses
and collectively referred to as pseudogene here. These subclasses include processed pseudogene, unprocessed pseudogene, transcribed unprocessed pseudogene,

transcribed processed pseudogene, translated processed pseudogene, polymorphic pseudogene, unitary pseudogene, and pseudogene. These lncRNAs formed the
basis for all down-stream analysis and C) the studies project workflow and study design. AUC, area under the curve; GRID, GenomeDx Decipher GRID database; JHSM,
Johns Hopkins School of Medicine; PDX, patient derived xenograft; ROC, receiver-operating characteristic. See Table 2 for cohort clinical features and compositions.

cal clustering (UHC) and principle component analysis (PCA)
on the VPC and WCM cohorts (see Methods: Statistical analy-
sis). Five were incapable of distinctly separating NEPC and AD
clinical samples due to insufficient transcript counts, incorrect
transcript classification, or in general poor transcript annota-
tion. The remaining three subclasses were capable of separating
NEPC and AD (Supplementary Figs S3 and S4) and became the fo-
cus of all downstream analysis. These three lncRNA subclasses,
antisense (n = 10,012), pseudogenes (n = 15,690), and lincRNAs

(n = 12,047),are collectively referred to as lncRNAs here on in (n
= 37,749 transcripts in total; Fig. 1B). It should be noted that im-
munoglobulin and T cell receptor genes (n = 326) were removed
from the pseudogene transcript total. We explored these lncR-
NAs in our samples through two analytical workflows (model-
based discovery and patient-based discovery), which we later
merged for clinicopathological analysis. The outline presented
in this figure represents the study’s overall workflow (Fig. 1C).
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A lncRNA expression signature for NEPC

Recently it has been shown that AR− and AR+ CRPC share sub-
stantial genomic overlap yet display significant epigenetic dif-
ferences [32]. Here, we hypothesized that the lncRNA transcrip-
tome would similarly show unique and common expression al-
terations between AR+ and AR− CRPC (unexplored to date). To
investigate this, we used the AR+/− CRPC xenograft models (Ta-
ble 1) to identify changes occurring temporally within the same
tumour pre- and post-castration. Once castrated the three AD
models (LTL313, LTL418, and LTL331) progress to either AR+ CRPC
(LTL313BR and LTL418BR) or AR− CRPC/NEPC (LTL331R). This al-
lowed for the identification and quantification of differentially
expressed transcripts between pre- and post-CRPC. We inte-
grated this data with patient tumour data having matched clini-
cal information to ensure the results were clinically relevant and
to remove any model-based bias. As we suspected, of all lncR-
NAs altered between pre- and post-CRPC (>2 fold, P < 0.05), only
8% (n = 300) were commonly deregulated in both CPRC subtypes.
The remaining transcripts (n = 2,669) displayed unique changes
in the AR+ or AR− CRPC subtype (Supplementary Table S2 and
Supplementary Fig. S5). These data support the notion that AR+

and AR− CRPC contain largely distinct lncRNA landscapes.
LncRNA expression may be useful as additional biomark-

ers beyond those currently used in the diagnosis of NEPC (i.e.,
CGHA, SYP, and NSE). Moreover, an lncRNA expression signa-
ture would strongly support the involvement of lncRNAs in
NEPC at a molecular and cellular level. These lncRNAs would
be candidates for mechanisms in the activation of a develop-
mental pathway and/or plasticity involving previously identified
protein-coding genes (PEG10, HP1α, NMYC, SOX2, SRRM4, REST,
BRN2, etc.) in NEPC/NEtD. Conversely, since some of these genes
(NMYC, SOX2, BRN2, and SRRM4) are well-studied transcription
or splicing factors, NEPC lncRNA could be under their regulation.
To build an lncRNA expression signature for NEPC, we selected
the top fifth percentile of transcripts based on standard devia-
tions of expression for the VPC and WCM cohorts independently
and performed UHC. All uncharacterized transcripts (i.e., RP##-
######.#, AC######.#, etc.) were removed from the analysis at
this point. This produced 265 and 490 NEPC lncRNAs in the VPC
and WCM cohorts, respectively. Taking the intersection of these
lists and then repeating UHC generated an expression signature
of 122 lncRNAs (Supplementary Table S5) that distinctly segre-
gated NEPC from AD tumours (Fig. 2A and B). To assess the ro-
bustness of this signature, we validated it on an external clin-
ical cohort of tumours (n = 33 ; Table 2) from Johns Hopkins
School of Medicine (JHSM). These tumours contained 17 AD and
16 NEPC samples and were profiled on the Human Exon array 1.0
ST platform (see Methods) compared with the sequenced dis-
covery cohorts. Using the same approach (UHC), a clear sepa-
ration of NEPC and AD was observed (Fig. 2C). Observing consis-
tent results across different technologies, institutes, and clinical
samples further strengthens the robust nature of the NEPC sig-
nature. To our knowledge, this is the first report of lncRNAs ex-
hibiting a unique, unbiased expression classifier capable of seg-
regating NEPC and AD patient samples.

Some lncRNA from the patient-derived signature have been
previously reported as altered in other cancer types. These lncR-
NAs include MALAT1 (alias NEAT2), PCA4 (aliases GDEP, PCAN1,
or PCAT4), DSCAM-AS1, and SNHG12. MALAT1 is one of the
most well-characterized and studied lncRNAs in cancer and has
been identified as a regulator of metastasis and cell migration,
a prognostic marker, and a transcriptional regulator of alter-
native splicing in lung cancer [46]. PCA4 has been identified
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Figure 2: NEPC lncRNA expression signature and clinical classifier. Unsupervised hierarchical clustering of the 122 identified lncRNAs from (A) VPC and (B) WCM cohorts.
Validation of this signature was shown in the (C) JHSM cohort. Samples (columns) are labelled as adenocarcinomas (blue) or neuroendocrine (yellow) tumours. See
Supplementary Fig. S3 for row/lncRNA labels for each plot.

as a prostate and retinal specific transcript [47] and frequently
mutated in PCa [48]. DSCAM-AS1 mediates tumour progression
and tamoxifen resistance in breast cancer through interacting
protein hnRNPL [49]. SNHG12 is induced by c-MYC and regu-
lates cell proliferation, apoptosis, and migration in triple neg-
ative breast cancer [50]. We were interested in identifying the
most highly expressed lncRNAs in the signature. Therefore we
ranked each according to their fold changes when compared
with AD samples, required concordance in fold changes across
both of the cohorts, and >10-fold change in magnitude. H19,
LINC00617 (alias TUNA/TUNAR), NKX2–1-AS1, and SSTR5-AS1
were the only four that fit these thresholds and each with pre-
vious reports in cancer. Of note, H19 is the most studied among
the four lncRNAs and is implicated in numerous cancer types
[51]. It is involved in proliferation and both differentiation pro-
cesses related to metastasis, epithelial-to-mesenchymal tran-
sition (EMT), and mesenchymal-to-epithelial transition (MET)
[52]. LINC00617 in breast cancer regulates EMT, cancer progres-
sion, and metastasis through activation of the transcription of
SOX2 [53]. SSTR5-AS1 has not been functionally characterized,
but its sense form SSTR5 has and is a biomarker for neuroen-
docrine tumours [54]. In fact, recently it has been used to eval-

uate SSTR-targeted therapy for neuroendocrine tumours in cir-
culating tumour cells [55], and its use in patient management
is being tested in a Phase IV clinical trial (NCT02075606). Over-
all, the identification of the NEPC lncRNA expression signature
has provided a previously unexplored component of the NEPC
transcriptome, revealed candidate NEPC biomarkers, and asso-
ciations to NEPC biology.

Distinct expression profiles of lncRNAs are associated
with NEtD

A major goal of this study was to characterize the lncRNA land-
scape during the dynamic phase transition from AD to NEPC
using our unique PDX model LTL331 [7] (Fig. 3A). To accom-
plish this, we sequenced six samples of our PDX NEtD model
representing three primary time points along disease progres-
sion: two samples from each terminal point (AD and NEPC) and
two samples post-castration (postTX). Time points 8- and 12-
week post-castration were selected to represent postTX due to
tumour volume and serum PSA levels reaching nadir (Table 1
and Fig. 3A). We identified and quantified all lncRNA transcripts
that were altered across the time series and defined four pat-
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Figure 3: Xenograft model of neuroendocrine transdifferentiation, phenotype-driven data integration, and NEtD-associated lncRNAs. A) Schematic depicting the time
points at which xenograft tumours were collected along the transdifferentiation of AD to NEPC (adapted from Akamatsu et al., 2015 [24]). B) Phenotypes for clinical
samples (coloured circles) that align to various time points from above xenograft model and group-wise comparisons (black connector bars) analyzed for clinical

samples. C) Four isolated expression profiles (grey triangles) from select time points in A (light grey circles) with appropriate clinical group-wise comparisons overlaid
and integrated. Unsupervised hierarchical clustering with NEtD lncRNAs (Class I, Deactivated: black bars; Class II, Activated: orange bars; and Class III, Persistent: red
bars) identified from integration outlined in (C). Distinct clusters of AD and NEPC clinical samples are observed in the (D) VPC and (E) WCM cohorts. Class IV, Transient

lncRNAs were excluded from the clustering due to the lack of clinical samples that would represent this intermediate state.

terns of transcript expression: (a) continuous decline in expres-
sion (Class I, Deactivated, n = 1,613); (b) increasing expression
from either AD to postTX or postTX to NEPC (Class II, Activated,
n = 4,281); (c) continuous increased expression (Class III, Persis-
tent, n = 1,054); and (d) maximum expression at postTX (Class
IV, Transient, n = 2,668)(total n = 7,627;Fig. 3A). The NEtD model
and postTX state represents a biological process that currently
is not characterized as a clinical entity but offers invaluable in-
sight into the transcriptome of transdifferentiating AD cells.

To determine the clinical relevance of Class (I–IV) lncRNAs,
we integrated patient samples (VPC and WCM, Table 2 - col-
umn “Clinical group”) with time points in our model (see Fig.
3B for alignment of time points to patient groups). Terminal
time points were appropriately aligned to AD and NEPC sam-
ples. However, due to the lack of clinical specimens undergo-
ing NEtD, we hypothesized that neoadjuvant hormone ther-
apy (NHT) given to AD patients may exhibit characteristics of
the postTX state. The transcriptomes from these patients have
been shown to display the effects of therapy response and more
specifically androgen depletion [56]. In fact, neuroendocrine dif-
ferentiation has been shown to increase after only three months
of NHT in a retrospective analysis of 103 radical prostatectomy
specimens [57]. These early events are the specific alterations we
sought to isolate from the postTX time points of our PDX model.
We also postulated that a subset of Class I (down-regulated in
our PDX model) would be up-regulated in the (AR+) CRPC clini-
cal samples due to reactivation of the AR signalling axis in clas-
sical CRPC [56, 58–60]. Based on this model-to-patient data in-

tegration, the following patient group-wise comparisons were
performed: (a) NEPC vs AD, (b) NEPC vs NHT, (c) CRPC vs AD, (d)
NHT vs NAÏVE (untreated AD), and (e) NHT vs NAÏVE in combi-
nation with NEPC vs NHT. This produced 1,927;713; 975; 1,045;
and 117 transcripts, respectively (>2 fold with P < 0.05; total n =
3,154;Fig. 3B; Supplementary Table S4). Integrating these results
with the PDX NEtD model transcripts above led to 475, 222, 84,
and 45 lncRNAs identified within Class I (Deactivated), Class II
(Activated), Class III (Persistent), and Class IV (Transient), respec-
tively (total n = 742; Fig. 3C). Unsupervised hierarchical cluster-
ing of Class I-III within WCM (Fig. 3D) and VPC (Fig. 3E) cohorts
exhibited (as expected) a distinct separation of AD and NEPC tu-
mours and a distinct separation between lncRNAs in Class I-III
(rows of heat map). Class IV transcripts were excluded from this
illustration due to their lack of altered expression between AD
and NEPC clinical samples. Collectively these 742 NEtD lncRNAs
are associated with the pathogenesis of tNEPC.

Prominent examples identified by this biological integration
of our NEtD model (Fig. 4A), WCM cohort (Fig. 4B), and VPC co-
hort (Fig. 4C) illustrate each of these NEtD-defining transcript
classes. PCA3, PCAT1, and PCGEM1 were selected as controls
for this study due to their elevated expression in PCa and high
level of characterization. As expected, their expression patterns
followed the trend in the PCa and NEPC samples (Fig. 4A–C,
NEtD controls; P < 0.001). SOCS2-AS1 and HOXA11-AS are se-
lect examples that characterize the NEtD lncRNA Class I De-
activated (Fig. 4A–C, Deactivated; P < 0.01). HOXA11-AS, asso-
ciated with the cell cycle through E2F1 [61], has been seen to
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Figure 4: Select NEtD lncRNAs that exemplify each expression pattern are shown from the (A) NEtD PDX LTL331 model, (B) WCM cohort, and (C) VPC cohort. The

expression for NEtD lncRNAs within Class IV, Transient was only identified through the VPC cohort due to the presence of NHT samples, which were not present
within the WCM cohort. All boxplots showed significant separation (P < 0.05) between groups based on a standard Student’s t-test with the exception of ∗ lncRNAs.

promote gastric cancer proliferation and invasion (with EZH2)
and can act as a “molecular sponge” for EZH2 by absorbing (via
direct interaction) miR-1297 [62]. SOCS2-AS1 is another lncRNA
in this class that has been identified as an AR-regulated tran-
script [63] and further supports our hypothesis of AR-regulated
lncRNAs within NEtD Class I Deactivated. NKX2–1-AS1 exempli-
fies the NEtD Class II Activated (Fig. 4A–C, Activated; P < 0.05)
and has been previously seen to characterize lung cancer sub-
types AD and squamous [64]. CDKN2B-AS1 (alias ANRIL) and H19
are prime illustrations for persistently expressed NEtD Class III
(Fig. 4A–C, Persistent; P < 0.05). Both of these lncRNAs have been
identified across a number of cancer studies (H19 [51], ANRIL [65,
66]);however, depending on the cancer type, each has functioned
as a tumour suppressor (i.e., ANRIL deactivating tumour sup-
pressors CDKN2A/B in cis by three different epigenetic mech-
anisms [67–69]) and as an oncogene (i.e., H19 acts as a sponge
for FOXM1 by absorbing miR-342–3p [70]). Two demonstrations
for transiently expressed NEtD lncRNA Class IV are FENDRR
and CASC15 (Fig. 4A–C, Transient; P < 0.01). These lncRNAs are
well studied in cancer: FENDRR for its prognostic value and its
involvement in gastric cancer metastasis [71] and CASC15 for
its regulation of SOX4 in RUNX1-rearranged leukemia [72] and
harboring a risk SNP for susceptibility of neuroblastoma [73].
CASC15 has also been identified as a mediator of neural growth
and differentiation [74], which we believe could be occurring in
our NEtD model based on the data presented here. Each of these
lncRNAs are among the top candidates identified in this study

and a focus of our future research and functionalization. Taken
together, these NEtD lncRNAs (n = 742) characterize the transd-
ifferentiation that occurs post-castration and is associated with
tNEPC.

NEtD lncRNAs are enriched with distinct transcription
factor binding motifs

LncRNAs are not translated and carry out their functions post-
transcription in their secondary or tertiary RNA form. This is
unlike protein-coding transcripts that function in their post-
translational form. Thus, identifying sequence motifs within
lncRNAs could identify interacting transcripts or proteins that
provide clues to function. Enrichment of transcription factor
(TF) binding sites (TFBS) was determined by calculating z-scores
for overrepresentation of motifs present in the NEtD lncRNA
Classes (I–IV) against their genomic background (Supplementary
Tables S6–S17 and Methods: Genomatix overrepresented TFBS).
We also integrated each of these class-specific enrichment re-
sults to identify unique TFBS for each NEtD Class (Supplemen-
tary Tables S18 and S19). All TF and TFBS descriptions, family
classifications, and annotation is described in Supplementary
Table 25.

In NEtD Class I we identified 33 significant and uniquely en-
riched TFBS (Supplementary Tables S6, S18, and S20). Interesting
results included binding motifs for TP53, scratch family tran-
scriptional repressor 2 (SCRT2), and POU Class III homeobox 3
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(POU3F3) (z-scores = 4.02, 4.27, and 2.41, respectively). TP53 of-
ten absent in NEPC, could be an activating TF for many of these
Deactivated lncRNAs, and suggests an apoptosis or cell cycle ar-
rest role is present here. Scratch family transcriptional repres-
sor 2 has been linked as a neural-specific Snail family transcrip-
tional repressor and critical for neuronal differentiation [75].
Similar to REST, this TF is likely causing the down-regulation of a
subset of these lncRNAs. Lastly, POU3F3/BRN1 (a member of the
POU family of TFs, as is BRN2) is involved in the development
of the nervous system, expressed in small cell lung cancer cells
(which has pathological overlaps with NEPC), and involved in
proneural/neuroendocrine differentiation [76]. Considering this
and the significant enrichment of these TF motifs, this suggests
a role in proliferation and differentiation in NEtD Class I.

Performing TFBS enrichment analysis in NEtD Class II and III
identified 12 and 15 significant and distinct TFBS motifs, respec-
tively (Supplementary Tables S7, S8, S18, and S20). Interestingly,
both classes had significant enrichment for at least one ETS and
HOX family member, suggesting overlapping functional roles for
their respective lncRNAs. For Class II this included ELF5, SPIC,
and HOXD1 (z-scores = 2.17, 2.43, and 2.22, respectively) and
for Class III, PDEF (alias SPDEF) and HOX/PBX (z-scores = 3.03
and 2.71, respectively). Members of the ETS family fused to TM-
PRSS2 is the most frequent genomic alteration in PCa; therefore
the prevalence of their motifs in these classes is not surprising.
While the ETS fusion transcript is relatively more specific to PCa
vs NEPC, ETS TFs on their own are involved in a wide variety
of functions, including cellular differentiation and angiogene-
sis. In fact, recently SPDEF was found to be down-regulated in
metastatic NEPC due to DNA methylation [32] and was also sig-
nificantly down-regulated in treated vs untreated high-risk PCa
patients [77]. Conversely, the HOX family has never been linked
to PCa or NEPC for that matter, and so this result was unex-
pected. In neuroblastoma, however, the HOX genes have been
linked to differentiating cells [78] and specifically HOXD1 iden-
tified here (as well as HOXC6 and HOXD8) are associated with
differentiation towards a neuronal phenotype [79].

Performing TFBS enrichment analysis in NEtD Class IV iden-
tified enrichment of 17 distinct TFBS motifs (Supplementary Ta-
bles S9, S18, and S20). Class IV transcripts are only expressed
during treatment (castration) response. Interestingly, heat shock
TFs HSF1 (z-score = 2.06) and HSF2 (z-score = 3.87) were within
these results. Heat shock proteins (HSPs) are expressed at low
levels under normal conditions, up-regulated by cellular stress,
and function as molecular chaperones to control client protein
stability and function. Their candidacy as therapeutic targets
has been well studied in PCa [80] and AR+ CRPC [81]. In breast
cancer, HSF1 specifically induces a cancer stem cell phenotype
in vitro [82]. In PCa, HSPs bind dihydrotestosterone to the AR
and enhance AR-mediated transcription. One of the functions
of lncRNAs is to facilitate this type of mechanism. For exam-
ple, LINC00152/CYTOR (identified within this class) binds and re-
cruits EZH2 to its target promoters p15 and p21 in gastric cancer
[83] and IL24 in lung cancer [84] and thereby causes repression
of their expression. Considering the transient expression of the
lncRNAs in this class, this data suggest a subset may be stress
response mediators via HSPs. Lastly, FOXA1 showed a significant
enrichment (z-score = 2.8) in this class. Recently, FOXA1 loss was
identified as a driver of NEtD [23], which leads to AR reprogram-
ming [85] and EMT through direct regulation of SLUG expression
[86]. This suggests that some of the lncRNAs in this class could
have a functional role in maintaining cellular identity when un-
der the control of FOXA1.

With FOXA1 as one of the characterizing TFBS in Class IV, we
sought to explore the persistently expressed (Class III) in con-
junction with the transiently expressed transcripts (Class IV).
We hypothesized that subsets of these lncRNAs have mechanis-
tic involvement in the transdifferentiation process. To investi-
gate this we repeated the TFBS enrichment analysis on Class III
and IV together and identified six significantly enriched TFBS
(Supplementary Tables S10, S18, and S20). Confirming our hy-
pothesis was the presence of TWIST1 (z-score = 4.01), an es-
sential member of the EMT transcriptional reprogramming fac-
tors [87]. Interestingly, TWIST1 and AURKA have very recently
been seen to form a feedback loop promoting metastasis and
highly aggressive phenotypes in pancreatic carcinoma [88], and
TWIST1 is a marker for EMT in neuroendocrine tumours [89,
90]. Concerning PCa, it has been identified as AR regulated (and
repressed via NKX3–1), whereas in the absence of AR it is up-
regulated and present in metastatic disease [91].

We further investigated global functional characteristics
across all NEtD lncRNAs. Specifically, we wanted to identify TFBS
that were significantly enriched and common across all classes.
Due to the high number of lncRNAs (n = 2,147), we decided to
perform this analysis at the TF family level; therefore for each
class and the full lncRNA set, we repeated the motif enrichment
analysis and integrated all of their results (Supplementary Ta-
bles S12–S17, S19, and S20). We identified 62 significantly com-
mon TFBS families (z-score = >2;Supplementary Table S20). Not
surprising were families involving cell cycle regulation, cyclin
B2/CCNB2 and the E2F family (z-scores = 40.66 and 67.36, re-
spectively). We also observed both the ETS (z-score = 9.9) and
REST (z-score = 20.52) families of TFs, which reaffirmed our hy-
pothesis that these lncRNAs are involved in tumour progres-
sion and neuronal pathways. Surprising was the presence of two
PAX families, PAX5 (z-score = 10.15) and PAX9 (z-score = 18.18).
The PAX family is known to regulate lineage specification and
progenitor cell maintenance. In developmental biology, PAX5 is
involved in B-cell differentiation and PAX9 in neural crest de-
velopment. PAX5 has been observed as overexpressed in other
neuroendocrine tumours [92, 93], overexpressed in neuroblas-
toma [94], and shown to positively regulate c-Met transcription
in small cell lung cancer [95]. In lung NETs, PAX6 is prognostic
for aggressiveness [96]. Their role in NEPC is yet to be charac-
terized; however, evidence here supports their global involve-
ment in NEtD and lncRNA function. Lastly, the selenocysteine
tRNA activating factor (STAF, z-score = 15.18) was very intrigu-
ing to us. A recent Nature study by Schreiber et al. suggested
that treatment resistance in NEtD of PCa depends on a drug-
gable lipid-peroxidase pathway that protects against ferropto-
sis (a non-apoptotic form of cell death) [33]. The increased lipid
metabolism creates a dependency on GPX4, which prevents fer-
roptosis. GPX4 is a selenocysteine-containing enzyme and 1 of
only 25 proteins with this rare amino acid in the entire human
genome. The data presented here suggest that some of these
lncRNAs may be involved in the selenocysteine pathway via
STAF and in selenoprotein biosynthesis of molecules (i.e., GPX4).
Identifying and targeting these lncRNAs could be a path for up-
stream inhibition of GPX4 up-regulation and therefore allow cell
death in these resistant cells to occur naturally by ferroptosis.
Comprehensive in vitro experimentation would need to be car-
ried out to confirm this therapeutic avenue.

NEtD lncRNAs contain NEPC-related TFBS

It is now well established that complex cellular reprogramming
occurs during NEtD, and master regulators such as REST [31],
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BRN2 [22], SOX2 [28], and SOX11 [18] have been identified as key
TFs involved in this process. Identification of well-known TFBS
such as these would test our current hypotheses on the func-
tional involvement of individual lncRNAs in NEtD pathogenesis
(Supplementary Tables S21–S24). TFBS identification was carried
out using MatInspector [97–99] (see Methods: Genomatix Mat-
base and MatInspector) on each of the NEtD Class for select TFs.
As before, all TF and TFBS descriptions, family classifications,
and annotation is described in Supplementary Table 25.

With the dominance of AR-regulated genes in AD, the lack of
expression that defines Class I NEtD lncRNAs is likely caused by
the absence of androgen (post-castration), and therefore these
lncRNAs are putatively AR-regulated. To test this, we searched
for androgen and glucocorticoid response elements (ARE and
GRE, respectively). The results showed that 107 lncRNAs con-
tained ARE and/or GRE motifs, of which 16 contained only an
ARE motif, 49 contained only a GRE motif, and 21 contained both
ARE and GRE motifs (Supplementary Table S21). To further test
and support our AR-regulated lncRNA hypothesis, we explored
all previously reported AR-regulated lncRNAs. Currently, the fol-
lowing 17 lncRNAs have been identified with experimental evi-
dence: PCGEM1 [100], PlncRNA-1/CBR3-AS1 [101], PCAT-18 [102],
PCAT29 [103], SOCS2-AS1 [63], RP1–45I4.2 [104], SUZ12P1 [104],
SNHG5 [104], LINC01138 [104], SNHG1 [104], KLKP1 [104, 105],
LINC00969 [104], LINC-PINT [104], TUG1 [104], MIR17HG [104],
POTEF-AS1 [106], and CTBP1-AS1 [107]). Of these, 4 (PCAT29,
SUZ12P1, SNHG1, and CTBP1-AS1) were not within our pipeline
lncRNA class annotation, and 8 of 13 (61%) were represented in
NEtD Class I Deactivated lncRNAs (PCGEM1, PlincRNA-1, PCAT-
18, SOCS-AS1, KLKP1, LINC00969, LINC-PINT, and POTEF-AS1).
Due to our integrative study design (Fig. 3A–C), the remaining
5 did not move forward in the analysis. However, removing the
integrative steps, down-regulation of these lncRNAs did occur
in either our model or patient samples independently. Overall,
of the 13 lncRNA annotated by our pipeline and reported as AR
regulated, all overlapped in this study.

Due to the elevated pattern of expression that defines Class
II and III NEtD lncRNAs, we hypothesized that a subset of these
lncRNAs are constituents of the neuronal phenotype present in
NEPC. To test this hypothesis, we analyzed these lncRNAs for
the presence/absence of the following select TFs known to ac-
tivate this cell type: APOU Class III homeobox 2 (POU3F2), also
known as BRN2, and RE1 silencing transcription factor (REST).
Activation of BRN2 and deactivation of REST are involved in
neuronal differentiation and regulation of neurogenesis, respec-
tively. Again, using the MatInspector algorithm, we identified 11,
22, and 21 lncRNAs in Class II or III with TFBS for BRN2, REST,
or both, respectively (Supplementary Table S22). Taken together,
this evidence supports involvement for a subset of these lncR-
NAs to neuronal function/pathways in NEtD.

To further support the hypothesis of mechanistic involve-
ment for the NEtD process in Classes III and IV, we expected TFBS
related to plasticity and stemness to be present. Therefore, we
used MatInspector to identify binding motifs for members of the
following well-studied cellular differentiation TF families: HOX
[108], SOX, STAT3 [109], and “STEM” (STEM members are defined
by Matbase and include POU5F1/OCT4, SALL4B, SOX2, NANOG,
and TCF7L1). We observed 42, 49, 30, and 33 lncRNAs with TFBS
for HOX, SOX, STAT3, and STEM genes, respectively (Supplemen-
tary Table S23). In fact, some lncRNA had TFBS within more
than one of these TFs (Fig. 5A). Previous studies have linked 6/7
of these (highlighted in Fig. 5A) to various components of EMT
and/or cellular plasticity. FENDRR (antisense lncRNA to FOXF1)
regulates gastric cancer metastasis via fibronectin1 [71]. FOXD2-

AS1 regulates EMT and Notch signaling to promote colorectal
cancer [110]. H19 has been identified as a mediator of breast
cancer plasticity during EMT and its reverse process MET [111],
as well as having a role in stemness in prostate cells [112].
LINC00152 is involved in EMT (combined with cell migration and
invasion) in gastric cancer [113]. LINC00478 (alias MONC) inter-
feres with hematopoietic lineage decisions and enhances pro-
liferation of immature progenitor cells in acute megakaryoblas-
tic leukemia [114]. Lastly, again in gastric cancer, lncRNA SNHG6
has been seen to promote cell proliferation and EMT [115]. Based
on these data, Class III and IV lncRNAs could have a role in de-
veloping a cellular “plastic” state during NEtD.

To test the involvement of known NEPC-involved TFs in all
NEtD lncRNA, we searched for BRN2, ARE/GRE, REST, SOX11,
SOX2, NMYC, ETVI, ETS, and NKX3 motifs (Supplementary Ta-
ble S24). Since each of the classes had different sizes, this would
influence the distribution and presence/absence of these mo-
tifs, so we extracted the top 25 lncRNA within each class (n =
100 NEtD lncRNA), ranked by their magnitude of fold change.
Observing the distribution of these TFs separated by NEtD class
revealed an interesting pattern (Fig. 5B). TFs SOX2, SOX11, and
REST had a relatively more balanced distribution across each
class compared to NKX3, ETSF, ETVI, and NMYC, which showed
a preference to binding persistent and transiently expressed
lncRNA. Interestingly, more than 50% of ARE/GRE motifs were
present in transiently expressed lncRNA vs relatively few in
Class I Deactivated and Class II Activated. Conversely, BRN2 mo-
tifs were relatively more present in Class I and II. These patterns
suggest a time-dependent or cellular phase-dependent usage of
TFs post-castration and during the NEtD process.

NEPC and NEtD lncRNAs identify putative NEPC
subtypes

To corroborate the lncRNA expression in an external NEPC
(extNEPC) cohort [32], we visualized NEtD lncRNA Classes II-IV
and the up-regulated NEPC lncRNA expression, including ge-
nomic profiles (copy number and mutation), through an Onco-
Print schematic. The cohort consisted of 44 NEPC specimens
(largest published to date) from 30 patients that were classi-
fied based on their histomorphology [6]. Due to the exome se-
quencing performed on this cohort, not all lncRNAs were rep-
resented/detectable in this sequencing profiling. We also plot-
ted previously reported NEPC predisposing genes, oncogenes,
drivers, and the TFs we identify above to provide “transcriptome
context” for the altered lncRNAs (Supplementary Figs S6 and
S7). From the 58 NEPC and 243 NEtD lncRNAs represented in
the extNEPC exome sequencing profiling, 43% (25/58) and 27%
(66/243) showed altered expression in 2–34% of NEPC patients,
respectively (Supplementary Figs S6, S8–S11).

Surprisingly, these testable lncRNAs (58 from the NEPC lncR-
NAs and 66 from the NEtD lncRNA) in combination with known
oncogenes/tumour suppressors/transcription factors (Supple-
mentary Fig. S7) resulted in identifying three distinct subsets of
NEPC patients within the extNEPC cohort. Group 1 had relatively
higher mutation frequencies, higher ploidy, mixed tumour sites,
and mixed pathological classifications. Group 2 had a relatively
low mutation frequency and low ploidy, derived mostly from
pelvic masses and with pathological classification D (large-cell
neuroendocrine carcinoma). Group 3 tumours, however, were
mostly derived from the prostate with a pathological classifica-
tion B, and likely primary (de novo) NEPC samples where NEtD
has not occurred. Of note, copy number loss or mutations in
TP53 and RB1 were present in 60% of patients (26/44), spread
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Figure 5: TFBS Venn diagram and distribution plots. A) Common and unique TFBS for HOX, SOX, STAT3, and STEM families of transcription factors within Class III and
IV of the NEtD lncRNAs. B) Distribution of TFBS for known NEPC-involved TFs within NEtD Class lncRNAs.

across the cohort, and did not appear to be associated with a
particular group (Supplementary Fig. S7). The three groups could
be revealing an lncRNA expression signature that is specific for
tumour site, degree of genomic mutations (SNPs or CNVs), and
pathological classification. However, it is important to note this
is an observational result requiring statistical validation in a
larger cohort. The specificity of these genomic and lncRNA tran-
scriptome profiles would need to be explored across a variety
of metastatic sites and NEPC pathologies to validate these three
novel NEPC molecular subtypes.

NEPC and NEtD lncRNAs are associated with
treatment-related metastasis

Prognostic and predictive biomarkers for NEtD and NEPC are in
dire need since ADT is not effective for a cancer that has un-
dergone NEtD and thus circumvents the AR signalling axis. We
examined if the NEtD (n = 742) and NEPC (n = 122) lncRNAs are
associated with NEPC related clinical outcomes in patients with
primary prostatic adenocarcinoma. To accomplish this, we ex-
plored the candidates in two cohorts from the Mayo Clinic (MCI
[116] and MCII [117]) from the Decipher GRID database (GRID)
(n = 777, Table 2). We could not perform this analysis within
VPC/WCM cohorts due to their small sample sizes and short-
term clinical follow-up. The GRID cohorts represent tumours pri-

marily with adverse pathology (i.e., high grade/stage) and long-
term follow-up for treatment and outcomes (median 18 years).
From these cohorts, a subset (n = 211) received adjuvant ADT
post-radical prostatectomy (RP). To determine the most clini-
cally relevant lncRNA transcripts, we first ranked the NEtD/NEPC
lncRNAs within their respective classes and selected the top
deregulated from each. The ranking was performed based on
fold changes observed within the clinical groups (see Methods).
This produced 100 top-ranking NEtD/NEPC lncRNAs that we in-
vestigated within the GRID cohorts (Fig. 1C and Supplementary
Table S26). We validated 11 of these (2 from each NEtD Class and
3 from the NEPC lncRNA signature) by quantitative real-time PCR
to confirm expression changes identified in the model and clin-
ical samples (Supplementary Fig. S12). Due to the difference in
profiling platforms between GRID (Affymetrix microarray) and
VPC/WCM cohorts (Illumina Sequencing), it was necessary to
remap the GRID microarray probes (see Methods) that aligned
within NEtD/NEPC lncRNA sequenced regions. This resulted in
81/100 being present and quantifiable on the microarray plat-
form.

A characteristic of NEPC patients in the clinic is the occur-
rence of rapid metastasis following treatment [118], and so we
first tested the lncRNAs’ ability to predict rapid metastasis post-
ADT. We performed receiver-operating characteristic (ROC) anal-
ysis to compare the sensitivity and specificity of predicting rapid
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Figure 6: Kaplan-Meier estimates and expression for SSTR5-AS1 and LINC00514. Kaplan-Meier estimates for metastasis-free survival in the MCII cohort comparing

low (blue lines) and high (yellow lines) expression (split by median) in (A) treated patients that received post-prostatectomy adjuvant ADT for SSTR5-AS1 (left) and
LINC00514 (right) and (B) patients not receiving ADT treatment. C) Box plot expression for the top two NEPC lncRNA candidates (SSTR5-AS1 and LINC00514) within the
VPC and WCM cohorts.

metastasis (within 36 months) for each lncRNA. We then cal-
culated the area under the curve (AUC) for each lncRNA ROC
in both cohorts using probe set region expression summarized
across the full lncRNA transcript (Supplementary Table S26).
This identified eight lncRNAs with the highest scores: NR2F1-
AS1, LINC00654, FENDRR, PCAT2, and NKX2–1-AS1 in MCI (AUC
>0.70) and LINC00478, LINC00173, and LINC00514 in MCII (AUC
> 0.70). These lncRNAs serve as candidates for predicting rapid
metastasis in patients receiving ADT. Selecting all NEtD/NEPC
lncRNAs with AUC >0.65 (n = 25), we performed survival analy-
sis to ascertain their ability to separate patients for metastasis as
an outcome and end-point. Specifically, we calculated Kaplan-
Meier estimates for metastatic disease progression stratified by
median expression in ADT-treated samples of the MCII cohort.

The expression of two NEtD/NEPC lncRNA transcripts (SSTR5-
AS1 and LINC00514) was able to separate patients more likely
to develop metastatic disease from those that did not (P = 0.005
and P = 0.010, respectively; Fig. 6A). To increase our confidence
that the results were associated with treatment status, we gen-
erated Kaplan-Meier estimates for these transcripts in untreated
patients from the same cohort; neither showed significant sep-
aration in their performance (P = 0.905 and P = 0.832, respec-
tively; Fig. 6B). Expression for SSTR5-AS1 and LINC00514 in the
VPC and WCM cohorts illustrate their distinct and elevated ex-
pression in NEPC vs. AD patient samples (Fig. 6C). These results
suggest a strong association between treatment status and in-
creased probability of metastatic disease in patients with dif-
ferential expression of these lncRNAs. This, together with re-
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sults from the NEtD model and NEPC clinical samples, implicate
SSTR5-AS1 and LINC00514 in NEPC and these lncRNAs serve as
strong candidates as predictive biomarkers for metastatic dis-
ease post-RP following ADT.

One of the mechanisms observed with lncRNAs is direct
RNA-RNA interaction with mRNA, resulting in regulation of their
expression (activation or repression). This type of investigation
is computationally intensive, and there are limited algorithms
available to identify putative mRNA targets genome-wide. How-
ever, a method was recently published to predict lncRNA-mRNA
interactions genome-wide [119], and so we sought to identify
candidate mRNA transcripts interacting with SSTR5-AS1 and
LINC00514. The pipeline’s three core algorithms include Rac-
cess [120] for the identification of accessible regions within the
lncRNA, IntaRNA [121] to calculate nucleotide interaction en-
ergies, and RactIP [122] to predict joint secondary structures.
Applying this methodology to SSTR5-AS1 and LINC00514 pro-
duced a list of predicted interacting partners for these lncRNAs
(Supplementary Tables S27–S28). The top-ranked mRNAs were
KDM4B and TADA3 that are predicted to hybridize and form joint
structures independently with SSTR5-AS1 and LINC00514, re-
spectively (Supplementary Figs S12 and S13). In the clinical co-
horts, TADA3 is down-regulated in NEPC vs AD (>2-fold), while
KDM4B is up-regulated (>5 fold); however, only the deregulation
of TADA3 is statistically significant (VPC P = 0.003 and WCM P =
0.017). Both genes have NEPC associations (see Discussion), and
our data suggest they are being regulated by these lncNRAs.

Discussion

Primary NEPC arises de novo in 0.5% to 2% of all prostate can-
cer patients [123]. However, tNEPC can develop in 20–30% of
metastatic castrate-resistant prostrate cancer tumours [124] and
increases with disease progression [125]. The real incidence of
tNEPC may be higher because of under-recognition due to tu-
mour heterogeneity, the limited number of metastatic tumour
biopsies performed, lack of uniform consensus definition based
on histology or biomarker expression, and frequent misclassifi-
cation as high-grade PCa (most notable in tumours with mixed
histologies) [126]. NEPC can be induced in vitro in AR+ LNCaP
cells in androgen-depleted culture conditions [127, 128], sim-
ilarly in vivo [7, 129], and in patient tumours long-term ADT
has increased neuroendocrine differentiation [118, 124, 130]. It
is now common to observe treatment-resistant tumours with
neuroendocrine features upon metastatic biopsy, and the pre-
vailing consensus is that epithelial plasticity enables tumour
adaptation in response to AR-targeted therapies [7, 9, 118, 126,
131–134]. This evidence supports the notion that tNEPC inci-
dence through NEtD will increase as new powerful ADTs en-
ter the clinic. There is an urgency for therapeutic strategies and
clinical biomarkers defining NEtD/NEPC. Currently, the only op-
tion for patients is the short-lived effects of platinum-based
chemotherapy. Optimism is on the rise, as there is an AURKA in-
hibitor (MLN8237) in a Phase 2 clinical trial (NCT01799278), com-
binatorial approaches using AURKA with PARP inhibitors un-
der investigation [135], indirect methods that resensitize the tu-
mour to Enzalutamide [136] or platinum-based chemotherapy
[137] (Phase 2 clinical trial NCT02489903 with a Phase 3 clinical
trial being planned), a SSTR4/5 analogue (Pasireotide/SOM230) in
four independent clinical trials at various Phases (NCT01646684,
NCT01313559, NCT01468532, and NCT01794793) with one al-
ready reporting promising clinical efficacy [138], and increased
study of NEPC/NEtD in general [134, 139, 140].

In this study, we characterized the unexplored global lncRNA
landscape during NEtD to provide insights into the NEPC non-
coding milieu of this lethal and treatment-induced process. This
required the implementation of a sequence analysis pipeline
with increased sensitivity towards lower expressed transcripts,
characteristic of lncRNAs. The pipeline was able to detect 37,749
lncRNA transcripts (subclassified as either lincRNA, antisense,
or pseudogene) and quantify them in the two clinical cohorts
(VPC and WCM). The novelty of this study lies in the use of pa-
tient samples integrated with the NEtD PDX model to detect clin-
ically relevant lncRNAs involved in the NEtD/phase transition
process. In this study, we identified 742 lncRNAs associated with
NEtD and identified a robust 122 NEPC lncRNA patient signature
capable of classifying NEPC from AD patient samples. The motif
analysis identified significantly enriched TFBS that were unique
to NEtD Classes I Deactivated (TP53 and BRN1), II Activated (ELF5,
SPIC, and HOXD1), III Persistent (SPDEF and HOX), IV Transient
(TP53, HSF1, HSF2, and FOXA1), and III Persistent combined with
IV Transient (TWIST1). Through similar analysis, we also iden-
tified common TFBS (CCNB2, E2F, ETS, REST, PAX5, PAX9, and
STAF) enriched across all of the NEtD lncRNAs. From among the
100 top-ranking lncRNA, we observe that a subset have strong
clinical associations with metastatic PCa patients after receiv-
ing ADT. In previous lncRNA studies in cancer, several have been
linked to malignant transformation with key roles affecting vari-
ous aspects of cellular homeostasis, including proliferation, sur-
vival, migration, and genomic instability [141]. Similarly, lncR-
NAs identified in this study, including SSTR5-AS1 and LINC00514
with their association with poor outcome, FENDRR for its asso-
ciation with rapid metastasis, and H19 and LINC00617 for their
concordantly high expression across both of the discovery co-
horts, could be the missing links in the mechanisms causing
NEtD. These five represent the top candidates discovered in this
study due to this evidence but also for their characterization in
other cancer types.

FENDRR is a top deregulated lncRNA in NEtD Class IV Tran-
sient and may have a role in the NEtD process. It is implicated
in a lethal lung development disorder [142], lung cancer [143],
within a mutational hotspot that is copy number lost in PCa
[144], and can bind to PRC2 [145, 146]. PRC2 plays a significant
role in tumour progression through binding of HOTAIR (a very
well-studied lncRNA). Together, HOTAIR and PRC2 are involved
in the control of chromatin structure and associated gene activ-
ity [147]. FENDRR may be involved in tumorigenesis like HOTAIR
due to its known interaction with PRC2. A recent study showed
down-regulation of FENDRR is associated with poor prognosis
in gastric cancer and regulates cancer cell metastasis through
fibronectin [71]. Functionally, this could be occurring in NEPC as
well due to FENDRR’s transient expression in the NEtD model
and its association to rapid metastasis in ADT-treated PCa pa-
tients from the GRID (MCI) cohort. Another putative function
of this transcript is through upregulating FOXF1, which is a
protein-coding gene and the sense form for the antisense tran-
script FENDRR. Antisense transcripts are known to regulate their
sense forms (positively or negatively). Using TANRIC, an interac-
tive resource for the exploration of lncRNAs in large patient co-
horts within 20 TCGA cancer types [148], we see that FENDRR ex-
pression is positively correlated to FOXF1 in 16 of 20 cancer types
(P < 3.71 × 10−9; Supplementary Table S29). In fact, FOXF1 dele-
tion has been seen to significantly reduce FENDRR in endothe-
lial cells [149]. FOXF1 is also a target gene of p53 and is seen to
regulate cancer cell migration and invasiveness [150]. Together
these transcripts may play a transient coordinated role in NEtD
through PRC2 or fibronectin.
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LINC00514 is amongst the highest expressed lncRNAs in
NEtD Class III Persistent. It has not been characterized. It is pre-
dicted to bind to TADA3 (Supplementary Fig. S14), potentially
causing a reduction of its activity. This is intriguing because
TADA3 is involved in the stabilization and activation of p53 [151,
152], and this putative interaction (LINC00514: TADA3) could be
an alternative mechanism for loss of p53 activity, already known
to be frequently lost in NEPC [15]. H19 and LINC00617 were two
of the four highest (>10-fold) NEPC-expressed lncRNAs in this
study and fortunately (unlike most lncRNAs) have both been
thoroughly characterized functionally. LINC00617 is highly con-
served across vertebrate genomes and is required for mainte-
nance of pluripotency and neural differentiation in embryonic
stem cells [153]. It controls this lineage commitment through
RNA-binding proteins PTBP1, hnRNP-K, and Nucleolin. These
RNA-binding protein complexes have been detected at promot-
ers of NANOG, SOX2 (promoter of lineage plasticity in NEPC [28]),
and FGF4 [153]. H19 has also been identified in neural differen-
tiation of pluripotent stem cells [154] but with unknown mech-
anisms. With such an elevated level of expression in the clini-
cal cohorts (∼30- to 40-fold and ∼20- to 30-fold in VPC/WCM for
LINC00617 and H19, respectively), these lncRNA could be respon-
sible for maintaining the neuronal component of NEPC through
epigenetic regulation.

SSTR5-AS1 is the highest expressed lncRNA in the NEPC clin-
ical samples when requiring expression concordance in VPC
and WCM cohorts. It is an antisense transcript of SSTR5, which
is a member of the superfamily of somatostatin receptors. So-
matostatins are peptide hormones that regulate diverse cellu-
lar functions such as neurotransmission, cell proliferation, and
endocrine signalling, as well as inhibiting the release of many
hormones and other secretory proteins. The SSTR family (1–5)
are markers for neuroendocrine tumours of the lung [155], with
SSTR1 and SSTR5 the most dominant forms of SSTR in neu-
roendocrine tumours in general [54]. Interestingly, exploration
within TANRIC showed a strong positive correlation in expres-
sion with SSTR5 to SSTR5-AS1 in 14 of 20 cancer types (P < 2.18
× 10−15; Supplementary Table S29). Furthermore, SSTR5 mRNA
is detectable in the blood of neuroendocrine tumours of the lung
[156] and could be a valuable non-invasive diagnostic marker for
NEPC. In fact, clinicians utilize this biological feature in other
neuroendocrine tumours (NETs) using Octreoscans to determine
tumour stage and/or identification of sites of metastasis. Oc-
treoscans, when compared with positron emission tomography
(PET) scans (another commonly used approach for this), appear
more sensitive in the detection of well-differentiated NETs [157].
In addition to this, therapeutically, somatostatin analogues are
emerging as a promising treatment option for inoperable or
metastatic NETs [158]. However, specifically in NEPC, targeting
SSTR5 and/or SSTR5-AS1 for diagnostic or therapeutic purposes
is in its infancy. Interestingly, SSTR5 (C terminal) is required for
Rb induction and G1 cell cycle arrest [159], resulting in anti-
proliferative effects. However, without Rb (known to be lost in
NEPC), this function is negated. Alternatively, the interaction ev-
idence for SSTR5-AS1 and KDM4B (Supplementary Fig. S13) pro-
vides another strong connection to NEPC biology. KDM4B is a
histone demethylase and a key molecule in AR signaling and
turnover [160]. In NEPC with the absence of the AR, KDM4B could
interact with N-Myc instead, where it has been shown to regu-
late and epigenetically activate this oncogene in neuroblastoma
[161]. N-Myc has been seen to drive the progression of NEPC [5,
26, 27] and recently through EZH2-mediated transcription [27].
However, another mechanism of activation could be facilitated
through SSTR5-AS1 regulation. However, both of these putative

functions (SSTR5-AS1: SSTR5 or SSTR5-AS1: KDM4B: N-Myc) re-
quire thorough in vitro and in vivo exploration to ascertain their
validity.

Although multiple layers of genetic and epigenetic deregula-
tion likely cooperate to facilitate NEtD, understanding the non-
coding contribution to this multifarious process is necessary to
design effective novel therapeutics. Using the five independent
patient cohorts and our proven NEtD PDX LTL331 model, lncR-
NAs such as FENDRR, LINC00514, LINC00617, H19, SSTR5-AS1,
and others identified in this study may provide more in-depth
insights into NEtD and NEPC. Research identifying the relation-
ship of these lncRNAs to other known drivers, oncogenes, and
Activated pathways in NEtD is now required. This study is the
first to report the lncRNA landscape of NEtD, a robust NEPC
lncRNA expression clinical classifier, and provides numerous
candidate biomarkers and therapeutic targets.

Methods
PDXs

Animal ethics, care, experiments, xenograft generation, and all
protocols were carried out in accordance with the guidelines of
the Canadian Council of Animal care as previously described [7].
Specific xenograft models used in this study have been previ-
ously published (protein-coding transcriptomes) by Akamatsu
et al. [24] and Mo et al. [162]. In brief, six LTL331, two LTL313,
and two LTL418 PDXs were raised in NOD-SCID mice (NOD.CB17-
Prkdcscid/J) at the Living Tumor Laboratory [163]. Xenograft tis-
sue was harvested after fixed lengths of time post host castra-
tion, tissue was measured, fixed for histopathological analysis,
and processed for RNA analysis.

Clinical datasets

We used five clinical cohorts from 1) WCM [5]; 2) GenomeDx Bio-
sciences (GX) Inc. (MCI and MCII); 3) JHSM; and 4) VPC, cumu-
latively totalling 927 samples. For the VPC, 80 specimens were
obtained from patients undergoing RP and snap frozen follow-
ing a protocol approved by the Clinical Research Ethics Board of
the University of British Columbia, the BC Cancer Agency, and
Vancouver General Hospital pathology (depending on the sam-
ple source). All patients signed a formal consent form approved
by the ethics board. A subset of the GX Decipher GRID database
of clinical specimens was selected, totalling 777 patient PCa
expression profiles (all from formalin-fixed parafin embedded
tissue) and were obtained from two RP Mayo Clinic cohorts
that have been previously described (MCI [116] and MCII [117]).
JHSM samples, totalling 33 samples, were retrieved from surgical
pathology and consultation files of Johns Hopkins Hospital (John
Hopkins Registry) from 1999 to 2013, as previously described
[164]. The 33 samples were annotated as 6 morphologically di-
agnosed pure SCPC samples, 12 high-risk (Gleason 9–10) AD, 10
SCPC (SC-mixed), and 5 AD (AD-mixed) from mixed histology tu-
mours containing separate adenocarcinoma and small cell com-
ponents. For this cohort, samples were dicotimized into either
AD (AD and AD-mixed samples) or NEPC (SCPC and SCPC-mixed
sampels) for the purposes of validating the 122 NEPC lncRNA pa-
tient signature. We also explored an externally processed cohort
comprising 114 metastatic CRPC specimens, of which 44 were
NEPC [32] and used in this study. Referred to in the text as the
extNEPC cohort, we accessed and visualized this data through
cBioPortal [165, 166] Version 1.9.0 [167]. OncoPrint schematics
were generated for displaying multiple genomic alterations by
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heatmap for the lncRNAs. The extNEPC study samples were clas-
sified using a pathologic classification system [6] that included
five catagories: “A,” usual prostate adenocarcinoma without
neuroendocrine differentiation; “B,” usual prostate adenocarci-
noma with neuroendocrine differentiation >20%; “C,” small-cell
carcinoma; “D,” large-cell neuroendocrine carcinoma; and “E,”,
mixed small-cell carcinoma–adenocarcinoma.

Material collection and processing (VPC Cohort)

Hematoxylin and eosin (H&E) stained, formalin-fixed paraffin-
embedded, and fresh frozen sections were reviewed by a pathol-
ogist to identify blocks with highest tumour content. For each
frozen block used, a 5-μmslide was first taken for H&E staining;
then 4 × 100-μmsections were taken for DNA and RNA isolation
before a second 5-μm slide was taken for H&E staining. Each
H&E slide was required to have tumour content >50% for a tu-
mour to proceed for sequencing. RNA from 100-μmsections of
snap frozen tissue was isolated using the mirVana Isolation Kit
from Ambion (AM 1560). RNA sequencing was performed on Il-
lumina HiSeq 2000 at BC Cancer Agency Michael Smith Genome
Sciences Centre according to standard protocols.

Material collection and processing (GRID and JHSM)

For GRID (MCI and MCII) and JHSM cohorts, specimen selection,
RNA extraction, and microarray hybridization were performed
in a Clinical Laboratory Improvement Amendments-certified
laboratory facility (GenomeDx Biosciences, San Diego, CA, USA)
as described previously [116, 117]. Total RNA extraction, purifica-
tion, RNA amplification, and labelling were done using the Ova-
tion WTA FFPE system (NuGen, San Carlos, CA, USA). RNA was
hybridized to Human Exon 1.0 ST GeneChips (Affymetrix, Santa
Clara, CA, USA). After microarray profiling, quality control was
preformed using the Affymetrix Power Tools package, and probe
set normalization was performed using the Single Channel Ar-
ray Normalization algorithm [168].

Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR)

Primers were designed using Primer3 and checked with in sil-
ico PCR in UCSC Genome Browser (s Supplementary Table S26
for forward and reverse primer sequences). Housekeeping genes
PSMB4, REEP5, and SNRPD3 were selected on the basis of high,
consistent expression levels across many cell and tissue types
and were used in the MiTranscriptome lncRNA study [169, 170].
Two lncRNAs from each NEtD class and three NEPC lncRNAs
from among the top candidates (Supplementary Fig. S12 and
Supplementary Table S26) were selected (n = 11) for qRT-PCR
validation. The cDNA from the PDX LTL331 models three time
points (AD, postTX, and NEPC) were used to validate the NEtD
lncRNAs and a subset of the VPC clinical samples for the NEPC
lncRNAs. With the rarity of clinical NEPC samples, tumour tissue
and subsequent RNA were extremely limited. Due to this, only
three NEPC (V73, V90, and V91) and one AD (V60) clinical sample
were included in this validation. For each lncRNA and sample
tested, the following experimental protocol was carried out: 1
μg of total RNA for each sample was diluted to 18 μl with water
and 1 μl of random hexamers (50μM; Thermo Fisher). The mix-
ture was heated to 65C for 5 minutes and chilled. Afterwards, 5
μl of 5x reverse transcriptase buffer, 1 μl of 10 mM dNTPs, and
1 μl of Superscript II reverse transcriptase (Thermo Fisher) were
added. Each sample was then incubated at 42C for 1 hour and

then at 70C for 15 minutes. Prior to use in qRT-PCR, products
were diluted 10-fold with water. FastStart Essential Green Mas-
ter kit from Roche (Catalogue #06 402 712 001) was used as de-
scribed from their protocol for qRT-PCR reactions. In brief, 2 μl
of water, 3 μl of a mixture of forward and reverse primers (each
at a concentration of 10 μM),and 10 μl of the Roche Master Mix
were aliquoted into each well of a 96-well plate. A mixture of
4 μl of water plus 1 μl of the diluted cDNA was then added to
the appropriate wells. Expression was then quantified (as mea-
sured by Ct) through the Roche Light Cycler 96 machine. Each
lncRNA/sample pair was quantified with technical replicates in
triplicate. Average and standard deviation of Ct were calculated
across these triplicates, and �Ct calculated relative to house
keeper gene PSMB4 (most consistent and highly expressed gene
vs REEP5 and SNRPD3). Delta �Cts were calculated relative to
control samples, and fold changes were plotted using Prisms
GraphPad software (Supplemental Table 12).

RNA sequence analysis pipeline

We implemented an lncRNA sequence analysis pipeline that in-
cludes algorithms catered to the detection of known and novel
transcripts (Supplementary Figs S1 and S2). Implemented in-
house, this pipeline is modified and extended from the tuxedo
suite of sequence analysis algorithms [45]. Once received from
the sequencing centre in bam format, all sequenced model sys-
tems and patient samples were de-aligned into raw fastq for-
mat (including flagged reads) using bam2fastq and put through
the following pipeline. To ensure high-quality sequence reads,
libraries were trimmed using a Sickle, a windowed-adaptive ap-
proach [171]. For each read pair processed together, the algo-
rithm determines the most optimal inner read sequence by
trimming both 3’ and 5’ prime ends based on quality and
length thresholds (for full description, see [172]). Bases with a
quality score of <99.0% base call accuracy (corresponding to
a Phred quality score of 20) were removed. Reads less than
approximately two-thirds read length (30 nt in WCM and 60
nt in VPC) post-trimming were discarded. Highly repetitive se-
quences (>2% of library) were also discarded post-trimming us-
ing the cutadapt tool. All quality control metrics were gener-
ated and quanitified (pre- and post-trimming) using the FASTX-
Toolkit and the FastQC Windows software. Reads were aligned
to the Hg19 human genome build using an unspliced aligner
for handling exonic reads (Bowtie–v2.2.3) in conjunction with
a spliced aligner to handle reads spanning exon-exon junc-
tions (Tophat 2.0.12). Transcriptome reconstruction using En-
sembl GRCh37.75 gene tracks for each library was performed us-
ing a quasi de novo (genome-guided) approach (Cufflinks v2.2.1),
where reads were assembled and abundances estimated us-
ing an overlap graph producing a minimal spanning network
of transcripts. This version of Ensembl contained 38 transcript
classes grouped by 4 core biotypes. At this stage, transcripts
were also multi-read and fragment bias corrected. Transcripts
with highly abundant expression were masked (e.g., rRNAs)
from downstream steps to increase transcript quantification ac-
curacy. Sample transcriptomes, the reference genome, and the
transcript annotation were then meta-assembled (Cuffmerge) to
produce a single annotation transcriptome model. Based on this
model, transcript quantification (Cuffquant) and normalization
(Cuffnorm). Geometric and FPKM normalization performed in-
dependently (Cuffnorm) corrected for uneven library sequencing
depths between samples and variable transcript lengths within
samples. Transcript expression displaying computational arti-
facts (expression values <0.1 known to occur with Cufflinks)
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were converted to zero values. This generated transcript expres-
sion where only lncRNAs (Ensembl and ENCODE-based) were
extracted and used for all downstream analysis. All algorithms
denoted in brackets are referenced and described in the Trap-
nell et al. Nature protocol [45]. Each cohort (VPC and WCM) was
processed independently by this pipeline, and then transcrip-
tome annotations were merged. This was accomplished using
Ensembl transcript IDs combined with transcript lengths to pro-
duce unique transcript identifiers for each lncRNA across co-
horts.

RNA-RNA interaction analysis

A genome-wide analysis for SSTR5-AS1 and LINC00514 lncRNA
interactions was performed using a multistep systemic ap-
proach [119]. This tool is available publicly within an online
database [173] hosted by the Computational Biological Research
Center at the National Institute of Advanced Industrial Science
and Technology in Japan. The interaction search space included
all hg19 annotated lncRNA and mRNA transcripts. This gener-
ated top-ranking interaction partners (n = 100), based on local
interaction minimum free energy (Supplementary Tables S27–
S28). R-chie [174, 175] was used to visualize the top-ranking pre-
dictions KDM4B and TADA3 for SSTR5-AS1 and LINC00514, re-
spectively, using the double structure feature (Supplementary
Figs S13 and S14). All bases that were not within the interac-
tion site were predicted to form RNA secondary structure by
RNAfold [176–178] selecting to enforce constrained pairing pat-
terns for the interacting bases. Minimum free-energy structures
were predicted by RNAfold on the 300nt sequences upstream
and downstream of the interaction site.

TFBS identification and enrichment analysis

All TFBS analysis was performed using Genomatix software,
databases, and algorithms [179]. Three types of TF analysis were
carried out in this study: (1) single lncRNA motif characteriza-
tion, (2) multiple lncRNA analysis for select TFs, and (3) multiple
lncRNA enrichment analysis. Prior to any of the above, lncRNA
transcript(s) were submitted to the Gene2Promoter algorithm for
retrieval of promoter sequences. Databases used with this algo-
rithm included ElDorado 12–2013 and NCBI build 37 (for multiple
lncRNA analysis where genomic background needed to match
sequencing data) or the most recent databases ElDorado 12–2016
and GRCh38 (for single lncRNA analysis where genomic back-
ground was not relevant). Transcripts with alternative isoforms
were required to have gold level (experimentally verified 5’ com-
plete transcript), silver level (transcript with 5’ end confirmed by
PromoterInspector prediction), or bronze level (annotated tran-
script, no confirmation for 5’ completeness) quality for their al-
ternative isoforms. (1) Single lncRNA motif characterization was
performed using the MatInspector algorithm [97–99] with pa-
rameters “core similarity” (degree of similarity for highest con-
served bases of motif) set to 1 and “matrix similarity” (degree of
similarity between motif and query sequence) set to optimized
as recommended by Genomatix and as described in MatInspec-
tor referenced papers above. MatInspector uses the best in field
MatBase database for TFBS motif/matrix annotation, where Ma-
trix Family Library Version 10.0 was used. (2) Multiple lncRNA
analysis for select TFs was performed using MatInspector and
select TF motifs (“matrix”) applied accordingly. All matrix an-
notation, descriptions, and matrix family definitions are listed
in Supplementary Table S25. Select TF matrices (BRN2, STAT3,
NKX3, NMYC, SOX2, and SOX11) and select TF matrix families

(GREF [includes the androgen receptor and the closely related
glucocorticoid, mineralocorticoid, and progesterone receptors],
NRSF [REST], SOX, HOX, STEM, E2FF, ETSF, and ETVI1) motifs
included in this study are described in Supplementary Table
S25. Core and matrix similarities were again set to 1 and op-
timized, respectively. (3) Multiple lncRNA enrichment analysis
was performed using the Overrepresented TFBS algorithm. En-
richment of matrix/matrix family was determined by Genomatix
calculated z-scores (>2 or <-2), which is based on the distance
from the population mean (genome or promoter sequence back-
ground) in units of the population standard deviation for query
sequence/promoter. Genomatix calculates z-scores with a conti-
nuity correction using the formula z = (x-E-0.5)/S, where x is the
number of found matches in the input data, E is the expected
value, and S is the standard deviation. This formula is also de-
scribed in the oPOSSUM algorithm [180]. A z-score < -2 or >2
can be considered statistically significant and corresponds to a
P-value of approximately 0.05.

Microarray to sequencing platform lift over/mapping

Affymetrix Human Exon 1.0 ST GeneChip probes were mapped
to hg19 coordinates using SMALT v0.76 [181]. Probe set genomic
regions (PSRs) were redefined accordingly. Exons within each
lncRNA from sequencing cohorts (VPC and WCM) were inte-
grated with PSRs to build an overlap table to determine ab-
sence/presence of lncRNA transcripts on the affymetrix microar-
ray. R function iRanges v2.9.18 was used with method findOver-
lap to build the described table above. Microarray PSRs were re-
quired to be entirely within sequenced exon genome regions;
otherwise they were excluded. Applying this methodology, 106
of 122 NEPC lncRNAs (87%) and 81 of 100 NEtD lncRNAs (81%)
mapped to microarray PSRs for clinicopathological analysis on
GRID cohorts MCI and MCII.

Statistical analysis

For all cohorts, the programming language R v3.0 was used
for statistical analysis. For VPC and WCM cohorts, unsuper-
vised hierarchical clustering was performed with the h.clust
package with Pearson correlation for distance and average link-
age used. Only transcripts within the top fifth percentile based
on their standard deviations were selected. The clustering and
heatmaps generated were built using the heatmap.2 function.
Similar clustering analysis was performed for GRID cohorts
except with Euclidian distance, the ward method for linkage,
and the use of the heatmap.3 function due to its advanced
row/column labelling features. For all cohorts before clustering,
normalized log2 expression values were standardized/scaled us-
ing a z-score that ranged from -2 to 2. For principal component
analysis, the R package prcomp was used to calculate variance
among transcript and sample subsets for the calculation of tran-
script weights and principle components. The top three compo-
nents were used for visual inspection. For all clinical group-wise
comparisons, a standard Student’s t-test was applied to iden-
tify significantly differentially expressed transcripts between
groups/phenotypes. Significance thresholds were implemented
by enforcing a strict P-value cut-off of <0.05. Multiple test correc-
tion was applied to P-values using the Bonferroni and Hochberg
method to mathematically minimize false discovery rate (FDR)
and with a cut-off of P-value < 0.05. See Supplementary Ta-
ble S4 for these results. To biologically minimize FDR, mathemati-
cal FDR correction was removed and instead followed the filter-
down workflows in Figs 3A–C and Fig. 1C. Despite mathematical
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FDR being removed, statistical significance of P-value < 0.05 was
still maintained during the filter-down approach using the de-
scribed method in each step. See Supplementary Table S5 for
these results. For ROC curves and AUC calculations, the R pack-
age “pROC” was used. Kaplan-Meier analysis was performed for
determining survival outcome using the R package “survfit” with
transcripts displaying below background (<0.1) expression being
removed from this analysis.

Transcript ranking

NEtD lncRNA transcripts were ranked based on fold changes ob-
served in the clinical group-wise comparisons. For NEtD Class
I Deactivated, the three group-wise comparison fold changes
were used (NEPC vs AD, CRPC vs AD, and NHT vs AD), where
the minimum fold change observed between the three com-
parisons was selected and then ranked in decreasing order. For
Class II Activated and Class III Persistent transcripts, NEPC vs
AD fold changes were calculated and ranked in increasing or-
der for both VPC and WCM cohorts, where the maximum fold
change between VPC and WCM was selected. For Class IV Tran-
sient transcripts, absolute fold changes for AD vs NHT and NHT
vs NEPC were calculated and ranked in increasing order with the
maximum fold change from either group selected. Similar rank-
ing was performed for NEPC lncRNA transcripts, which were or-
dered by increasing (up-regulated transcripts in NEPC vs. AD)
or decreasing (down-regulated transcripts in NEPC vs. AD) or-
der to determine the highest- and lowest-expressed transcripts
in NEPC vs AD, respectively. Concordantly expressed transcripts
were required between VPC and WCM cohorts. The top 20 lncR-
NAs (based on fold changes from clinical samples defined above)
were taken from each group. This produced 20 × 5 group (n =
100) isoforms representing 76 unique lncRNA transcripts. These
represent the top NEtD/NEPC lncRNA candidates from this study
(Supplementary Table S26). No pseudogenes were included in
these rankings.

Availability of supporting data

A subset of the sequenced samples (n = 70) used in this study
was from previous studies with all raw sequencing data rean-
alyzed here using the described pipeline above. These 70 sam-
ples have been previously submitted to the European Nucleotide
Archive (ENA) or NCBIs Gene Expression Omnibus. This in-
cludes the 6 NEPC PDX model samples [24] (ENA accession num-
ber PRJEB9660 and GEO accession number GSE59986), 2 CRPC
PDX model samples [162] (ENA accession number PRJEB19256),
4 NEPC (VPC) samples [31, 56], 23 AD (VPC) samples [56] (ENA
accession number PRJEB6530), 30 AD (WCM) samples [5], and
7 NEPC (WCM) samples [5]. The remaining unpublished se-
quenced samples (n = 55) have been submitted to the ENA under
accession number PRJEB21092. Please see Supplementary Table
S1 for a summary of sequencing and clinical information on
these 125 samples. All microarray samples from GX cohorts, in-
cluding 545 AD (MCI [116]) samples and 232 AD (MCII [117]) sam-
ples, are accessible through Gene Expression Omnibus acces-
sion numbers GSE46691 and GSE62116, respectively. Additional
supporting data and custom code from the sequencing pipeline
described above are also available from the GigaScience GigaDB
database [182].

Additional file

Table S1: Discovery cohorts clinical and sequencing informa-
tion.
Table S2: Differentially expressed AR- and AR+ CRPC lncRNA.
Table S3: NEPC lncRNA expression signature labels and order for
Fig. 2.
Table S4: Clinical cohort group-wise comparisons.
Table S5: NEtD and NEPC lncRNA transcript annotation
Table S6: TFBS-Enrichment by Matrix for NEtD Class I
Table S7: TFBS-Enrichment by Matrix for NEtD Class II
Table S8: TFBS-Enrichment by Matrix for NEtD Class III
Table S9: TFBS-Enrichment by Matrix for NEtD Class IV
Table S10: TFBS-Enrichment by Matrix for NEtD Class III-IV
Table S11: TFBS-Enrichment by Matrix for all NEtD lncRNAs
Table S12: TFBS-Enrichment by Matrix Family for NEtD Class I
Table S13: TFBS-Enrichment by Matrix Family for NEtD Class II
Table S14: TFBS-Enrichment by Matrix Family for NEtD Class III
Table S15: TFBS-Enrichment by Matrix Family for NEtD Class IV
Table S16: TFBS-Enrichment by Matrix Family for NEtD Class III-
IV
Table S17: TFBS-Enrichment by Matrix Family for all NEtD lncR-
NAs
Table S18: TFBS Overlap Table by Matrix
Table S19: TFBS Overlap Table by Matrix Family
Table S20: Unique and common TFBS in NEtD lncRNA
Table S21: Select TF Identification for NEtD Class I
Table S22: Select TF Identification for NEtD Class II-III
Table S23: Select TF Identification for NEtD Class III-IV
Table S24: Select TF Identification for all NEtD lncRNAs
Table S25: Genomatix Matrix and Matrix Family definitions
Table S26: Top-ranking NEPC and NEtD lncRNAs.
Table S27: SSTR5-AS1-predicted RNA (mRNA or lncRNA) interac-
tions with associated binding energies, predicted transcript En-
sembl ID, name, interaction position, and ranking.
Table S28: LINC00514-predicted RNA (mRNA or lncRNA) interac-
tions with associated binding energies, predicted transcript En-
sembl ID, name, interaction position, and ranking.
Table S29: TANRIC results for lncRNAs FENDRR and SSTR5-AS1.
Spearman rank correlation for protein coding genes that are
the sense forms to the above antisense transcripts. Numbers
in brackets denote P-values. NSC, no significant correlation; NA,
mRNA data was not available for this tumour type, therefor the
analysis was not applicable.
Figure S1: The next-generation sequence analysis pipeline im-
plemented for the detection and quantification of lncRNAs in
this study. A) The nine-step lncRNA next-generation sequenc-
ing analysis pipeline with core algorithms (Bowtie2, Tophat2,
Cufflinks2, Cuffmerge, Cuffquant, and Cuffnorm) implemented
from the Tuxedo suite of analysis tools. Sequencing quality con-
trol metrics before and after trimming of data for sample V60
is outlined in B–F. This includes pre-trimming (A) phred quality
scores and (B) percentage of each base type across read library
at each base pair position. After quality control corrections were
applied, V60 read library had acceptable (D) Phred quality scores
(∼30 Phred Score) and (E) expected base type percentages (∼25%)
for T, C, A, and G. F) All over-represented sequences that were
>2% of library were removed from the V60 read library. See Meth-
ods for complete listing and version numbers for all algorithms
and tools used in the sequence analysis pipeline.
Figure S2: Average Phred quality scores for all VPC and WCM
samples before and after quality control corrections were ap-
plied.
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Figure S3: Unsupervised hierarchal clustering (A–D) and princi-
ple component analysis (E–H) on the four major Ensembl tran-
script classes detected within the VPC cohort. Samples are la-
belled as adenocarcinomas (blue) and neuroendocrine tumours
(gold).
Figure S4: Unsupervised hierarchal clustering (A–D) and princi-
ple component analysis (E–H) on the four major Ensembl tran-
script classes detected within the WCM cohort. Samples are la-
belled as adenocarcinomas (blue) and neuroendocrine tumours
(gold).
Figure S5: Detected and differentially expressed lncRNAs among
(A) AR−/+ CRPC xenograft models (B) and matched clinical sam-
ples. P, patient; X, xenograft.
Figure S6: NEPC and NEtD lncRNA Oncoprint Plot in the extNEPC
Cohort – LEGEND. Clinical, transcriptome, and genomic annota-
tion for samples plotted in Supplementary Figs S7–S11. All an-
notations were generated from cBioportal with the exception
of the NEPC molecular subtype, which was assigned from this
study. Transcripts denoted with 1 in superscript within Supple-
mentary Figs S8–S11 are lncRNAs that overlap a NEPC lncRNA
with a NEtD lncRNA. For example, H19 appears in Supplemen-
tary Fig. S8 (NEPC lncRNA) and supplementary 9 (NEtD lncRNA
Class II).
Figure S7: NEPC and NEtD lncRNA Oncoprint Plot in the extNEPC
Cohort - Known NEPC genes and TFs. Select NEPC onco-
genes, tumour suppressor, and transcription factors that have
been reported previously or within this study for transcrip-
tomic/genomic context with Supplementary Figs S8–S11. Please
see Supplementary Fig. S6 for figure legend.
Figure S8: NEPC and NEtD lncRNA Oncoprint Plot in the extNEPC
Cohort - NEPC lncRNA. Transcripts from the NEPC lncRNA ex-
pression signature that are up-regulated (74 of 122), testable (58
of 74), and altered (25 of 58) in the extNEPC cohort. Please see
Supplementary Fig. S6 for figure legend.
Figure S9: NEPC and NEtD lncRNA Oncoprint Plot in the extNEPC
Cohort - NEtD lncRNA Class II. Transcripts from NEtD lncRNA
Class II (222), testable (128 of 222), and altered (26 of 128) in the
extNEPC cohort. Please see Supplementary Fig. S6 for figure leg-
end.
Figure S10: NEPC and NEtD lncRNA Oncoprint Plot in the
extNEPC Cohort - NEtD lncRNA Class III. Transcripts from NEtD
lncRNA Class III (84), testable (79 of 84), and altered (29 of 84) in
the extNEPC cohort. Please see Supplementary Fig. S6 for figure
legend.
Figure S11: NEPC and NEtD lncRNA Oncoprint Plot in the
extNEPC Cohort - NEtD lncRNA Class IV. Transcripts from NEtD
lncRNA Class IV (45), testable (36 of 45), and altered (11 of 31) in
the extNEPC cohort. Please see Supplementary Fig. S6 for figure
legend.
Figure S12: Quantitative Real-Time Polymerase Chain Reac-
tionon select NEPC and NEtD lncRNAs.
Figure S13: Hypothetical RNA-RNA folding structure for exon 4
of SSTR5-AS1 (top) and the 3’UTR of KDM4B (bottom). Predicted
base pair binding (green arcs) along the sequence (black arrow)
are displayed, included predicted interaction site (orange bars).
Figure S14: Hypothetical RNA-RNA folding structure for exon 4
of LINC00514 (top) and the 3’UTR of TADA3 (bottom). Predicted
base pair binding (green arcs) along the sequence (black arrow)
are displayed, included predicted interaction site (orange bars).
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