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Abstract

Obtaining detailed individual-level data on both exposure and cancer outcomes is challenging, and 

it is difficult to understand and characterize how temporal aspects of exposures translate into 

cancer risk. We show that, in lieu of individual-level information, population-level data on cancer 

incidence and etiological agent prevalence can be leveraged to investigate cancer mechanisms and 

better characterize and predict cancer trends. We use mechanistic carcinogenesis models 

(multistage clonal expansion (MSCE) models) and data on smoking, H. pylori, and HPV infection 

prevalence to investigate trends of lung, gastric, and HPV-related oropharyngeal cancers. MSCE 

models are based on the initiation-promotion-malignant-conversion paradigm and allow for 

interpretation of trends in terms of general biological mechanisms. We assumed the rates of 

initiation depend on the prevalence of the corresponding risk factors. We performed two types of 

analysis: using the agent prevalence and cancer incidence data to estimate the model parameters 

and using cancer incidence data to infer the etiological agent prevalence as well as the model 

parameters. By including risk factor prevalence, MSCE models with as few as three parameters 

closely reproduced forty years of age-specific cancer incidence data. We recovered trends of H. 

pylori prevalence in the U.S. and demonstrated that cohort effects can explain the observed 

bimodal, age-specific pattern of oral HPV prevalence in men. Our results demonstrate the potential 

for joint analyses of population-level cancer and risk factor data through mechanistic modeling. 

This approach can be a first step in systematically testing relationships between exposures and 

cancer risk when individual-level data is lacking.
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Introduction

Risk factors for cancer can be difficult to assess because of the long time that it takes for 

cancer to develop and the long lag time between exposures to etiological agents and cancer 

onset and detection. It is even more challenging to further characterize how different 
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temporal patterns of exposure translate into age-specific cancer risk. For instance, how does 

the risk associated with an exposure at one age compare to that for the same exposure at a 

different age? Or, how does risk compare for two people with the same cumulative 

exposures but very different temporal distributions of that exposure? For most risk factors, 

especially those whose association or causal relation with cancer are not well established, 

the answers to these questions are usually unknown, with very limited individual data 

available to study these issues. We must then resort to analyses of population-level data of 

cancer incidence and risk factor prevalence as a first step to study the temporal relationship 

between exposures and cancer risk.

Modeling the connection between population-level prevalence of etiological agents and 

population-level incidence of cancer is particularly challenging because of the multiple 

spatial and temporal scales involved (e.g., from cell level to population level and exposure 

timescale to carcinogenesis timescale). In particular, time of exposure, duration of exposure, 

dependence on age, and the dose–response relationship may all impact the risk of cancer 

onset and progression. Multistage clonal expansion (MSCE) models are a family of 

mechanistic models that provide a framework to integrate time-varying exposures into the 

analysis of cancer epidemiological data. The initiation–promotion–malignant-conversion 

hypothesis [1, 2] posits that cancer is the accumulation of rare events, nominally mutations; 

after accumulating a sufficient number of mutations (initiation), the tumor expands clonally 

(promotion), and a final mutation transforms a cell to malignancy (malignant conversion). 

Based on this framework, MSCE models seek to explain cancer incidence patterns in terms 

of the modeled, underlying biological carcinogenesis mechanism. Several studies have 

leveraged MSCE models to look at time-varying exposures in prospective individual-level 

data (e.g., of radiation, smoking, and benzene exposure) [3–5]. One recent study has used an 

MSCE model to connect population-level risk factor data to cancer-incidence: Hazelton et 

al. [6] investigated the connection between prevalence of symptomatic gastroesophageal 

reflux disease (sGERD) to incidence of esophageal adenocarcinoma (EAC). Estimation of 

model parameter values from cancer incidence data has been a focus of MSCE research both 

because parameter estimates are necessary for cancer incidence rate prediction and the 

evaluation of interventions such as screening (e.g., [7, 8]) and because they can help explain 

the underlying mechanistic reasons for health disparities (e.g., [9–12]).

To show the potential of combining population-level risk factor and cancer data through 

mechanistic modeling, we consider two kinds of time-varying cancer risk factors for which 

data at the population level is sometimes available: infectious agents and tobacco use. 

Approximately 15–20% of cancer deaths worldwide are attributed to infectious agents, 

including the human papillomavirus (HPV), Helicobacter pylori, hepatitis B and C viruses, 

Epstein–Barr viruses, Kaposi sarcoma herpes virus, and liver flukes (Opisthorchis viverrini), 
among others [13]. Some infectious agents, particularly viruses, can cause cancer through 

direct destabilization of normal cell controls, while other agents cause chronic inflammation 

or suppress the immune system in ways that can indirectly lead to carcinogenesis [14]. 

Another 25–30% of cancer deaths can be attributed to tobacco use [13]; although known to 

be the etiological agent of most lung cancers, tobacco use is also a risk factor for many other 

cancers (liver, head & neck, and colorectal cancer in particular [15]).
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In this paper, we investigate how much can be learned by coupling population-level risk 

factor prevalence data to cancer incidence data through mechanistic modeling of 

carcinogenesis and statistical analyses of cancer trends. In particular, we evaluate whether 

the use of risk factor data improves the estimation and inference of mechanistic model 

cancer parameters that represent the rates of cancer initiation, promotion, and malignant 

conversion. By assuming that the tumor initiation rate depends on the risk factor prevalence, 

we connect population-level data on the etiological agent prevalence to population-level data 

on cancer incidence in three case studies: H. pylori and intestinal-type noncardia gastric 

adenocarcinoma (GAC), smoking and malignant neoplasms of the bronchus and lung (LC), 

and HPV and HPV-related oral (oropharyngeal and oral cavity) squamous cell carcinoma 

(OSCC). We not only use prevalence data to inform models of cancer incidence but 

determine whether cancer incidence can help us to estimate historic agent prevalence 

patterns.

Methods

Data

Cancer incidence—We consider cancers reported to the Surveillance, Epidemiology, and 

End Results (SEER) cancer registries [16], using SEER 9 data from 1973–2014. We use the 

International Classification of Diseases (ICD) and histological subtype codes to identify 

cases of GAC (C16.1–16.6, C16.8–16.9 of type M8010, M8140, M8211, or M8144), HPV-

related OSCC (C01.9, C02.4, C09.0, C09.1, C09.8–09.9, C10.0–10.4, C10.8, C10.9, C14.2), 

and LC (C34).

Risk factor prevalence—Yeh et al. [17] reported cohort prevalence of H. Pylori at age 20 

for men in the National Health and Nutrition Examination Survey [18] (specifically in 

NHANES III and Continuous NHANES); we smooth this data using natural splines. 

Smoking prevalence in the U.S. by cohort was estimated using the data generated by 

Holford et al. [19] and available here [20]. Age-specific cervicogenital prevalence of HPV 

was previously reported in Brouwer et al. [21]. Prevalences of H. pylori, smoking, and 

cervicogenital HPV are shown in the supplementary material (Figure S1a–d).

Mechanistic models

MSCE models with population-level risk factors—Multistage clonal expansion 

models, a class of continuous-time Markov chain models, were developed under the 

initiation–promotion–malignant-conversion paradigm and have been extended to include 

multiple preinitiation steps [1, 2, 22, 23]. We modify both two-stage and three-stage models 

by making the rates of the first destabilizing mutations dependent on the population-level 

prevalence of the associated etiological agent (an assumption first used by Hazelton et al. 

[6]). The model variables and parameters are given in Table 1, and a schematic of the two-

stage model is shown in Figure 1a. Modeled cancer survival x1(t) is defined as the 

probability that an individual has no malignant cells at age t. We do not include an explicit 

reporting rate to model the time between the first malignant cell and tumor detection. 

Although modeling such a rate is useful when modeling individual-level data, it is not 

separately identifiable in practice for population-level data.
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In this model, the tumor detection rate is wrapped into the malignant conversion rate. The 

model hazard is defined as

x2(t) = − d
dt log x1(t)

and corresponds to age-specific cancer incidence data. The survival and hazard of the two-

stage clonal expansion model at age t is found by numerically solving for x1(t) and x2(t) in 

Eq. (1), where x3(t) and x4(t) can be treated as dummy variables,

∂x1
∂s (s) = − ν(t − s)Xx1(1 − x3)

∂x2
∂s (s) = − ν(t − s)Xx4

∂x3
∂s (s) = − [α + β + μ1]x3 + β + αx3

2 (1)

∂x4
∂s (s) = − [α + β + μ1]x4 + 2αx3x4,

with initial conditions x1(0) = 1, x2(0) = x3(0) = 1, x4(0) = −μ1. The equations for the three-

stage clonal expansion model, technical details of the models, and theoretical proofs are left 

to the supplementary material.

One way to formulate the initiation rate is as the sum of the baseline mutation rate times the 

probability of not being exposed to the etiological agent and the baseline mutation rate times 

the probability of being exposed to the etiological agent times the relative risk given 

exposure:

ν(t) = ν0((1 − P(t)) + ρP(t)) . (2)

We can reparameterize this equation as

ν = v0 + σP(t) (3)

where σ = ν0(ρ − 1). This equation also represents the alternate formulation where the 

initiation rate is the sum of an initiation rate related to the etiological agent and the baseline 

initiation rate related to all other factors. This formulation allows us to estimate the fraction 
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of cases resulting from the etiological agent versus other factors. When estimating P(t) 
instead of using data, σ/ν0 and P(t) form an identifiable combination, meaning that their 

product can be estimated from the incidence data but that their values cannot individually be 

estimated (see Corollary 1 in the supplementary material). Thus, when estimating P(t), we 

determine the relative prevalence between different ages or birth-cohorts rather than the 

absolute prevalence. The error structure for estimates of P(t) will depend on its 

parameterization (e.g., number of spline knots).

For the two-stage model, four parameters can be estimated (i.e., are identifiable) from 

prevalence and incidence data, namely

p2, q2 ≔ 1
2 − (α − β − μ1) ∓ (α − β − μ1)2 + 4αμ1 (4)

r2 ≔
ν0X

α , (5)

s2 ≔ σX
α . (6)

For rare mutations (μ1 ≪ 1) and biologically reasonable growth rates, parameter p2 is 

approximately equal to −(α−β−μ1), i.e., the negative of the net cell proliferation rate, and q2 

is on the order of the malignant conversion rate μ1. Parameters r2 and s2 are related to the 

background and agent-related tumor initiation rates.

We also consider the three-stage model, which is identical to the two-stage model except for 

an additional preinitiation stage before clonal expansion (Figure 1b, details in the 

supplementary material, [24]). In this case we can also estimate four parameters, namely,

p3, q3 = 1
2 − (α − β − μ2) ∓ (α − β − μ2)2 + 4αμ2 (7)

r3 = ν0Xμ1/α, (8)

s3 = σ X /α . (9)

Age-specific cancer incidence data corresponds to the model hazard or incidence function 

(details in the supplementary material). The age-specific etiological agent prevalence P(t) 
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can be either be taken as known through data or it can be treated as an unknown to be 

estimated.

The two- and three-stage models with constant parameters are associated with distinct age-

specific model hazard shapes [23]. The two-stage model flattens out with increasing age and 

can display peaks when there are cohort effects. The three-stage model, on the other hand, is 

characterized by a linear phase and does not decrease (on the time-span of human lives) 

without cohort effects. The choice of model is typically based on incidence shape, and 

likelihood-based model selection is used when needed. Biological evidence can be a useful 

corroboration.

In this formulation, we model the etiological agent as impacting the initiation rate. In 

previous work, we considered time-varying promotion or malignant conversion [12], and 

here we considered a model where the etiological agent impacts the promotion rate instead. 

However, that model generally did not fit the data as well and we will not discuss the results 

in detail here (selected results are presented in the supplementary material).

Analytic framework

We conduct two types of analyses, frameworks for which are depicted in Figure 2. In the 

first (forward framework) we assume that the agent prevalence is known. We then use the 

agent prevalence and cancer incidence data to estimate the MSCE model parameters, 

including the background cancer initiation (r), the initiation rate due to the etiological agent 

(s), and the tumor promotion (p) and malignant conversion rates (q). In the second type of 

analysis (inverse framework), we use only cancer incidence data to infer the etiological 

agent prevalence (P(t)) as well as the MSCE model parameters, including the relative 

background and agent-dependent initiation rates.

Case studies

We use three case studies as illustrative examples: H. Pylori and gastric cancer, smoking and 

lung cancer, and HPV and oral cancer.

Case study 1. H. pylori and gastric cancer—Since H. pylori infections are known to 

occur in childhood and persist unless treated, we assume that H. pylori infection status does 

not vary over the lifetime (P(t) ≡ P), as in [17], but that prevalence varies by birth cohort. 

Gastric cancer is modeled with the three-stage MSCE model with age-independent 

parameters and prevalence of H. pylori affecting both the preinitiation and initiation rates 

[24]. The three-stage model was chosen to model gastric cancer because its age-specific 

incidence is consistent with the three-stage model hazard shape, i.e., the incidence does not 

peak or flatten out [23]. We first estimate the model parameters using the NHANES H. 
pylori data for both men and women, and the SEER gastric cancer incidence data (forward 

framework). Later, H. pylori prevalence is estimated along with model parameters from 

cancer incidence alone (inverse framework).

Case study 2. Smoking and lung cancer—Smoking prevalence varies by age and 

birth cohort. Lung cancer is modeled with the three-stage MSCE model with age-
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independent biological parameters and with prevalence of smoking affecting the initiation 

and preinitiation rates. Comparison of two- and three-stage model fits indicated that lung 

cancer incidence was more consistent with the three-stage model. Carcinogenesis model 

parameters are estimated using the modeled smoking prevalence (forward framework). We 

do not use the inverse framework for lung cancer because the shape of age-specific smoking 

prevalence effects changes significantly over the available data (Figure S1b and c), making 

the estimation problem computationally infeasible for this case study.

Case study 3. HPV and HPV-related oral cancer—Studies of age-specific oral HPV 

prevalence, which have only recently begun, do not span enough years to disentangle age 

and cohort effects. Hence, we assume that the age-specific prevalence of oral HPV has the 

same shape as female cervicogenital HPV prevalence (1970 reference cohort). Birth cohort 

patterns on oral HPV prevalence are allowed to be different for men and women and be 

different from the genital cohort effects. HPV-related oral cancer is modeled with a two-

stage MSCE model because the cancer incidence peaks and comes down, consistent with a 

two-stage model with cohort effects. Birth cohort effects on HPV prevalence, in addition to 

carcinogenesis model parameters, are estimated for men and women (inverse framework). 

Because oral HPV has only been tested for since 2009, we cannot use the forward 

framework for the HPV-related oral cancer case study.

Model fitting and parameter estimation

Following the usual Age–Period–Cohort framework [12, 25–28], we assume that the 

prevalence of the etiological agent is related to both the age t and birth cohort c,

logit(P(θt, θc; t, c)) = gA(t, θt) + gc(c, θc) (10)

where gA and gC are functions (natural splines, here) of age t and cohort c and (spline) 

parameters θt and θc, respectively. The age- and cohort-specific incidence rate λ is given by 

the model hazard,

λ(π, θt, θc; t, c) = h(π, P(θt, θc; t, c)), (11)

where π represents all of the parameters of the MSCE model (see formulation of model 

hazard h in the supplementary material). Hence, in this formulation, age and cohort effects 

are on the prevalence of the etiological agent, not on the carcinogenesis parameters directly 

(as they were in our previous work [12]).

We assume that cancers cases are independent and Poisson-distributed, so that the likelihood 

for observed cases {xi} with corresponding population-at-risk sizes {ni} under these models 

is given by
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ℒ(π, θt, θc) = ∏
i

e
−ηiηi

xi

xi!
. (12)

where ηi = ni · λ(π,θt,θc;ti,ci).

We minimized the negative log-likelihood of the model with a Davidson–Fletcher–Powell 

algorithm in the R (v3.3.1) and gFortran versions of the Bhat package [29].

Results

Model fits to age-specific cancer incidence data by birth cohort are presented in Figure 3a–f 

and are discussed in the following sections. Corresponding plots of predicted cancer 

incidence by birth cohort are available in the supplementary material (Figure S2a–f).

Gastric cancer

Estimation of cancer parameters using cancer incidence and H. Pylori data 
(forward framework)—A likelihood-ratio test (p-value<0.01) indicated that the model 

was fit best by assuming that all GAC cases were related to the H. pylori pathway (i.e., r3 ≡ 
0) for both men and women. Estimated parameters p3, q3, s3 are listed in Table 2.

We compare GAC incidence-by-cohort data (points) with the resulting model predictions 

(lines) in Figure 3a and b. The figures demonstrate that GAC incidence has decreased 

considerably between the birth cohorts of the 1900s and the 1970s in a pattern that is 

consistent with the reduced prevalence of H. pylori over the same time frame. The three-

stage MSCE model with three parameters and initiation rate varying by birth-cohort (driven 

by the relative H. Pylori prevalence by cohort) fits the GAC trends well.

Estimation of both cancer parameters and H. Pylori prevalence by cohort 
(inverse framework)—Next, we consider the extent to which H. pylori prevalence can be 

estimated from incidence data. In addition to parameters p3, q3, and s3, we estimate H. 
Pylori prevalence by birth cohort, parameterized as a natural spline with five degrees of 

freedom. Because prevalence and s3 form an identifiable product, we can only estimate 

relative prevalence; here, we use 1925 as the reference birth cohort (when prevalence was 

approximately 50% (Figure S1a)). Table 2 shows the estimated cancer parameters in this 

framework; differences between biological parameter estimates when estimating H. Pylori 
prevalence (here) or not (previous framework) are relatively small. The estimated prevalence 

for men and women is plotted in Figure 4 with the smoothed NHANES data for comparison. 

The estimated prevalences both match the data well, with only minor discrepancies for those 

born in 1950s and ’60s (note that the discrepancies would have manifested for different birth 

cohorts had a different reference cohort been chosen). The corresponding GAC incidence 

data by cohort and the model predictions under this framework are given in the 

supplementary material (Figure S3a–b).
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Lung cancer

Estimation of cancer parameters using cancer incidence and smoking 
prevalence data (forward framework)—Estimated parameters p3, q3, r3, s3 are listed in 

Table 2. The models, which have only four degrees of freedom and are driven by smoking 

prevalence by cohort and gender, fit the data well up until the late-life period, where some 

deviations are seen (Figure 3c and d). The model estimates that the majority of lung cancer 

cases are due to smoking (or other effects captured by the cohort trends); the exact estimates 

depend on the smoking prevalence, but, for example, for the 1960 birth cohort, the model 

estimates 97.3% (97.1–97.4%) of lung cancers in men and 92.2% (91.2–92.5%) in women 

were caused by smoking. Over all of the cohorts, the model estimates that the relative risk of 

an initiating mutation if one is smoking is ρ=23.5 (22.1–25.0) for men and 14.2 (13.9–14.5) 

for women. The incidence-by-cohort plots suggest that the incidence of LC has varied 

dramatically in a cohort fashion, consistent with the patterns of smoking in the U.S. 

Predicted cancer incidence by cohort is available in the supplementary material (Figure S2c 

and d).

HPV-related oral cancer

Estimation of both cancer parameters and relative oral HPV prevalence by 
cohort using cancer incidence and genital HPV age-specific prevalence 
(inverse framework)—Because oral HPV-testing is a recent development, we must 

estimate the cohort effects of oral HPV from the cancer incidence data. As a first step, we 

assume that the age-specific prevalence of oral HPV in men and women in 1970 is a scaling 

of the age-specific prevalence of cervicogenital HPV in 1970. A likelihood-ratio test (p-

value<0.01) preferences the model without background initiation (r2 ≡ 0) for both men and 

women, so we estimate only p2, q2, s2 (Table 2) and the parameters for a natural spline with 

eight degrees of freedom. Model fits are plotted in Figure 3e and f. Predicted cancer 

incidence by cohort is available in the supplementary material (Figure S2e and f).

There is more spread in the data for this cancer than the two previously considered, resulting 

in larger model residuals, particularly for women, but the overall patterns in the age-specific 

incidence by birth cohort are captured. A comparison of the estimated relative birth cohort 

effects is given in the supplementary material (Figure S4). We plot the modeled cross-

sectional, age-specific prevalence of oral HPV for men (Figure 5a) and women (Figure 5b) 

between 1975 and 2010. Because prevalence is identifiable only up to a scalar, we scale the 

estimated prevalence to the 2009–10 estimates of US age-specific oral HPV prevalence from 

the NHANES survey [30]. A bimodal pattern emerges for men when plotting estimated oral 

HPV prevalence by calendar year; this pattern is qualitatively consistent with the 2009–10 

NHANES data, though shifted by approximately a decade. For women, the prevalence 

modeled from the cancer incidence does not capture the second peak in oral HPV prevalence 

seen in the data. Instead, the model suggests that the second prevalence mode may be aging 

out. This interpretation is driven by the cancer data (Figure 3f), where incidence for women, 

unlike for men, has been decreasing since the 1920–29 cohort. Discrepancies between the 

estimates based on cancer incidence and the data may be due to misspecification of the age 

effects, unaccounted-for period effects, or other factors affecting the temporal relationship 

between oral HPV and cancer (e.g., smoking, alcohol use, or other oral cancer risk factors).
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Discussion

In this study we assessed whether population-level cancer and risk factor data can be 

leveraged to infer cancer mechanisms and improve cancer rate projections, and, conversely, 

whether cancer risk factor patterns can be inferred from age-specific cancer incidence 

trends. Despite the analysis simplifications, modeling exposures by age and birth-cohort and 

relying on the MSCE model formulation to integrate and synthesize the information from 

both scales has proven an effective way to explore the complex relationship between risk 

factor prevalence and cancer incidence data at the population level. This result is particularly 

helpful when one considers that, in general, individual-level data for assessing risk factors 

are rare.

Advantages and challenges of incorporating risk factor data into analyses of cancer 
incidence data

A strength of this approach is the ability to achieve good fits parsimoniously, that is, with 

few parameters. The GAC and LC models are able to reproduce forty years of cancer 

incidence data with only three and four parameters, respectively, and the risk factor 

prevalence data. Our analyses demonstrate that, when considering risk factors with a strong 

causal link to a type of cancer, incorporating data from risk factor prevalence into analyses 

and projections of cancer incidence might be preferable to non-parametric approaches such 

as age–period–cohort analyses, which suffer from identifiability problems and over-fitting 

concerns [11, 12, 22]. By using population-level data, however, we lose the ability to assess 

heterogeneities in risk. For example, the risk of gastric cancer from H. pylori infection varies 

widely depending on some virulence factors of the pathogen and differences in host 

susceptibility [31]. Nevertheless, we can capture the overall temporal trend in incidence 

from the prevalence as well as risk profiles that average over the existing heterogeneities. We 

note, then, that the estimated biological parameters represent population averages that likely 

have significant individual variability depending on the pathogen and host characteristics.

Modeling GAC and LC incidence using H. pylori or smoking prevalence data gave good fits 

to the data in general, largely thanks to the strong relationship of these risk factors to the 

corresponding cancer. There is more uncertainty in the OSCC model, however. There are at 

least two major reasons for this. First, the SEER cancer registry does not record tumor HPV 

testing. We must rely, as previous studies have done [12, 32–34], on a presumed HPV-related 

status based on the location of the cancer. Because not all HPV-related cancers are HPV-

positive, some error is introduced into the data. Second, because oral HPV infection has only 

been tested for at the population level in recent years (NHANES began oral HPV testing in 

2009 [18]), it is not yet possible to determine which signals in the data are related to the age 

of the participant and which are due to cohort effects. Several studies of cervicogenital HPV 

prevalence and HPV serum antibodies have concluded that cohort effects, likely related to 

changes in sexual behaviors, have driven patterns of genital HPV infection [21, 35, 36], and 

it is likely that cohort effects have similarly played a role in patterns of HPV oral prevalence. 

In this study, we assumed that the age-specific prevalence of oral HPV in 1970 was 

proportional to cervicogenital prevalence. While unlikely to be exactly true, this assumption 

is not completely unreasonable as HPV infection for both sites is largely driven by sexual 
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contact and as there is a correlation between individual (and population-level) oral and 

genital infections [21, 37]. Still, any misspecification of the shape of the age effects in the 

model will propagate errors. Moreover, there may be period effects (i.e., calendar year 

dependent effects) that we did not account for in the model. Hence, the exact quantitative 

estimates of past oral HPV infection should not be given much weight. Nevertheless, we 

were able to broadly capture the bimodal prevalence pattern of oral HPV prevalence in the 

U.S. observed in 2009–10 in men [30]. At the time, it was not clear whether this bimodal 

pattern was an age effect or a cohort effect. Our results demonstrate that the data can be 

explained as resulting from cohort variations in HPV infection risk.

A major limitation of our study is that we restricted the analyses to a single risk factor per 

cancer. It is known, for instance, that smoking, alcohol consumption, and diet are also 

important covariates for OSCC [38]. Besides smoking, other environmental and 

occupational exposures, such as radon and asbestos, are relevant lung cancer risk factors 

[39]. Similarly diet, smoking, genetic factors, and medical conditions such as pernicious 

anemia have been associated with GAC [40]. However, the risk factors considered in all 

three case studies here are likely responsible for the large majority of the corresponding 

cancers, and here we show that accounting for their temporal patterns can improve analyses 

of cancer incidence trends and that one could also potentially estimate trends of the major 

risk factor for a specific cancer, if one exists, directly from cancer incidence data. Future 

work will consider two or more exposures simultaneously.

In this analysis, we assumed that the mechanism of action of the etiological agents was on 

tumor initiation. Individual-level analyses of prospective cohort data, however, have 

suggested that this not always the case and that exposure-related promotion is a relevant 

mechanism in multiple cancers, such as smoking-related lung cancer [3, 4, 41], as well as in 

other exposure–cancer pairs [5, 42, 43]. We found that an MSCE model where the 

etiological agent increased the net cell proliferation did not fit the cancer incidence data as 

well (see supplement). This finding does not necessarily mean that promotion is not the 

mechanistic pathway; there may be non-linear or exposure magnitude effects that we cannot 

capture with the population-level data available. Nevertheless, the excellent fits and 

predictions obtained with as few as four parameters, suggest that, as a first approximation, 

assuming the effects on initiation is adequate for predicting population-level trends.

Estimation of risk factor prevalence from cancer incidence data only

Our analyses indicate that when there is a strong causal link between a risk factor and a 

cancer outcome, it is possible to extrapolate and estimate risk factor prevalence for time 

periods without direct data. A major barrier to this kind of estimation has been the long and 

highly variable temporal distance between the risk factor and the cancer outcome. Here, by 

leveraging MSCE models, we use basic carcinogenesis mechanisms to understand the 

temporal structure of these delays, allowing us to both predict future cancer incidence 

knowing current risk factor prevalence and to estimate previous risk factor prevalence from 

current cancer incidence.
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Estimation of the relative contribution of background versus agent-related initiation

Our approach explicitly differentiates between tumor initiation due to the etiological agent 

versus due to background causes. We find, however, that in practice the models often neglect 

the background initiation pathway (i.e., we estimate the background rate to be r = 0). This 

phenomenon occurs in part because the model calibration will wrap any other pathway 

effects with similar temporal patterns into the agent pathway, resulting in a potential 

overestimation of the fraction of cases due to the etiological agent of interest. Hence, while 

the LC model estimated that more than 90% of the LC cases were due to smoking, 

attributable fraction estimates suggest that the true values are likely somewhat less than this

—e.g., the U.S. Surgeon General estimates that 80–90% of LC is caused by smoking [15], 

although this varies by gender and year. The data used covers the period of time where 

smoking-related lung cancer incidence was at its highest, which likely biases our results to 

higher attributable fraction estimates. Our analysis could be refined if data on case exposure 

were available (e.g., identification of LC cases as never, former and current smokers, or HPV 

status of OSCC tumors). That being said, our analyses—which are based on models that 

account for not only random or agent-caused mutations but also tumor cell clonal expansion, 

long-term cancer registry data, and temporal patterns of leading risk factors—suggest that, at 

least for these cancers, a majority of cases can be attributed to these environmental 

exposures.

Interest and discussion concerning the proportion of cancer cases (or cancer types) 

attributable to environmental factors, hereditary factors, or “bad luck” mutations has 

increased in recent years following the publication of Tomasetti and Vogelstein’s analysis 

[44, 45] that suggested that two-thirds of the variation in cancer risk between cancers of 

different tissues could be explained by differences in stem cell division rates. This work has 

been very controversial, in part due to misinterpretation of their conclusions, and many 

others have weighed in on this topic (e.g., [46–51]). Our analyses of specific risk factors and 

cancers using mechanistic models, which explicitly account for clonal expansion and 

evolution in addition to random and environmentally driven-mutations, show the relevance 

of both environmental and random effects in the carcinogenesis process.

Conclusion

Relating risk factor patterns to cancer incidence is difficult: the temporal relationships 

between exposures and outcomes are complex. We have demonstrated that integrating 

population-level data on both cancer and exposures though mechanistic, mathematical 

models can be a first step to systematically testing relationships between exposures and 

cancer risk, particularly when individual-level data representative of a population is lacking.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

Analysis of trends in risk-factor prevalence and cancer incidence can shed light on cancer 

mechanisms and the way that carcinogen exposure through time shapes the risk of cancer 

at different ages.
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Quick guide to equations and assumptions

Assumptions

• Cancer arises from a series of rare, stochastic events, and the numbers of pre-

malignant and malignant cells is modeled as a continuous-time Markov chain 

(Figure 1).

• The first initiating mutation is modeled as a non-homogeneous Poisson 

process. We assume that this rate is dependent on the age-specific prevalence 

of the etiological agent in the population.

• Clonal expansion and malignant conversion of initiated cells is modeled as a 

birth–death– mutation process.

• The model hazard corresponds to age-specific cancer incidence data.

Key equations

Modeled cancer survival x1(t) is defined as the probability that an individual has no 

malignant cells at age t. The model hazard is defined as

x2(t) = − d
dt log x1(t)

and corresponds to age-specific cancer incidence data. The per-cell initiating mutation 

rate ν(t) can be written as

ν(t) = ν0((1 − P(t)) + ρP(t)),

where ν0 is the baseline initiation rate, P(t) is the prevalence of the etiological agent at 

age t, and ρ is the relative risk of initiation given exposure to the etiological agent. If α is 

the cell growth rate, β the cell death rate, μ1 the malignant conversion mutation rate, and 

X the number of normal cells in the tissue, then the survival and hazard of the two-stage 

clonal expansion model at age t are found by numerically solving for x1(t) and x2(t), 
respectively, in the following system of equations, in which x3(t) and x4(t) can be treated 

as dummy variables,

∂x1
∂s (s) = − ν(t − s)Xx1(1 − x3)

∂x2
∂s (s) = − ν(t − s)Xx4

∂x3
∂s (s) = − [α + β + μ1]x3 + β + αx3

2
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∂x4
∂s (s) = − [α + β + μ1]x4 + 2αx3x4,

with initial conditions x1(0) = 1, x2(0) = 0, x3(0) = 1, x4(0) = −μ1.
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Figure 1. Two- and three-stage clonal expansion model diagrams
a) Diagram of the two-stage clonal expansion model with initiation dependent on the 

etiological agent prevalence. Multistage clonal expansion models are continuous-time 

Markov chain models that follow the initiation– promotion–malignant-conversion 

hypothesis of carcinogenesis. b) Diagram of the three-stage clonal expansion model. In this 

model, cells require two rare events before clonal expansion. Both preinitation and initiation 

rates are dependent on the etiological agent prevalence.
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Figure 2. Forward and inverse analytic frameworks
The analytic framework depends on whether etiological agent prevalence is known (forward 

framework) or is estimated in addition to the model’s cancer biology parameters (inverse 

framework).
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Figure 3. Gastric, lung, and HPV-related cancer incidence and model fits
Incidence and modeled incidence per 100,000 are plotted for men and women by birth 

cohort of (a and b) intestinal-type noncardia gastric adenocarcinoma (GAC), (c and d) 

malignant neoplasms of the bronchus and lung (LC), and (e and f) HPV-related oral 

(oropharyngeal and oral cavity) squamous cell carcinoma (OSCC). Dots are SEER 9 data, 

and the lines are the model hazards.
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Figure 4. Relative H. pylori prevalence
Relative prevalence estimated from gastric cancer incidence is compared to estimates from 

NHANES, with 95% likelihood-based confidence intervals, taking 1925 to be the reference 

birth cohort (the cohort for which prevalence was approximately 50%).

Brouwer et al. Page 22

Cancer Res. Author manuscript; available in PMC 2019 June 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Modeled age-specific prevalence of oral HPV
Modeled prevalence by calendar year is estimated from models of HPV-related oral cancer 

incidence, for a) men and b) women. The dotted lines give the unadjusted cubic spline 

approximations of oral HPV prevalence in men and women in NHANES 2009–10 [30].
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Table 1
Model parameters

Parameters and identifiable parameter combinations of a multistage clonal expansion (MSCE) model with 

two-stages and population-level etiological agent prevalence.

Parameters

X Number of normal cells, X = X(0)

ν0 Baseline per-cell mutation rate for normal cells (asymmetric division)

ρ Relative risk of an initiating mutation in the presence of the etiological agent

σ Initiation rate due to the etiological agent, σ = ν0(ρ − 1)

P(t) Population-level, age-specific prevalence of the etiological agent

α Initiated cell clonal expansion rate (symmetric division)

β Initiated cell death rate

μ1 Initiated cell malignant conversion rate (asymmetric division)

Identifiable parameter combinations

p Net cell proliferation (Eqs. (4) and (7))

q Malignant conversion (Eqs. (4) and (7))

r Background tumor initiation (Eqs. (5) and (8))

s Agent-related tumor initiation (Eqs. (6) and (9))
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