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Abstract

Population stratification (PS) is a primary consideration in studies of the genetic determinants of 

human traits. Failure to control for it may lead to confounding, causing a study to fail for lack of 

significant results or resources to be wasted following false positive signals. Here we review 

historical and current approaches for addressing PS when performing genetic association studies 

in human populations. We describe methods for detecting the presence of PS including global and 

local ancestry methods. We also describe approaches for accounting for PS when calculating 

association statistics, such that measures of association are not confounded. Many traits are being 

examined for the first time in minority populations, populations that may inherently feature PS.
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KEY CONCEPTS

Definition and Causes of Population Stratification

As Homo sapiens geographic range expanded over time and groups left the site of their 

geographic origins in Africa [Vigilant, et al. 1991], they separated into subgroups and 

experienced novel stresses and environments. Geographic isolation, interbreeding, and 

adaptation differentiated human populations from each other [Schlebusch, et al. 2012].

Fossil and genetic evidence suggests that anatomically modern humans evolved in Africa 

about 150,000 to 190,000 years ago [McDougall, et al. 2005; White, et al. 2003] and 

expanded into a diverse array of niches there, providing Africans with the highest level of 
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genetic diversity among current human continental populations [Rosenberg, et al. 2002; 

Tishkoff, et al. 2009]. Humans subsequently migrated into Europe, Asia, and the Americas 

in an approximately West-to-East pattern that began approximately 50,000 – 100,000 years 

ago [Gravel, et al. 2011; Harris and Nielsen 2013; Li and Durbin 2011; Mallick, et al. 2016] 

and concluded with the settlement of South America sometime in the last 15,000 years 

[Jenkins, et al. 2012]. The features of this scenario are increasingly complex, as 

understanding of hominin origins are updated regularly by increasingly sophisticated studies 

of modern populations, discoveries of ancient DNA specimens, and archaeological artifacts. 

A recent review by Nielsen et al. covers this history and the evidence that supports it 

[Nielsen, et al. 2017].

Among the effects of this period of colonization and the migrations during and afterward, as 

well as mating between populations of humans and other hominins [Green, et al. 2010; 

Meyer, et al. 2012; Vernot and Akey 2015], are differences across populations in allele 

frequencies throughout the genome. These differences, however they arise, are detectable in 

studies of human populations and provide information about both demographic history and 

geographic origins in modern humans [Novembre, et al. 2008; Wang, et al. 2012a]. This 

state, where populations are distinguishable by observing genotypes, is referred to as 

population structure or population stratification (PS).

PS may confound associations between genotype and the trait of interest in a genetic study. 

When PS exists, false positive or negative associations between genotype and trait may arise 

from differences in local ancestry that are unrelated to disease risk or trait variance. A 

consequence of PS, genetic admixture, arises from interbreeding of ancestral groups. A 

common example of genetic admixture is the African American population, which has both 

African and European ancestry. These factors must be considered in study designs and 

accounted for statistically in order for results of genetic association studies to be reliable. In 

this Unit, we will discuss the causes of PS and its history in genomic investigations, methods 

for observing global and local ancestry within a population, and techniques to account for 

and leverage differences in ancestry within genetic association studies.

PS is caused by non-random mating and most often arises due to geographic isolation of 

subpopulations with low rates of migration and gene flow over the course of several 

generations (Hartl and Clark, 2007). The geographic separation of these isolates allows for 

divergent random genetic drift due to sampling error in the set of parental alleles, which is 

subsequently propagated through successive generations. As a result, allele frequencies 

change randomly over time as an independent process for each population isolate, ultimately 

causing observable differences in the frequency of many alleles after several generations of 

separation and differentiation.

This scenario also introduces the possibility of selection for different traits in different 

geographic regions. A classic example of selection is hypolactasia, or lactase intolerance, a 

trait which prevents individuals from metabolizing the milk sugar lactose into adulthood 

through decreased production of the lactase enzyme [Bayless, et al. 2017]. One of the first 

genetic variants found to be associated with hypolactasia in humans, rs4988235, resides not 

in the lactase gene LCT, but rather in an enhancer region within an intron of another gene, 
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MCM6, approximately 15kB upstream of the LCT promoter [Enattah, et al. 2002; Lewinsky, 

et al. 2005; Olds and Sibley 2003]. A two-variant haplotype including rs4988235 and 

rs182549 explains 77% of hypolactasia variance in Europeans, but does not explain the trait 

distribution in individuals of African ancestry [Mulcare, et al. 2004]. Multiple studies have 

discovered additional variants including rs145946881, rs41380347, and rs41525747 that 

explain the distribution of hypolactasia in Africans, all of which reside in the same enhancer 

region as the European variant rs4988235 [Friedrich, et al. 2012; Ingram, et al. 2007; 

Ingram, et al. 2009; Tishkoff, et al. 2007]. Age estimates for the European hypolactasia 

variant rs4988235 range from 2,188 to 20,650 years ago [Bersaglieri, et al. 2004]. Similarly, 

age estimates for the African variant rs145946881 range from 1,200 to 23,200 years ago 

[Tishkoff, et al. 2007]. An empirical example of PS is the spurious association between LCT 
and height in a case-control study of European American population [Campbell, et al. 2005]. 

A single nucleotide polymorphism (SNP) in LCT showed strong association (p-value < 

10−6) with height without addressing PS. No significant association was detected between 

the SNP and height after correcting for PS.

Larger, more ancient gene pools, such as African ancestry, have a greater amount of overall 

variation and a finer linkage disequilibrium (LD) structure between markers [Goddard, et al. 

2000]. Maximum ability to differentiate populations comes from genetic markers with large 

frequency differences among the parental populations for admixed samples. These markers, 

often SNPs, are known as ancestry informative markers (AIMs). AIMs are frequently 

incorporated into genotyping experiments when PS is suspected for downstream 

conditioning on inferred ancestral information in association modeling [Pritchard and 

Donnelly 2001].

The differentiation among subpopulations is detectable even when the regional differences 

are subtle, as has been described in Chinese and Japanese and European populations [Gao 

and Starmer 2007]. Cultural differences among populations also create stratification, even 

when populations inhabit the same geographical region. An example of this is the detectable 

differences among populations that speak Khoesan languages that include click-consonants 

from non-Khoesan speaking peoples who occupy the same geographic range [Tishkoff, et al. 

2009]. Recent evidence shows that, even after correction for ancestry inferred from common 

genetic factors such as AIMs, subtle uncorrected population substructure persists in some 

genomic studies [Bhatia 2016].

Measures of genetic differentiation

There are several measures of genetic differentiation to evaluate the relationship of 

subpopulations to one another. One of the classical approaches is the fixation index (Fst), 

which compares the differences in expected heterozygosity across populations under Hardy-

Weinberg Equilibrium [Weir and Cockerham 1984; Weir and Hill 2002; Wright 1921]. The 

drift toward fixation in isolated groups results in a loss of heterozygosity in the total 

population, which is known as the Wahlund effect [Wahlund 1928]. Specifically, Fst 

quantifies the proportional impact the subpopulations have on the heterozygosity estimate 

relative to the situation where there was no population structure. An expression for Fst 

relating the expected heterozygosity under Hardy-Weinberg Equilibrium H of a single 
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marker in the subpopulation s, denoted Hs, to the total Ht is Fst = Ht−Hs/Ht. Average Fst 

across a set of unlinked markers is a standard metric for assessing population genetic 

differentiation. Smaller Fst indicates similar allele frequencies between populations, while 

larger values mean that the allele frequencies are different [Holsinger and Weir 2009]. 

Sewell Wright suggested the following guidelines for interpreting values of Fst: 0–0.05 

indicates little differentiation, 0.05–0.15 indicates moderate differentiation, 0.15–0.25 

indicates great differentiation, and greater than 0.25 indicates very great differentiation.

Because the effects of alleles on traits detected in genetic studies are usually subtle, 

relatively small levels of differentiation can confound tests of association. Factors that can 

accelerate the rate of differentiation at a locus are small subpopulation size, inbreeding, 

selection, and mutation. Some factors that slow the rate of differentiation are migration and 

gene flow between subpopulations and large population size. Approaches for using Fst for 

estimating migration rates, inferring demographic history, identifying genomic regions under 

selection, forensic science and association mapping, and a discussion of the relationship 

with coalescent theory were reviewed by Holsinger and Weir [Holsinger and Weir 2009]. 

Further, observed Fst across human subpopulations have also been reported [Steele, et al. 

2014].

Another quantification of the differences between population samples is the allele sharing 

distance (ASD) [Gao and Martin 2009; Gao and Starmer 2007]. ASD is a pair-wise measure 

among subjects across a large set of markers, and is defined by the expression, where dl = 0 

if two individuals have two alleles in common at the l-th locus; dl = 1 with one allele in 

common, and dl = 2 when there are no alleles in common. The relationship between ASD 

and the closely related identical by state (IBS) has been described by Miclaus et al [Miclaus, 

et al. 2009].

Admixture and Admixture Mapping

Although it simplifies the description of PS to imagine the allele frequencies of distinct 

subpopulations randomly drifting away from each other over time, populations also tend to 

mix. This is known as admixture, and at the first generation after two distinct populations 

begin mixing, these offspring have half of their genetic material from each of the maternal 

and paternal populations. In subsequent generations, average ancestral proportions in 

offspring vary according to the composition and rates of genetic exchange among the 

ancestral populations.

African Americans are a classic example of this, where approximately 80% of the genome is 

derived from African ancestors and 20% from European ancestors at autosomes, and there 

are greater proportions of African-derived X chromosomes due to historically skewed 

transmission to offspring from European males and African females [Bryc, et al. 2010].

Examples of Population Stratification in Genetic Studies

As a simple numeric example of PS, suppose some data are collected as listed in Table 1. In 

population 1, the cell frequency (case, allele A) is 0.27, which is equal to the product of the 

marginal frequencies 0.3*0.9. This relationship holds for population 2, i.e. 0.08 = 0.8*0.1. 

Therefore, no association exists between marker alleles and case-control status. However, in 
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the pooled data of population 1 and 2, the cell frequency for (case, allele A), 0.175, is no 

longer equal to the product of the marginal frequencies 0.55*0.5 and a chi-square test with 

one degree of freedom is significantly association with p-value < 0.0001. Therefore, even 

though there is no association in either population 1 or 2, a false positive association exists 

in the pooled population.

Confounding due to PS resulting in spurious genotype-phenotype associations is well-

documented. A classic example is a study by Knowler et al. that describes an association 

between a polymorphism in the immunoglobulin Gm system, Gm3:5,13,14, and type 2 

diabetes in Native Americans recruited from the Gila River Indian Community in southern 

Arizona [Knowler, et al. 1988]. Gm polymorphisms have different frequencies between 

ancestry groups [Brucato, et al. 2009; Schanfield and Kirk 1981; Williams, et al. 1985]. 

Knowler et al. showed that Gm3:5,13,14 was not a causal genetic factor in the development of 

type 2 diabetes, but that the observed association was confounded by admixture between 

Native American and European ancestry groups [Knowler, et al. 1988]. After adjustment for 

admixture proportions, the association was no longer statistically significant.

The spurious association of markers that are highly variable between ancestry groups is not 

uncommon. Choudry et al. analyzed AIMs for association with asthma in two admixed 

Latino populations, Mexicans and Puerto Ricans, which have the highest and lowest asthma 

morbidity, mortality, and prevalence rates among all US populations, respectively 

[Choudhry, et al. 2006; Homa, et al. 2000; Moreno-Estrada, et al. 2013]. Of all 44 AIMs 

tested, eight were significantly associated with asthma, but only two remained significant 

after adjustment for PS.

Some populations have very complex recent demographic histories that must be accounted 

for in statistical analyses. For example, the Brazilian population is made up of individuals 

with varying proportions of African, Native American, and European ancestry [Pena, et al. 

2011]. Skin color is poorly correlated with genetic ancestry in the Brazilian population and 

therefore self-reported race can be inaccurate for genetic studies [Pena, et al. 2011]. Early 

genetic studies of type 1 diabetes (T1D) in Brazilians reported geographic variability in 

HLA-DR and HLA-DQ allele frequencies, two genetic loci strongly associated with T1D in 

Europeans [Silva, et al. 2008; Thomson, et al. 2007]. In a study accounting for PS, Gomes et 
al. identified a novel protective haplotype DRB1*10-DQB1*0501 [Gomes, et al. 2017].

Accounting for PS in candidate gene studies is challenging due to the lack of genome-wide 

coverage of genetic factors from which ancestry may be inferred. A classic example is the 

observed association between a restriction fragment length polymorphism (RFLP) upstream 

of the insulin gene INS and T1D [Bell, et al. 1984]. Replication of this association was 

consistently reported in population-based studies across several ancestries, but no evidence 

of linkage was detected in family studies [Spielman, et al. 1989]. These findings initially 

suggested that the observed association was the result of confounding due to PS. However, 

implementation of the transmission disequilibrium test (TDT), a linkage method that 

incorporates family member controls and is robust top PS, detected strong evidence of 

linkage between the RFLP and T1D [Spielman, et al. 1993]. The failure of previous family-

based genetic studies to detect linkage between the RFLP and T1D was likely due to a lack 
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of power to detect variants with modest effects. Recent studies have shown that as few as 30 

AIMs are sufficient to accurately estimate ancestry proportions in African American 

populations, suggesting that modest numbers of AIMs are adequate in more complex 

populations [Kodaman, et al. 2013; Ruiz-Narvaez, et al. 2011].

Patterns of PS may also provide insights into demographic histories in admixed populations. 

An analysis of 128 AIMs in the Cuban population showed a large European paternal 

contribution and a large Native American and African maternal contribution [Marcheco-

Teruel, et al. 2014]. These contributions are concordant with the historical context of male 

European settlers mating with Native American females during the early stages of 

colonization, and later mating with African females during the period of transatlantic slave 

trade [Benn-Torres, et al. 2008; Mendizabal, et al. 2008]. Similarly, analysis of genetic data 

from 23 and Me (23 and Me Inc., Mt. View, CA), a direct-to-consumer genetic testing 

company, shows evidence of sex-biased gene-flow in the U.S. reflective of early colonization 

by and subsequent immigration of European populations [Bryc, et al. 2015; Eriksson, et al. 

2010; Tung, et al. 2011].

QUANTIFYING POPULATION STRATIFICATION

Global and Local Ancestry

Global ancestry—Many methods for working with PS estimate global parameters to 

summarize the ancestry of study subjects. These parameters are often useful for both PS 

detection and statistical control of confounding by PS. Depending on the questions 

addressed; methods to detect and quantify PS require genotype data from a handful of 

carefully selected genetic variants to a large number of genome-wide SNPs. A common 

question in PS detection is the number and type of SNPs needed to detect PS in a given 

context. Regardless of the statistical methods employed, the more similar two populations 

are, the more markers need to be evaluated to detect the differences.

If the study is performing small-scale genotyping, then AIMs may be the most cost-efficient 

way to quantify ancestry. This approach is only possible if AIMs have been identified a 
priori, as has been done for the reference populations from the International HapMap Project 

(http://www.hapmap.org). The 1000 Genomes Project [Genomes Project, et al. 2012] is also 

widely used for most populations, with the Haplotype Reference Consortium (HRC) panel 

[McCarthy, et al. 2016] becoming more commonly utilized recently. However, construction 

of population-specific reference sets through whole genome sequencing is becoming 

increasingly more common [Low-Kam, et al. 2016] (French-Canadian); [Tang, et al. 2016] 

(Australian Aboriginal; exome); [Higasa, et al. 2016] (Japanese); [Thareja, et al. 2015]

(Persian Kuwaiti); [Huang, et al. 2015] (UK10K, United Kingdom), [Kawai, et al. 2015] 

(1KJPN, Japanese); [Wong, et al. 2014] (South Asian Indians); [Kim, et al. 2014] (Korean); 

[Deelen, et al. 2014] (GoNL, Netherlands); [Carmi, et al. 2014] (Ashkenazi); [Wong, et al. 

2013] (Asian Malays)), though some of these (i.e. UK10K and GoNL) have also been 

included in the HRC. Otherwise if genome-wide association study (GWAS) data are 

available, then 50,000 to 100,000 linkage disequilibrium (LD)-pruned SNPs may be used to 

estimate global ancestry.
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Local ancestry—With the availability of GWAS data in admixed populations and 

advances in admixture mapping, several methods have been developed to classify ancestry in 

small chromosomal regions. Early methods evaluating local ancestry in admixed 

populations, including MALDsoft, STRUCTURE, and ANCESTRYMAP, were based on 

Hidden Markov Models (HMM) [Falush, et al. 2003; Hoggart, et al. 2004; Montana and 

Hoggart 2007; Patterson, et al. 2004; Zhu, et al. 2006].

Local ancestry estimates can be used as covariates in linear models on a SNP-by-SNP basis 

[Wang, et al. 2011]. Alternately, tests based on a conditional likelihood framework, which 

models the distribution of the test SNP given disease status and flanking marker genotypes, 

are also available [Wang, et al. 2011]. Alternatively, principal components analysis (PCA), 

multidimensional scaling (MDS), STRUCTURE, and other methods can provide estimates 

of global ancestry in that are useful for adjusting for PS in linear models. Local ancestry 

estimates the ancestral origin of chromosomes at a locus. While adjusting for global 

estimates is the most common approach and controls confounding in GWAS, residual 

confounding might lead to increased type II errors, and improvements in power have been 

noted for adjusting for local estimates [Wang, et al. 2011].

Global Ancestry Methods

Methods for estimating ancestry proportions—Direct evaluation of genetic ancestry 

proportions involves comparisons of sample data to reference allele frequencies are based on 

the use of AIMs. The necessary difference in allele frequency to differentiate two 

populations can vary depending on the number of AIMs and the genetic distance between 

populations. Often a 20% difference in allele frequencies is used to define AIMs. AIMs can 

be identified from published lists, or through empirical assessment of allele frequencies in 

the available genetic data. Fewer AIMs are required to quantify global ancestry when allele 

frequency differences are large. However, inclusion of more AIMs increases the precision of 

ancestry estimates. Accurate estimation of ancestry proportions is also dependent on the 

number of parental populations (designated K) assumed to contribute to the overall genetic 

ancestry of the target population. Most of the approaches described here can be implemented 

either defining K to the number of suspected subpopulations believed to be present in the 

data and providing those K reference datasets, or alternatively, selecting increasing values 

for K, and choosing the value of K where the likelihood of the data given K is largest. If the 

likelihood is largest at K=1, then there is no evidence for PS. Subjects who map into the 

known groups can then be identified as a member of that population or a related 

subpopulation. Several software packages exist for computation of global genetic ancestry 

proportion estimates, among them the most popularly adopted are STRUCTURE [Falush, et 

al. 2003; Pritchard, et al. 2000a], FRAPPE [Tang, et al. 2006] and ADMIXTURE 

[Alexander and Lange 2011; Alexander, et al. 2009].

STRUCTURE uses a Bayesian approach and relies on a Markov Chain Monte Carlo 

(MCMC) algorithm to jointly sample the posterior distribution of allele frequencies and 

fractional group memberships. STRUCTURE assumes that the data are comprised of 

mosaics of chromosomes from an arbitrary number of homogeneous ancestral 

subpopulations (K), and that each subpopulation is characterized by a distinct vector of 
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allele frequencies. STRUCTURE is sensitive to non-random missing data, and running the 

software with enough iterations to ensure the convergence of the MCMC algorithm is also of 

concern when utilizing this method [Yang, et al. 2005]. In practice, between 1,000 and 5,000 

iterations are sufficient for burn-in, and 5,000–10,000 are sufficient for estimation. Too little 

iteration will cost accuracy, while too much iteration will only cost computational run-time, 

so if in doubt, use of more iterations than necessary will yield accurate results.

One of the earliest approaches for controlling for global ancestry was Structured Association 

(SA) and is a two-step procedure [Pritchard and Donnelly 2001; Pritchard, et al. 2000b]. The 

first step uses markers that are not associated with any trait of interest to assign individuals 

to subpopulations and then test for association within those groups. The first step can be 

performed using the program STRUCTURE. The second step, the association testing, is 

performed using likelihood ratio tests. The most challenging issue in SA analyses is to 

estimate the correct number of subpopulations to condition on. STRUCTURE does provide a 

data-driven way to infer this number, by scanning over choices of K, and choosing the value 

that maximizes the likelihood of the data given K.

FRAPPE and ADMIXTURE each use a maximum likelihood estimate (MLE) approach and 

optimize the likelihood for both allele frequencies and fractional group memberships using 

an expectation-maximization (EM) algorithm, but ADMIXTURE uses a faster optimization 

algorithm. ADMIXTURE yields ancestry estimates with similar accuracy as STRUCTURE 

but uses less computing time, and has many of the same capabilities, including the ability to 

estimate the number of underlying ancestral populations, incorporate reference individuals 

of known ancestry to improve ancestry estimates, and penalize small ancestry estimates to 

improve model parsimony and avoid model fitting problems [Alexander and Lange 2011].

Newer software packages for calculating global ancestry proportion have been constructed 

to take sequencing-derived genotypes with uncertainty into account, as well as to construct 

population relationship trees from the data. NGSadmix [Skotte, et al. 2013] is an extension 

of the MLE framework built to accommodate genotype likelihoods often available from low-

depth next-generation sequencing (NGS) data due to the uncertainty regarding the true 

genotypes. Although slower than ADMIXTURE, use of the genotype likelihoods outperform 

the hard-called genotypes, when sequencing depth was approximately even for all 

individuals and average depth was at least 0.5x. Ohana [Cheng, et al. 2017] is another new 

method for inferring admixture in an MLE framework which is applicable both to called 

genotypes and to NGS data, which also estimates population relationships using a Gaussian 

approximation. It selects the best covariance matrix compatible with a tree, thereby 

estimating a tree, and provides simple algorithms and visualization tools to obtain the 

evolutionary trees.

There are also software packages that explicitly map spatial differences in ancestry. These 

methods were developed to approximate the geographic location of admixed populations. 

SPA [Yang, et al. 2012] is a probabilistic model for the spatial structure of genetic variation, 

which explicitly models how the allele frequency of each SNP changes as a function of the 

location of the individual in geographic space (where the allele frequency is a function of the 

x and y coordinates of an individual on a map). This approach detects SNPs with steep 
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geographic gradients in allele frequency that suggest the SNPs have been under selection. 

Geographic Ancestry Positioning (GAP) uses genotypes to infer local spatial distances and 

applies them to a global space [Bhaskar, et al. 2017]. This method has been extended to an 

association test, which uses an allele frequency smoothing technique using the spatial 

coordinates and incorporates that information to test each SNP in an inverse regression of 

the genotype against the trait, conditional on the estimated allele frequency.

Methods for observing and clustering ancestral groups—Several methods infer 

PS, such as MDS or PCA, using singular value or eigenvector decomposition. These 

methods use genome-wide level data to summarize genetic variance in variables that can be 

plotted to visualize genetic relationships between samples. When visualized alongside 

known reference populations, ancestral background, and therefore PS, among the sample can 

be identified. Other scenarios can also cause clustering of samples, including kinship and 

genotyping batch effects. Thus visualization of the components with reference population 

anchors is strongly recommended to ensure clustering by continental ancestry in reference 

populations is as expected. PCA is implemented in EIGENSTRAT [Price, et al. 2006], as 

well as MDS implemented in PLINK software [Purcell, et al. 2007]. The output from PCA 

and MDS is often very similar, as illustrated in Figure 1.

Recently several faster methods for computation of PCs have been developed that use 

randomized matrix algorithms and parallelized matrix multiplication. These methods include 

FlashPCA [Abraham and Inouye 2014] and FastPCA [Galinsky, et al. 2016] implemented in 

EIGENSOFT as fastmode option. FastPCA computational time scaled linearly with 

increasing sample size as opposed to other methods that have shown cubic or quadratic 

increases. Analysis of 100,000 individuals and 100,000 SNPs with FastPCA on a single 

computer required less than an hour and only 3.2GB memory, while flashPCA required 

nearly 10 hours and 40GB to compute across 30,000 samples. The LASER program [Wang, 

et al. 2014; Wang, et al. 2015] is designed to handle low-coverage sequence reads to perform 

PCA. When combined with genotype imputation, LASER 2.0 can accurately estimate fine-

scale genetic ancestry, and is implemented on a web server (http://laser.sph.umich.edu/) 

[Taliun, et al. 2017].

The SNPweights method [Chen, et al. 2013] assigns weights to the individual SNPs in the 

analysis by population. Weights for SNPs are pre-computed in the reference panel and those 

weights can be applied to the sample to infer ancestry without having to gain access to the 

raw genotypes of the reference panel. This is similar to the approaches utilizing AIMs, 

however, this incorporates more SNPs which improves accuracy when genome-wide SNPs 

are available.

Principal Components Analysis with Related individuals (PC-AiR) [Conomos, et al. 2015] 

infers PS in the presence of related individuals. This method identifies an unrelated subset of 

individuals that represents the ancestral diversity of the sample and computes PCs in this 

subset and projects PCs onto the remainder of the sample. This approach does not require 

reference samples to be included for adequate performance, but does perform better when 

incorporating kinship coefficients when defined pedigree structure among samples is 

unknown.
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Extensions of PCA have been developed to handle complex ancestral scenarios are also 

available. PCAmask [Moreno-Estrada, et al. 2013] and subspace PCA (ssPCA) [Johnson, et 

al. 2011] were developed to address the complex recent admixture of indigenous and Native 

American populations. These approaches analyze genomic segments consistent with a single 

inferred continental population (virtual genomes). The PCAmask approach extends upon 

ssPCA by utilizing phased haplotype data, allowing use of genomic regions that are 

ancestrally heterozygous.

Genomic Control—Another popular PS method is Genomic control (GC), which controls 

the inflation of test statistics and can also be used to detect PS. It was developed for 

dichotomous traits [Devlin, et al. 2004; Devlin and Roeder 1999; Devlin, et al. 2001] and 

then extended to quantitative traits [Bacanu, et al. 2002]. At least 100 uncorrelated SNPs 

should be genotyped for GC, and these SNPs should not be associated with the trait of 

interest. The goal of GC is to quantify the bias in the data, either due to confounding, 

experimental errors, cryptic relatedness, or other causes. When SNPs in the GC set are 

associated with the trait, then their test statistics represent the alternative hypothesis and 

appear biased compared to the distribution expected under the null hypothesis. Thereby, if 

non-null SNPs are used to calculate the GC correction, then the correction will be 

conservative and associations will be more difficult to detect.

GC adjusts the observed distribution of the test statistic Y for tests of association between 

these null markers and the trait. Under the null hypothesis of no association, the Armitage 

trend test for association of SNPs with traits is asymptotically equal to a chi-square 

distribution. When there is PS, the test statistic is inflated by a factor, λ. Therefore, the 

statistic (Y) results from the inflation of the Armitage trend test, which can be written as 

Y = λχ1
2. λ is then calculated as λ̂ = median(Y1, Y2, …, YL)/0.4549 or λ̂ = mean(Y1, Y2, …, 

YL)/1 since the median and mean of χ1
2 are 0.4549 and 1, respectively. By estimating λ 

from the unassociated SNPs and using Yi/λ to calculate p-values in place of Yi, for i 

markers, the effect of PS on p-values will be removed, reestablishing the χ1
2 distribution over 

a large number of SNPs.

Additionally, λ̂ provides a convenient quality control statistic for assessing whether 

association tests for GWAS data are confounded. This is done by checking if λ̂ is much 

different from 1 in the lower 90% of ranked test statistics, where smaller p-values are 

excluded to avoid apparent inflation due to true associations of SNPs with traits. Large 

values for λ̂ (values of λ̂ < 1.05 are considered benign, and values of 1.2 or more are 

tolerated for very large studies of highly polygenic traits with sample sizes of hundreds of 

thousands of participants) indicate that tests of association are confounded by some 

phenomena, which may include PS.

Additionally, other types of systematic differences between the data from groups of subjects 

can also cause large λ̂, such as nonrandom genotyping error that might arise due to merging 

GWAS data from different genotyping experiments, nonrandom differences in DNA quality 

between study samples, or other unmeasured confounders. This procedure is implemented in 

PLINK and is straightforward to calculate with any statistical software [Purcell, et al. 2007].
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GC is reported to be ineffective if too few loci (< 100) are used and may decrease power if 

too many loci (> 500) are used [Marchini, et al. 2004]. Recent GWAS studies usually use λ 
calculated from genome-wide SNPs as an important post-analysis diagnostic statistic, and to 

protect against excess type I error. There is substantial variation in estimates of λ that 

depend on the set of markers chosen, and this may also decrease power if PS is extreme 

[Kohler and Bickeboller 2006; Zhang, et al. 2008]. GC can also be conservative if AIMs are 

used instead of random markers [Epstein, et al. 2007].

An alternative approach, GCF, which is a modified version of GC that uses the F 
distribution, has been shown to be more appropriate than GC in some extreme examples of 

PS [Dadd, et al. 2009; Devlin, et al. 2004]. GC also does not correct effect size estimates, 

although it can be used to correct confidence intervals, and as a result odds ratios or linear 

regression coefficients will be unreliable after GC is applied, even though the test statistics 

and p-values have been adjusted.

In scenarios where meta-analysis is being performed across several GWAS, GC corrections 

can be performed within each study and then again in the meta-analysis results. This double 

GC correction adjusts the set of test statistics across all markers within each study by a GC 

inflation factor. It then calculates a combined statistic across studies at each marker, and 

adjusts all combined statistics across the genome by the corresponding GC inflation factor. It 

has been suggested that PCA correction is more effective than the double GC correction in 

meta-analysis [Wang, et al. 2012b]. In the case where population stratification exists, using 

the double GC method usually results in much lower power than using the PCA correction in 

meta-analysis, even when the causal SNP does not have significant allele frequency 

differentiation in the subpopulations.

LD Score Regression—LD Score Regression [Bulik-Sullivan, et al. 2015] is a method 

utilizing summary association statistics from a GWAS to determine whether inflation of the 

test statistics is due to a true polygenic signal or bias. LD scores are computed in a 

sequenced reference panel with similar LD structure as in the GWAS by calculating the 

strength of tagging by SNPs within a 1CM window. LD score regression can be used to 

estimate the mean contribution of confounding bias to the inflation in the test statistics; i.e. 

to indicate post-hoc whether there is residual cryptic relatedness or population stratification 

remaining in the dataset. However, the model assumes that there is no systematic correlation 

between Fst and LD Score, which may not be the case when there is selection. It was 

demonstrated that the average LD Score regression intercept was approximately equal to the 

λ in simulations with PS. Because λ increases with sample size in the presence of 

polygenicity, the gain in power obtained by correcting test statistics with the LD Score 

regression intercept instead of λ will become even more substantial for larger GWAS.

Subtle Stratification (PC Loading regression)—An approach for correcting residual 

inflation of test statistics is PC loading regression [Bhatia 2016], that integrates the concept 

of weighting SNPs according to their contribution to PCs (i.e. total genetic variance) and 

also incorporates rare variant haplotypes. These rare variants are often omitted from PCA 

during the LD-pruning process. The slope of this PC loading regression provides an estimate 

of the magnitude of PS. It has been suggested that rare haplotypes can better capture subtle 
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PS [Bhatia, et al. 2016], a concept which has been leveraged in several fundamental 

approaches in human genomics (i.e. rare variant enrichment in extended pedigrees 

[Browning and Thompson 2012], the continued relevance of linkage analysis [Ott, et al. 

2015; Teare and Santibanez Koref 2014], haplotype length investigations for selection 

[Lappalainen, et al. 2010].

Cryptic relatedness and population stratification—As genetic studies have grown 

larger over time, so has the likelihood of recruiting related individuals or those who share 

extended relationships unbeknownst to the investigators. These cryptic relationships can also 

influence association statistics much like PS. The relatedness between two individuals is 

most frequently expressed in terms of the probability that they share zero, one or two alleles 

that are inherited identical-by-descent (IBD). However, as sample sizes have increased, 

construction of IBD matrices has become more computationally intensive, and determining 

whether to use relatedness as an exclusion process or to model it explicitly has been a 

subject of much debate. While PCA may detect and account for some relatedness, it may not 

adequately control this or may result in loss of power beyond those methods directly 

accounting for these relationships. Use of mixed models to account for cryptic relatedness 

has been one popular strategy for retaining as many samples as possible, as has 

reconstruction of pedigrees using IBD information. Mixed models have been shown to have 

better overall performance than PCA in the presence of association [Wang, et al. 2013].

PS can be thought of as a special case of cryptic relatedness, where participants who share 

parental ancestral populations are more closely related to each other than they are to 

participants who arise from different populations. In that conceptual framework for PS all 

participants in the study are connected by a large latent pedigree, with the ancestors that 

connect them unobserved. The number of meiosis that separate closely related people are 

small, are larger for distantly related people from the same population, and are much larger 

for pairs of people from distinct continental populations with long coalescence times. A 

group of methods that are designed to leverage this property of genetic data for quantitative 

traits are the linear mixed models, which can mitigate both the issues that arise when there is 

cryptic relatedness [Voight and Pritchard 2005] and PS in association studies in one 

procedure [Kang, et al. 2010; Kang, et al. 2008; Listgarten, et al. 2012; Zhou and Stephens 

2012]. These approaches were originally developed for model organism studies in multiple 

inbred and outbred lines where many spurious results were initially observed, but were then 

non-significant after application of the mixed model methods. In a recent review of mixed 

model analyses, Martin and Eskin describe the formulation of these analyses, and show that 

mixed models produce smaller λ̂ statistics than PCA correction or removal of related 

subjects for a range of quantitative traits in a structured population from Finland [Martin and 

Eskin 2017].

In addition to confounding genotype-phenotype associations, PS may also distort estimates 

of trait heritability. Heritability for a particular trait may be described as the proportion of 

trait variability explained by genetic variants. Though historically measured in family 

studies, newer methods have been developed to estimate heritability from genome-wide data 

in population-based studies [Lee, et al. 2011; Yang, et al. 2010; Yang, et al. 2011]. However, 

Dandine-Roulland et al. warn that model adjustment for ancestry inferred from genomic data 
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does not adequately correct for PS bias in population-based heritability estimates [Dandine-

Roulland, et al. 2016].

Local Ancestry Methods

Local ancestry methods are used to identify ancestral origins of chromosomal regions. In 

two-way admixture, such as African Americans, any given genetic locus will have exactly 

0%, 50% or 100% European derived alleles corresponding to 0, 1, or 2 copies. Accurate 

inference of local ancestry depends on number of generations since the admixture event, 

number of admixture events, number of ancestral populations involved across admixture 

events, and availability of reference data that represent the ancestral populations. Methods 

for local ancestry inference may be divided into two broad classes: 1) methods which do not 

model linkage disequilibrium and 2) methods that leverage linkage disequilibrium (LD). Key 

points regarding each software discussed here are summarized in Table 2.

Methods that do not model LD

Early methods for local ancestry inference included STRUCTURE/MaldSoft, ADMIXMAP, 

ANCESTRYMAP, and ADMIXPROGRAM are based on variations of first-level HMM 

where the goal is to make inferences on a series of hidden states (local ancestry) based on 

observable states (alleles and allele frequencies from ancestral populations) [Falush, et al. 

2003; Hoggart, et al. 2004; McKeigue 1998; Montana and Hoggart 2007; Patterson, et al. 

2004; Zhu, et al. 2006]. A key assumption of the HMM models are that the observed states, 

or alleles, are independent of each other, conditional upon the hidden states, the ancestry 

source for each allele. These methods rely on unlinked AIMs. These early methods are able 

to infer continental ancestry throughout the genome (African and European), with the 

resolution limited by the number of independent AIMs available and computational 

tractability.

The Local Ancestry in admixed Populations (LAMP) method uses sliding windows of 

contiguous independent SNPs to infer local ancestry[Sankararaman, et al. 2008]. It first 

calculates an optimal window length such that the probability that a given window has a 

recombination event is small and assumes that alleles in the window are derived from only 

one ancestry. It then uses a clustering algorithm known as Iterated Conditional Modes (ICM) 

on each of these windows to infer ancestry on each marker on the window, followed by a 

majority vote across overlapping windows to call ancestry. Advantages of this method over 

previous methods include: faster run times, capability of handling GWAS data, improved 

accuracy, ability to infer local ancestry even in the absence of ancestral reference data, and 

incorporation of ancestral allele-frequency data (LAMP-ANC) when it is available for even 

more accurate predictions. These methods are optimized to make ancestry calls for admixed 

populations with two-way admixture between distant ancestral populations such as Africans 

and Europeans. These methods are inaccurate if inferences are made on closely related 

populations.

WINPOP modifies and extends the LAMP method to provide inference of local ancestry not 

only in admixed individuals with distant ancestry, but also between closely related 

populations [Pasaniuc, et al. 2009]. It uses a sliding window like LAMP with two important 
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distinctions: 1) it adaptively determines window length for each location and 2) it allows for 

up to one recombination event to occur within each window. The method provides more 

accurate results than LAMP, and LD-based methods such as SABER and HAPAA 

(discussed below) across distant and closely related two-way admixtures [Sankararaman, et 

al. 2008; Sundquist, et al. 2008; Tang, et al. 2006]. The greatest gains in accuracy were 

reported to occur in closely related populations. Despite this improvement, the method has 

up to 91% accuracy for closely related populations.

Methods that model LD

LD based methods for local ancestry inference assume that there may be haplotypes unique 

to a given population. SABER is one of these methods and uses a ‘Markov-switching 

model,’ also known as Markov Hidden Markov Models (MHMM)s [Tang, et al. 2006]. 

Previous HMMs were incapable of handling LD between markers as modeling haplotypes 

within ancestral populations in the HMM framework would be computationally intractable. 

A similar approach, HMM-based Analysis of Polymorphisms in Admixed Ancestries 

(HAPAA), uses hierarchical HMMs to model LD, displays lower error rates than SABER, 

and also has features that evaluate the effect of genetic divergence between ancestral 

populations and time-to-admixture [Sundquist, et al. 2008].

HAPMIX is a haplotype-based HMM method that achieves high accuracy and has a strict 

assumption of two ancestral populations [Price, et al. 2009]. It utilizes the population genetic 

model of Li and Stephens and phased haplotypes from unadmixed ancestral populations as 

references to infer local ancestry [Li and Stephens 2003]. HAPMIX, like HAPAA uses 

HMM to explicitly model LD to make local ancestry inference with a few key differences. It 

allows some margin of error for miscopying ancestry segments from the wrong population. 

It also allows for unphased data for the admixed population and attempts to account for 

phase-flip errors on ancestry inference. These features along with the use of dense SNPs 

allows it to make inference on smaller stretches of chromosome, which is where ancient 

admixture is likely to be detected. However, the requirement for phased haplotypes from 

unadmixed ancestral populations and the specification of many parameters limits its use in 

less-studied populations.

LAMP-LD improves on existing methods by proposing a model of local ancestry inference 

that extends to multi-way admixed populations with significantly reduced error rates [Baran, 

et al. 2012]. Like HAPAA and HAPMIX it models the haplotype structure using HMMs, but 

with a fixed-size state-space. This is the only method that uses a fast-approximation of the Li 

and Stephens model to realize ancestral haplotype structures. Additionally, LAMP-LD 

estimates its parameters from the reference haplotypes rather than relying on user-

specification which greatly reduces parameter misspecification. Furthermore, it combines 

the window-based method originally developed for LAMP with an HMM method that 

relaxes the no-recombination limitation, improving speed and accuracy in three-way 

admixed populations. Another extension to LAMP-LD is LAMP-HAP, which further 

leverages pedigree information from trio data to provide local ancestry estimates with 

greater accuracy.
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RFMix departs from the HMM-extension framework discussed above to a discriminative 

approach to explicitly models ancestry along an admixed chromosome given known 

reference haplotypes or inferred ancestry [Maples, et al. 2013]. In the inference algorithm 

for RFMix, phased reference chromosomes are first divided into windows of equal sizes by 

genetic distance. A random forest is then trained within each window to classify ancestry. 

The random forest is then applied to the corresponding window of admixed chromosome to 

generate fractional votes, which are then summed to generate posterior probabilities for 

ancestry within each window. Posterior probabilities from consecutive windows are then put 

through max marginalization of the forward-backward posterior probabilities to infer the 

most likely sequence of ancestry across windows. The method is faster than LAMP-LD or 

LAMP-HAP and provides more accurate estimates of local ancestry. An important feature of 

this software that it is accurate even when reference data is limited. The algorithm is also 

able to incorporate inferred ancestry segments from the admixed chromosome to further 

augment the training set in an iterative process.

Admixture mapping

Admixture mapping can be used to identify disease causing loci in admixed populations. 

Admixture mapping is an ideal approach for studying diseases with differential prevalence 

across ancestral populations where the disparity is heritable. Methods for admixture 

mapping have been covered extensively in the following review articles [Seldin, et al. 2011; 

Shriner 2013; Winkler, et al. 2010]. Briefly, case-only and case-control admixture mapping 

strategies have been widely used in the past. While case-only admixture mapping strategies 

can provide greater sensitivity in detecting disease loci, they are also particularly prone to 

false-positive signals. Case-control admixture mapping strategies provide a stronger control 

of type I error. Both case-only and case-control admixture strategies have advantages over 

GWAS for multiple testing. Because ancestral LD blocks tend to be much longer than short-

range LD, the number of independent tests is drastically reduced with admixture mapping.

In addition to the traditional admixture mapping strategies, at least two joint test frameworks 

leverage local ancestry to increase power for gene discovery. The first joint method is 

implemented in Mixscore, which combines a case-only admixture test statistic with a SNP 

association test into a single one-degree of freedom chi-square test [Pasaniuc, et al. 2011]. 

This test is more powerful for discovery than the Armitage trend test, the SNP association 

test while conditioning on local ancestry, case-only association test, and also the two-degree 

of freedom chi-square joint-test for the sum of SNP and admixture mapping association test.

Another joint test is the BMIX that uses a Bayesian framework to model posterior 

probabilities from admixture mapping as prior probabilities for association testing to reduce 

multiple testing [Shriner, et al. 2011]. In simulations the authors show BMIX to be more 

powerful than the Mixscore approach.

STRATEGY

A summary of most methods described in this article is presented in Table 2, with an outline 

of capabilities and limitations for each approach.
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Investigations of genetic traits in humans are observational studies where researchers do not 

perform mating experiments, control the environment for the organism, or induce mutations 

such as in experimental studies with model organisms. As a result of the observational 

nature of the research, as for any epidemiologic investigation, care must be taken when 

planning the ascertainment of subjects and the statistical analysis of the genetic data to 

control for confounders.

One of the most common and important considerations regarding potential confounding in 

human genetic epidemiology is whether a sample of subjects under study includes persons 

of mixed ancestry or groups of subjects with distinct ancestral backgrounds. When there is a 

difference across ancestral groups in the probability of ascertaining a subject with the 

phenotype of interest or a difference in the distribution of a quantitative trait between 

ancestral groups, then any genetic variant with a difference in allele frequency across 

ancestral groups might seem to be associated with the trait if tests of association are carried 

out without accounting for ancestry [Freedman, et al. 2004]. Failure to adjust for PS 

properly can lead to excess false positive results or cause loss of power [Cardon and Palmer 

2003; Marchini, et al. 2004]. As a result of the associations of alleles with ancestry, the 

degree of confounding is related to the sample size of the study, such that larger studies are 

more acutely affected [Marchini, et al. 2004].

The design of a genetic study can involve one of several sampling strategies and stages. The 

sampling approach is most likely determined by properties of the trait and the availability of 

existing studies with biological specimens from the study subjects. For example, when 

studying a trait with an onset that is typically early in life it may not be feasible to recruit 

large numbers of healthy unrelated control children, since the parents of healthy children are 

often less motivated to participate in research than parents of cases. As a result a family-

based design utilizing the TDT or a related statistic may be more efficient. Conversely, for a 

trait with an onset late in life, other relatives in the family may not be available, and so a 

case-control study may be easiest to conduct. For a case-control study, an ideal sample of 

controls would have the same potential as the cases for exposure to risk factors, and if the 

controls had manifested the trait they would be selected as cases for the study. This principal 

is violated when there is PS in the data that is also related to the trait of interest through a 

difference in prevalence for the trait and alleles at many loci in the parental populations.

When designing a genetic study, some effort should be expended to identify the ancestry of 

subjects before genotyping commences. For example, an option is to require all members of 

the study to report the ethnicity of all four grandparents for eligibility and crude 

quantification of ancestry [Velez, et al. 2008]. However, in certain situations this may 

misclassify an individual’s actual ancestral background if ancestry is a cultural rather than a 

genetic classifier, as is sometimes the case in Hispanic populations.

One aspect of investigating traits in admixed samples is the difficulty of performing 

replication studies. Once an association with a particular marker has been observed, a 

second round of genotyping is usually performed in an independent sample of subjects to 

verify the signal. To account for PS using global estimates of ancestry, several dozen AIMs 

may be necessary. This could increase the cost of the replication study by several times, 
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limiting the sample size that may be investigated and consequently the chances of successful 

replication. When there are a small number of SNPs of interest to replicate, we advocate 

using local ancestry estimates from the candidate marker and several nearby flanking AIMs 

to adjust for PS. This issue arises in consortium studies of GWAS data in admixed 

populations, and can be a challenge to coordinate replication efforts using global estimates 

of ancestry in previously ungenotyped subjects. Alternatively if participants from non-

admixed parental populations are available, they may be analyzed without adjustment for PS 

[Franceschini, et al. 2013; Monda, et al. 2013].

Another consideration is whether the plan for genotyping accommodates the idiosyncrasies 

of the study sample. If the study design is investigating candidate genes, then a panel of 

approximately 30 AIMs may be necessary to quantify global ancestry in African Americans, 

and more in populations with more complex demographic histories. Alternately, nearby 

AIMs not in LD with the gene regions may be added to the genotyping panel to call local 

ancestry with a method such as LAMP or HAPMIX. Both of these designs require that 

suitable reference panels of genotypes are available from the appropriate ancestral 

populations. If this is the case, then an agnostic method such as STRUCTURE might be 

used, with a scan through possible values for the number of ancestral subpopulations. If 

GWAS data are being generated, then MDS or PCA can be applied to summarize continuous 

axes of ancestral variation and adjust for confounding by PS.

Proper use of these methods requires a working understanding of population genetics 

principles and association statistics for genetic epidemiology. One of the most important 

considerations; however, is the study design employed and how that design will work in 

concert with the analytic methods to produce reliable results.

COMMENTARY

In this article we focused on PS methods and their applications in human disease mapping. 

In addition, many of the methods we present here are also used in experimental populations 

of animals and plants, agriculture, and ecology [Bomblies, et al. 2010; Galvan, et al. 2011].

PS is an extensively studied area of research. Other than the general PS methods mentioned 

previously, some PS methods are designed for some special situations. For example, some 

methods have the ability to conduct association tests for a combination of pedigree and 

unrelated samples while correcting for PS [Chung, et al. 2010; Thornton and McPeek 2010; 

Zhu, et al. 2008]. There are also several early methods that used coarse sets of genetic 

markers that specifically target admixed populations [Hoggart, et al. 2003; Montana and 

Pritchard 2004; Patterson, et al. 2004]. Interested readers in admixture mapping and 

population stratification in general can consult other recent reviews on disease mapping in 

admixed populations [Astle and Balding 2009; Price, et al. 2010; Seldin, et al. 2011].

Genetic research is expanding into more diverse populations, and PS will continue to be 

important in human genetic studies. It is also becoming clear that the rare alleles carried by 

each population are unique, and traits may have distinct etiologies in various human 

populations [Gravel, et al. 2011]. This may be the cause for the apparent failures of some 
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previously observed associations to replicate when the associated SNPs are assayed in other 

populations. Other causes that are related to the differences between populations are also 

likely to cause apparent failure to replicate at specific SNPs, such as differences in LD, 

environmental exposures, and different frequencies of genetic modifiers.
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Figure 1. Principal components analysis
These figures show the clustering results using principal components analysis implemented 

by the Eigensoft v3.0 software with 142,616 genome-wide random autosomal SNP loci from 

the HapMap project (Phase 3, release 3). Only the first three eigenvectors are shown.
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Note: CEU, Utah residents with ancestry from northern and western Europe; YRI, Yoruba in 

Ibadan, Nigeria (West Africa); CHB: Han Chinese in Beijing, China; ASW: African ancestry 

in Southwest USA. ASW is an admixed population.
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Table 3

Global ancestry methods and software

Program Method Function Link for download

Eigensoft PCA

Calculate PCA 
from genotype 
data https://reich.hms.harvard.edu/software

LASER PCA

Calculate PCA 
from sequencing 
data (low pass) http://laser.sph.umich.edu/

FlashPCA PCA

Rapid 
calculation of 
PCA https://github.com/gabraham/flashpca

PC-AiR PCA

PCA in samples 
that may contain 
cryptically 
related 
participants http://bioconductor.org/packages/release/bioc/html/GENESIS.html

PCAmask PCA

PCA in highly 
structured 
populations https://github.com/armartin/ancestry_pipeline

PLINK MDS

Calculation of 
multidimensional 
scaling variables 
from IBD 
distance matrix http://zzz.bwh.harvard.edu/plink/

EMMA Mixed model

Perform linear 
mixed model 
analysis for 
quantitative traits http://mouse.cs.ucla.edu/emma/

GEMMA Mixed Model

Perform linear 
mixed model 
analysis for 
quantitative traits http://www.xzlab.org/software.html

EMMAX Mixed Model

Perform linear 
mixed model 
analysis for 
quantitative traits 
more quickly 
than EMMA http://genetics.cs.ucla.edu/emmax/

LD score regression LD score regression

Calculate 
genomic 
inflation 
parameters 
accounting for 
LD https://github.com/bulik/ldsc

PC loading regression PC loading regression

Improved PS 
control 
compared with 
PCA Not yet available

GAP, SCGAP Geographic Ancestry Positioning

probabilistic 
spatial genetic 
model and 
ancestry 
localization 
algorithm, as 
well as the 
related 
population 
stratification 
correction 
procedure for 
genome-wide https://github.com/anand-bhaskar/gap
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Program Method Function Link for download

association 
studies, SCGAP,

SNPweights SNPweights

inferring 
genome-wide 
genetic ancestry 
using SNP 
weights 
precomputed 
from large 
external 
reference panels https://www.hsph.harvard.edu/alkes-price/software/

NGSadmix NGSadmix

Infer admixture 
proportions from 
NGS data http://www.popgen.dk/software/index.php/NgsAdmix
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