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Abstract
The alkynylbenziodoxole derivatives are recently developed alkynylation reagents in organic synthesis, which demonstrate excel-

lent radical alkynylation reactivity in photoredox catalysis reactions. Herein we report the synthesis of alkynylbenziodoxole deriva-

tives with difluoro, monofluoro, monomethoxy, and dimethoxy substitution on the benziodoxole moiety, and investigated their

radical alkynylation reactivity for the first time. A series of mechanistic experiments were conducted to study the radical acceptor

and oxidative quencher reactivity of alkynylbenziodoxoles, in which unsubstituted alkynylbenziodoxoles played balancing roles in

both processes, while electron-rich benziodoxole derivatives demonstrate synthetic advantages in some cases.
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Introduction
The introduction of the alkynyl group to organic molecules is an

important synthetic transformation in organic synthesis [1-4].

Recently, cyclic iodine(III) reagents (CIR)-substituted alkynes,

alkynylbenziodoxoles, were developed with readily preparation

and shelf-stableness [5-10]. The alkynylbenziodoxoles were

first synthesized by the Ochiai group, and later studied by

Waser and other groups for the use in electrophilic alkynylation

reactions [11-18]. In 2012, the Li group first used alkynylbenz-

iodoxoles for decarboxylative radical alkynylation under silver

salt and persulfate conditions [19]. In 2014, the Chen group

discovered that alkynylbenziodoxoles (BI-alkyne) readily

participated in photoredox catalysis as the radical alkynylation

reagent [20], after which various applications in photoredox ca-

talysis were reported [21-27].
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Scheme 2: Synthesis and characterization of BI-alkyne derivatives 3a–f.

Currently, the use of BI-alkyne for radical alkynylation is

limited to unsubstituted alkynylbenziodoxoles. While effective,

its reactivity with some radical precursors was compromised

[19-27]. The Waser group pioneered the study of substituted

alkynylbenziodoxoles for the electrophilic alkynylation reactivi-

ty, however, no significant improvements were observed by the

derivatizations [28-32]. Herein, we report the synthesis of

alkynylbenziodoxole derivatives and investigate their reactivity

toward alkyl radical and acyl radical additions in photoredox

catalysis. The mechanistic investigations were carried out to

study the derivatization of BI-alkynes in radical acceptor and

oxidative quencher reactivity, and the electron-rich benz-

iodoxole derivatives demonstrated synthetic advantages in some

cases (Scheme 1).

Results and Discussion
We started the synthesis of BI-alkyne derivatives with substi-

tuted o-iodobenzoic acids 1 bearing 3,4-difluoro, 4-fluoro,

3-methoxy, 4-methoxy, or 3,4-dimethoxy substitutions

(Scheme 2). Using a slightly modified Ochiai procedure [11],

the substituted hydroxybenziodoxoles 2a–f were prepared with

periodate oxidation in 75–90% yield, in which the electronic

effect did not have much influence on the reaction [33]. Subse-

quently, the treatment with trimethylsilyl p-tolylacetylene in the

presence of trimethylsilyl trifluoromethanesulfonate afforded

p-tolylacetylenic benziodoxoles 3a–f in 25–65% yield, in which

the electron-donating substitutions were beneficial for the reac-

tion. The two-step synthesis of BI’-alkyne derivatives 3a,b,d–f

Scheme 1: Investigation of alkynylbenziodoxole derivatives for radical
alkynylations.

were in the range of 23–50% yield in gram scale, which was

comparable to the synthesis of unsubstituted BI-alkyne 3c.

The 13C NMR spectra of BI-alkynes 3a–f were studied with the

focus on the α-carbon, which position directly underwent

α-radical addition [19]. The electron density of the α-carbon

was decreased in 3a with electron-deficient 3,4-difluoro groups

on the benziodoxole, and was increased for 3f with electron-

donating 3,4-dimethoxy groups. Cyclic voltammetry measure-

ments were also carried out for BI-alkynes 3a–f, in which the

reduction potential (Ep re) indicated the electron-accepting

capacity of the BI-alkynes. As expected, the reduction potential

of 3a was increased with electron-deficient 3,4-difluoro substit-

uents on the benziodoxole, and was decreased for 3f with elec-
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Scheme 3: Reaction of alkynylbenziodoxole derivatives for deboronative alkynylation in photoredox catalysis. Reaction conditions: a) alkyl potassium
trifluoroborate 4 (0.15 mmol, 1.5 equiv), alkynylbenziodoxole 3 (0.10 mmol, 1.0 equiv), Ru(bpy)3(PF6)2 (1.7 mg, 0.002 mmol, 0.02 equiv), hydroxy-
benziodoxole (BI-OH, 0.05 mmol, 0.5 equiv), and Na2CO3 (0.2 mmol, 2.0 equiv) in 1.0 mL CH2Cl2 and 1.0 mL H2O for 20 h under a nitrogen atmo-
sphere, unless otherwise noted; b) 4 (0.3 mmol, 3.0 equiv), Na2CO3 (0.4 mmol, 4.0 equiv). Yields are isolated yields. N/P = not performed.

tron-donating 3,4-dimethoxy groups. It is interesting to note that

the effect of single substitution on benziodoxoles in 3b, 3d and

3e was insignificant and sporadical in both 13C NMR spectros-

copy and cyclic voltammetry experiments.

We next tested the reactivity of tolylacetylenic benziodoxole

derivatives 3a–f for deboronative alkynylation under photo-

redox catalysis conditions (Scheme 3) [20,34]. Using the

tertiary alkyl trifluoroborate 4a as the alkyl radical precursor

under literature conditions, the unsubstituted BI-alkyne 3c only

results in 50% yield of alkynylation adduct 5a, which is consis-

tent with the literature report that tertiary alkyl trifluoroborates

did not give satisfying results [20]. Using BI’-alkyne 3a with

3,4-difluoro substitutions, the alkynylation adduct 5a was ob-

tained in decreased 47% yield. In contrast, 74% yield of 5a was

obtained with 3,4-dimethoxy-substituted BI’-alkyne 3f. Being

consistent with the 13C NMR spectroscopy and cyclic voltam-

metry experiments, the effect of single substitution on the benz-

iodoxole was insignificant and no improvement was observed.

We also tested the secondary alkyl trifluoroborate 4b and pri-

mary alkyl trifluoroborate 4c, in which the deboronative

alkynylation with unsubstituted BI-alkynes already gave good

results. The electronic effects on the benziodoxoles were less

significant and fluctuated within the 5% yield range: The

alkynylation adducts 5b and 5c were obtained in decreased 80%

and 65% yields using BI’-alkyne 3a, while 86% and 73% yields

of 5b and 5c were obtained with BI’-alkyne 3f. We then tested

benzyl trifluoroborate 4d and oxygen-substituted alkyl trifluoro-

borate 4e, which were not reported for deboronative alkynyla-

tions before. The 3,4-dimethoxy-substituted BI’-alkyne 3f gave

the optimal 70% and 82% yields of alkynes 5d and 5e, which

observed ≈10% yield improvement comparing to the unsubsti-

tuted BI-alkyne 3c.

We then tested if the propensity of BI-alkyne derivatives toward

alkyl radical additions was general and could extend to other

alkyl radical precursors (Scheme 4). Tertiary alcohols 6 were

reported to be activated by cyclic iodine(III) reagents under
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Scheme 4: Reaction of alkynylbenziodoxole derivatives for radical alkynylations in photoredox catalysis. Reaction conditions: tertiary alcohol 6
(0.25 mmol, 2.5 equiv), alkynylbenziodoxole 3 (0.10 mmol, 1.0 equiv), Ru(bpy)3(PF6)2 (0.002 mmol, 0.02 equiv), and BI-OAc (0.25 mmol, 2.5 equiv) in
2.0 mL DCE for 24 h under a nitrogen atmosphere, unless otherwise noted. Yields are isolated yields.

Scheme 5: Reaction of alkynylbenziodoxole derivatives for acyl radical alkynylation in photoredox catalysis. Reaction conditions: a) ketoacid 8
(0.15 mmol, 1.5 equiv), alkynylbenziodoxole 3 (0.10 mmol, 1.0 equiv), Ru(bpy)3(PF6)2 (0.002 mmol, 0.02 equiv), and BIOAc (0.10 mmol, 1.0 equiv) in
2.0 mL DCM for 5 h under a nitrogen atmosphere; b) β-ketone alcohol 10 (0.20 mmol, 2.0 equiv), alkynylbenziodoxole 3 (0.10 mmol, 1.0 equiv),
Ru(bpy)3(PF6)2 (0.002 mmol, 0.02 equiv), and BI-OAc (0.20 mmol, 2.0 equiv) in 2.0 mL DCM for 24 h under a nitrogen atmosphere. Yields are
isolated yields.

photoredox conditions to generate alkoxyl radicals, and subse-

quently underwent β-fragmentation and alkynylation to yield 7

after eliminating the arylketone [25]. With tertiary alcohol 6a as

the alkyl radical precursor, the unsubstituted BI-alkyne 3c gave

74% yield of 7a, which was consistent with the literature report

[25]. Under otherwise identical reaction conditions, 67% yield

of 7a was obtained with 3,4-difluoro BI’-alkyne 3a, while

optimal 85% yield of 7a was obtained with 3,4-dimethoxy BI’-

alkyne 3f. We then tested the secondary alkyl radical precursor

6b and observed 74% yield of alkyne 5b using unsubstituted

BI-alkyne 3c. In contrast, 3,4-dimethoxy BI'-alkyne 3f gave im-

proved 80% yields of 5b.

We finally moved to test the BI-alkyne derivatives toward acyl

radical additions (Scheme 5). With ketoacid 8 as the acyl

radical precursor, the decarboxylative alkynylation with

BI-alkyne derivatives afforded ynone 9 under the photoredox

conditions [21]. Both the unsubstituted and 3,4-dimethoxy

substituted BI’-alkynes 3c and 3f gave ynone 9 in similar

77–79% yields, while the 3,4-difluoro substituted BI’-alkyne 3a

gave a slightly lower 63% yield of 9 [21]. β-Ketone alcohols 10

were reported to be activated by cyclic iodine(III) reagents

under photoredox conditions to generate alkoxyl radicals, and

subsequently underwent β-fragmentation and alkynylation to

yield ynone 9 [26]. The unsubstituted BI-alkyne 3c gave 84%
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Scheme 6: Mechanistic investigations of alkynylbenziodoxole for radical acceptor and oxidative quenching reactivity. Yields are isolated yields. N/P =
not performed.

yield of 9 consistent with the literature report, while 62% yield

of 9 was obtained with 3,4-difluoro BI’-alkyne 3a and 84%

yield of 9 was obtained with 3,4-dimethoxy BI’-alkyne 3f.

With the preliminary hypothesis that the electron-withdrawing

and electron-donating substituents on the benziodoxole have

opposite effects for the radical alkynylation, we first conducted

the fluorescence quenching experiments of tolylacetylenic benz-

iodoxole derivatives 3a–f and found none of them oxidatively

quenched the photoexcited Ru(bpy)3
2+* complex (see Support-

ing Information File 1, Scheme S1). We next investigated if the

benziodoxole radical released from the radical alkynylation of

BI-alkynes affected the reaction (Scheme 6). Using the combi-

nation of substituted hydroxybenziodoxoles (BI’-OH) and

substituted BI’-alkynes, we found the 3,4-difluoro electron-

withdrawing substituents either on BI’-OH or BI’-alkyne de-

creased the reaction yields, while the use of both further de-

creased the formation of 5a to 39% yield. In contrast, the use of

electron-donating 3,4-dimethoxy group either BI'-OH or BI'-

alkyne increased the yields of 5a to 74% and 72% yields, while

the use of both increased the formation of 5a to optimal 80%

yield.

Based on mechanistic investigations above, we propose that the

electronic effect on benziodoxoles affected both the radical

acceptor and oxidative quencher reactivity of BI-alkyne deriva-

tives (Scheme 7). In the alkyl or acyl radical addition step to

BI’-alkyne (step 1) and the oxidative quenching step by benz-

iodoxole radical (step 2), the electron-donating substituents on

BI’-alkynes are both beneficial, while the electron-withdrawing

substituents have opposite effects.

Scheme 7: The role of alkynylbenziodoxole derivatives for radical
alkynylation in photoredox catalysis.

Conclusion
In conclusion, we have developed and investigated novel

alkynylbenziodoxole derivatives as radical alkynylation

reagents in photoredox catalysis reactions. Alkynylbenz-

iodoxole derivatives with electron-rich benziodoxoles demon-

strate synthetic advantages in some situations. The mechanistic

investigations suggested both the radical acceptor (step 1) and

oxidative quencher reactivity (step 2) were affected by

BI-alkyne derivatization. We envision these alkynylbenz-
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iodoxole derivatives will provide alternative radical alkynyl-

ation reagents in photoredox catalysis and other synthetic appli-

cations.

Supporting Information
Supporting Information File 1
Experimental details, and copies of 1H NMR and 13C NMR

spectra for all new compounds.
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