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An alternative method for forming sulfonates through hypervalent iodine(Ill) reagent-mediated oxidation of sodium sulfinates has

been developed. This transformation involves trapping reactive sulfonium species using alcohols. With additional optimization of

the reaction conditions, the method appears extendable to other nucleophiles such as electron-rich aromatic systems or cyclic ethers

through a ring opening pathway.

Introduction

Over the past few decades, hypervalent iodine reagents [1-4]
have emerged as versatile and environmentally benign substi-
tutes for heavy metal reagents. A number of iodanes with
various oxidation states have been developed since the
pioneering work of the German chemist Willgerodt, who syn-
thesized PhICI, [5]. lodane reagents have been extensively used
in applications such as oxidation, rearrangement, cross-cou-
pling, functionalization, decarboxylation, and fragmentation
[6-27]. The sulfonate group is a useful functionality frequently
employed as a leaving group in substitution reactions. Produc-
tion of sulfonates [28] from alcohols generally involves reac-
tion with a sulfonyl chloride in the presence of a base to trap the

hydrochloric acid byproduct. As an alternative method involv-

ing oxidation rather than chloride substitution, we envisaged
generating an electrophilic sulfonium species through oxidation
of a sulfinate salt [29] that would be subsequently trapped by
the alcohol. In this paper, we demonstrate that sulfonates may
be produced from alcohols in the presence of sufinates through
a reaction mediated by a hypervalent iodine reagent. Under
these conditions, the byproduct is a weak acid such as acetic
acid rather than hydrochloric acid.

Results and Discussion
Oxidative sulfonate production methods employing strong
oxidizing agents such as chlorine have been previously re-

ported [30]. More recently, a mild and efficient method
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enabling the production of aromatic sulfonates using phenols
and iodine was developed [31,32]. This method uses methanol
as a solvent and appears to be selective for phenols; only two
primary alcohol examples were produced in 63—67% yield in
the presence of a strong base. A radical pathway from the alk-
oxide species was proposed by the authors as an explanation for
the phenol selectivity under weakly basic conditions in the pres-
ence of methanol. As a complement to this interesting method,
we propose extending the process to aliphatic alcohols through
activation by an iodane, acting through an alternative pathway
involving a sulfonium species derived from a sulfinate 1. It
should be noted that our method would not be compatible in
presence of phenols. We hypothesized that the mechanism
would initially involve iodane activation of the sulfur lone pair
leading to 2. Elimination of the iodane would subsequently
produce the sulfonium ion 3, which could be trapped by an
alcohol nucleophile leading to sulfonate 4 (Scheme 1).
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Scheme 1: Mechanistic hypothesis.

To verify our hypothesis tosyl-sulfinate 1 was treated with
iodanes such as sodium periodate (NalO,4), Dess-Martin period-
inane (DMP) [33], 2-iodoxybenzoic acid (IBX) [34], (diace-
toxyiodo)benzene (DIB), phenyliodine(III) bis(trifluoroacetate)
(PIFA) in the presence of methanol. (III)-Iodanes and (V)-
iodanes were both acceptable substrates, but the process was in-
efficient with (VII)-iodane species. We surmise that IBX and
DMP are rapidly reduced to a (III)-iodane in the presence of an
alcohol, and that this species is most likely the reagent
promoting the formation of compound 4a. lodine and
N-iodosuccinimide (NIS) were also tested; it appeared that this
process was much more efficient in the presence of iodane

sources (Table 1).

DIB was chosen as the hypervalent iodine reagent of choice
since it is more compatible with alcohols than IBX or DMP.
The reaction proceeded in modest to good yields depending on
the structure of the alcohol. We were pleased to observe suc-
cessful transformations even in the presence of poorly reactive
alcohols such as trifluoroethanol (TFE, Table 2, entry c) or
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Table 1: Oxidative sulfonylation process mediated by iodine and iodine
derivatives.

iodine derivative

. OMe
OSOZNa (1.2 equiv) < > SO/2
1 rt, 15 min
MeOH/DCM 4a
entry iodane yield (%)
a NalOy4 —
b IBX 89
c DMP 98
d DIB 98
e PIFA 98
f I 48
g NIS 58

hexafluoroisopropanol (HFIP, Table 2, entry d). Because of the
mild conditions involved, this transformation tolerates spec-
tator functionalities such as primary halides or alkynes
(Table 2).

Table 2: Scope and limitations of the process.

DIB (1.2 equiv) OR

OSOzNa R-OH, 15 min 4@30/2
AcOH or TBAC

1 (2 equiv), rt, DCM 4

entry R-OH yield (%)

a Me-OH 99

b Et-OH 75

Cc CF3CH2-OH 95

d (CF3),CH-OH 48

e (CH3),CH-OH 74

f CICH,CH,-OH 51

g BFCHchchz-OH 51

h n-Bu-OCH,CH»-OH 57

i HC=CCH,-OH 81

j CH3CHOH(CH5)>CH3 60

k CH3CH,CH(CH3)CH2-OH 76

| CICH,CH(CH3)-OH 65

m Ph-CH,-CH,-OH 50

n t-Bu-OH -

o n-Bu-OH 70

p cyclopentanol 63

We were disappointed to observe no reaction in the presence of
tertiary alcohols such as fert-butanol (Table 2, entry n). Howev-
er, the reaction proceeded efficiently with a hindered secondary
neopentylic alcohol 5 despite the presence of the neighboring
tert-butyl group. This method could potentially be extended to

other sulfinate salts, particularly aromatic or vinylic species in
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which the intermediate sulfonium species would be resonance
stabilized. However, most commercially available sulfinates are
quite expensive. It was reported in the literature that compound
7 may be easily generated from sulfolene by treatment with
n-butyllithium [35]. This compound is further oxidized by DIB
in the presence of n-butanol to yield sulfonate 8a in 72% yield.
The same reaction in the presence of the hindered neopentilyc
alcohol 5 led to the formation of 8b in modest yield (Scheme 2).

DIB (1.5 equiv)

DCM, rt, 15 min
SOzNa

1 HO 6
5 45%

. 0
DIB (1.5 equiv) NS
—\__SOsLi DCM. t, 15 min =\_ %

n-BuOH
7 8a

2%

DIB, (1.5 equiv)
:\_/802L| DCM rt, 15 min :\—/so2
7
HOJ\’/\
5

Scheme 2: Extension of the method.

37%

As a demonstration of the potential of this novel approach, we
examined the possibility of involving other nucleophiles, in-
cluding carbon-based nucleophiles. For instance, the alcohol in
the reaction could be replaced by an electron-rich aromatic
system such as thiophene or anisole. It should be stressed that
the formation of substituted aromatic systems through a
Friedel-Crafts type process [36] is an argument in favor of the
formation of the electrophilic sulfonium species 3 (Scheme 1).
In the presence of thiophene, compounds 9 were obtained in
23% yield and in a ratio (2:1) in favour of 9a. A similar yield
was observed when DMP was substituted for DIB, demon-
strating that A3-iodanes can also promote sulfonium activation.
The reaction in the presence of 2-bromothiophene led in 30%
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yield to the formation of compounds 10 in a ratio (2:1) in favor
of 10a. If anisole was used instead of thiophene an expected
mixture of compounds 11a and 11b was observed in a ratio 1:1
and in a low yield of 14%. So far, the yields observed with car-
bon-based nucleophiles have been low, but they clearly demon-
strate the feasibility of this approach. Further investigations to
extend this approach to other carbon-based nucleophiles must
be developed. Presumably, the presence of an electron-donor
group such as methoxy on the aromatic moiety would stabilize
the sulfonium species and increase the yield obtained in these
transformations (Scheme 3).

SO,Na Phl(OAC),
DMP

or Q
(1.2 equiv) $=0 .

rt, 25 min
1 @s 9 T 23%
= 2:1) 9b

Phi(OAc), S
(1.2 equiv)

rt, 25 min

@\Br

S

Phi(OAc,  ~0 o g

= S 14%
}) \ (1:1)

11a 11b

Scheme 3: Carbon-based nucleophiles.

This process may also be used to open and functionalize simple
heterocycles such as THF through a ring-opening approach
[37]. In the presence of trichloroacetic acid and DIB, the corre-
sponding compound 12 was obtained in 40% yield. One advan-
tage is that this method begins with the inexpensive compound
THF and produces a diol derivative containing a linear chain in
only one step. One alcohol is available as a leaving group and
the second is protected by conversion into a trichloroacetate
moiety (Scheme 4).

PhI(OAC),
(1.2 equiv) 0
SO,Na TsO o~~~
( > 2 THF, t, 25 min 0~ “CCly
(20 equiv) 40%

Scheme 4: THF ring opening.
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Conclusion

A novel oxidative method for producing sulfonates from sulfi-
nates using hypervalent iodine reagents has been developed.
This process involves the formation of a reactive sulfonium
species that is subsequently trapped by nucleophiles. As a proof
of concept, we demonstrated that the method is extendable to
other nucleophiles such as electron-rich aromatics or THF.
Ongoing investigations of this process and potential applica-

tions will be disclosed in due course.

Experimental
General procedure for the formation of

sulfonate 4

Iodobenzene diacetate (DIB, 0.24 mmol, 1.2 equiv) was added
at room temperature to a vigorously stirred solution of dichloro-
methane (0.5 mL), alcohol (0.5 mL), sulfinate (0.2 mmol,
1 equiv) and acetic acid (0.01 to 0.05 mL) or TBAC (55.5 mg,
0.2 mmol, 2 equiv) to dissolve the sulfonate salt. The mixture
was then stirred for 15 min and filtered on silica with ethyl
acetate. The residue was purified using silica gel chromatogra-
phy to yield sulfonate product 4.

Supporting Information

Supporting Information File 1

General procedures, synthesis of the products,
spectroscopic data, and copies of 'H, 13C, NMR spectra.
[https://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-14-101-S1.pdf]
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