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Schizophrenia is a major mental disorder with no clearly identified pathophysiology.
A variety of theories has been proposed to explain the pathophysiology of schizo-
phrenia. One approach that is finding empirical support is the investigation of mem-
brane composition and function. Evidence to date suggests that there are defects in
phospholipid metabolism and cell signaling in schizophrenia. Specifically, low lev-
els of arachidonic acid (AA)–enriched phospholipids have been observed in both
central and peripheral tissues. It is well known that changes in membrane composi-
tion are associated with a variety of functional consequences. Since AA has many
key roles in neural functioning, understanding its significance for the pathophysiol-
ogy of schizophrenia may lead to novel approaches to improving treatment of schizo-
phrenia. The purpose of this review is thus to explore some of the roles of AA signal-
ing in biological, physiological, and clinical phenomena observed in schizophrenia.
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INTRODUCTION

Schizophrenia is a complex disorder. Research over the last century has suggested that neuronal
maldevelopment, impaired neurotransmission, intrauterine viral infections, autoimmune dysfunc-
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tion, and many other mechanisms may underlie the pathophysiology of schizophrenia. There are a
large variety of seemingly disparate biological findings[1], possibly due to etiologic heterogeneity.
This would suggest that there are one or more (but very few) common pathogenetic pathways that
lead to the syndromes of schizophrenia. Thus, there is need to identify pathological process(es) that
can explain many of the clinical and biological features in schizophrenia.

There is substantial evidence for both peripheral and central membrane abnormalities in pa-
tients with chronic schizophrenia, and a relative paucity of such evidence in early schizophrenia[2].
One of the key findings in the RBC membrane is decreased polyunsaturated fatty acids (PUFAs),
particularly arachidonic acid (AA). Further, alterations in AA are associated with membrane dys-
function of clinical relevance. This defect appears to be independent of neuroleptic treatment (based
on findings from drug free and neuroleptic-naive patients), and is associated with illness severity.
The primary mechanisms that may lead to reduced membrane AA are increased phospholipid hy-
drolysis and/or decreased incorporation. The accelerated breakdown of membrane phospholipids is
indirectly supported by the 31P Magnetic Resonance Spectroscopy (31P MRS) findings as well as
direct measurements of phospholipid fatty acids in the brains of schizophrenic patients. Supplemen-
tation with essential fatty acids (EFA) is associated with increased membrane PUFAs and with
improved clinical state.

MEMBRANE DEFECTS IN SCHIZOPHRENIA

Decreased Membrane Phospholipids

Early studies indicated that there were a variety of alterations in levels of phosphatidylcholine (PC),
phosphatidylserine, and phosphatidylinositol (PI), and consistent decreases of phosphatidylethano-
lamine (PE) in RBC membranes from patients with psychoses[3]. Phospholipid abnormalities have
also been found in medication-free schizophrenic patients[4], and decreases in all four key mem-
brane phospholipids were found in fibroblasts from neuroleptic-naive schizophrenic patients[5].

31P MRS has been shown to reveal important insights into the metabolism of cell membranes.
Phosphomonoesters (PMEs) are the precursors, and phosphodiesters (PDEs) the breakdown prod-
ucts of membrane phospholipids. PME and PDE resonances reflect membrane turnover and may
differ between healthy and pathological states. Phospholipids themselves constitute a large part of
the broad resonance underlying the PDE and PME peaks. Pettegrew et al.[6,7] have shown signifi-
cant reduction of PMEs and significantly increased levels of PDEs in the frontal cortex of neurolep-
tic-naive first-episode schizophrenic patients. They have proposed that changes in membrane
phospholipids may be related to molecular changes that precede the onset of clinical symptoms and
brain structural changes in schizophrenia[7]. Other investigators have also reported similar findings
in membrane phospholipid perturbations in both acutely and chronically ill patients[8,9,10,11,12].
Direct evidence of decreased phospholipid levels comes from postmortem study of the caudate[13]
of schizophrenic patients relative to normal controls, findings that may underlie an increased phos-
pholipid breakdown observed using 31P MRS.

Decreased PUFAs

Significant reductions in plasma AA (20:4 n-6) and linoleic acid (18:2 n-6), a precursor of AA, but
an increase of total n-3 fatty acids in schizophrenic patients from three geographic regions has been
shown[14]. Other investigators have reported decreases in RBC membrane PUFAs in schizophre-
nia[15,16,17,18]. Moreover, decreases of RBC-PUFAs were not affected by haloperidol treat-
ment[17]. Reduction of AA in skin fibroblasts has been found in first-episode schizophrenic
patients[19].
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Recently, a robust reduction of total PUFAs was found in schizophrenic brains, relative to con-
trol brains[13]. This is consistent with the observed reduction of membrane PE and PC. Specifi-
cally, the decrease of PUFAs was largely attributable to reductions in AA, 20:4(n-6) and, to a lesser
extent its precursor, 18:2(n-6) and 20:2(n-6). A similar decrease of 20:4(n-6) was also found in the
frontal cortex of schizophrenic patients[20]. These data are in accordance with findings in plasma
and RBC membrane fatty acids. In light of findings of membrane defects in a variety of peripheral
cell types (platelets, RBC, and fibroblasts), it has been proposed that in schizophrenia these mem-
brane defects may be generalized in the body, thus being detectable in both extraneural tissues as
well as the brain[21].

AA SIGNALING

Phospholipid Hydrolysis and Neurotransmission

In the brain, AA and its metabolites are considered as the intracellular second messengers. It is
known that many neurotransmitters can potentiate AA release through a receptor-dependent hy-
drolysis of membrane phospholipids, which suggests that the receptor-mediated AA release may
participate in neuronal signal transduction. Therefore, the depleted AA resulting from an increased
phospholipid breakdown has been considered as a common factor that regulates prostaglandin bio-
synthesis, neurotransmission, and neuronal deficits in schizophrenia[22].

Increased Phospholipids Degradation

Phospholipase A2 (PLA2) is a key enzyme responsible for the breakdown of membrane phospholip-
ids. It is enriched in neuronal membranes. Increased cytoplasmic PLA2 activity has been found in
serum of drug-free schizophrenic patients[23,24,25]. Such increases in serum PLA2 activity, how-
ever, were also found in patients with other psychiatric disorders[25], questioning the specificity of
this finding to schizophrenia. Albers et al.[26] found no significant differences of serum PLA2

activity between neuroleptic-naive schizophrenics and normal controls. These discrepancies may
be due to the differences in assay procedure and the heterogeneous class of extracellular PLA2 [27].
Gattaz et al.[28] showed that the intracellular membrane-bound platelet PLA2 activity was signifi-
cantly higher in schizophrenic patients than in normal and psychiatric controls, with no significant
differences between normal and psychiatric controls. It is thus unlikely that the increased platelet
PLA2 activity in schizophrenia results from nonspecific stressors. Furthermore, haloperidol treat-
ment reduced platelet PLA2 activity to control levels. Other neuroleptics also inhibit PLA2 activ-
ity[29,30,31].

Moreover, a significant increase in spontaneous contralateral circling is seen following injec-
tion of bovine PLA2 intranigrally into rats[32], which is alleviated by neuroleptics. Similar results
were also obtained by Cadet and Lohr[33], who further demonstrated that intracerebral injection of
PLA2 can reduce dopaminergic activity. PLA2 is known to inhibit dopamine-sensitive adenylate
cyclase activation[34] and to reduce the [3H]spiperone binding to dopamine receptors[35].

Neurotransmission

Decreased Dopamine Transport

Changes in membrane dynamics can affect transmembrane processes[36]. The function of the DA
transporter receptor (DATR) is highly influenced by the lipid composition of membrane environ-
ment. Decreased DATR density has been found in cortical areas with high metabolic activity in
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schizophrenic brains[37]. Further, both n-6 and n-3 series of PUFAs may be involved in the presyn-
aptic receptor control of dopamine release[38]. Dopamine D2 receptors have been shown to act
synergistically with Ca2+ stimuli to release AA from membrane phospholipids[39]. Further, dopam-
ine D2 receptors potentiate AA release via activation of cytosolic, AA-specific PLA2[40]. Thus,
decreased AA can alter dopaminergic transmission.

Serotonin (5-HT2) Dysfunction

There is abundant evidence that 5-HT2 receptors in the brain play a regulatory role in behavior[41].
5-HT stimulates the release of AA in hippocampal neurons through the activation of PLA2 that is
independent of inositolphospholipid hydrolysis[42]. Thus, 5-HT may potentially mediate some patho-
physiological processes through receptor-stimulated AA or eicosanoids. We have demonstrated that
drug-free schizophrenic patients exhibit reduced physiologic responsivity mediated through the
platelet 5-HT2 receptor complex, which can be modified by haloperidol treatment[43].

Impaired Glutamatergic Neurotransmission

Activation of N-methyl-D-aspartate (NMDA) by glutamate stimulates PLA2 activity to release AA,
and subsequently facilitates long-term potentiation of glutamate synapses in the hippocampus, prob-
ably by a prolonged inhibition of glutamate uptake into glial cells[44]. Decreased availability of AA
may lead to an impaired glutamatergic neurotransmission. A dopamine-glutamate imbalance has
been postulated as one pathogenic mechanism of schizophrenia[45]. Neuroleptic drugs that block
dopamine receptors may also enhance the glutamatergic neurotransmission.

Hyperactivity of PI Pathways

Early studies indicated that the receptor-stimulated hydrolysis of inositol phospholipids, particu-
larly phosphatidylinositol 4,5-bisphosphate [PI-4,5-P2], is initiated by a specific phospholipase C
(PLC)[46,47]. A specific GTP-binding protein appears to be responsible for transducing the acti-
vated receptor through plasma membrane and activation of PLC. The resulting diacylglycerol (DAG)
and inositol 1,4,5-triphosphate [1,4,5-IP3] lead to activation of protein kinase C (PKC) and eleva-
tion of cytosolic Ca2+, which provide molecular links between extracellular signals and intracellular
events[47,48]. Thus, both DAG and IP3 are second messengers that generally act in concert.

Quantitative determination of inositol phosphates provides direct evidence for PI hydrolysis by
PLC in intact cells[49]. Increased turnover of platelet PI was found in both drug-treated and drug-
free patients[50,51,52] but not drug-naive patients[51]. The increased production of IP3 may be due
to an increase in the precursor, PI-4,5-P2, associated with a desensitization of the intracellular IP3

receptor by neuroleptics[50]. On the other hand, Zilberman-Kaufman et al.[53] have reported an
increased inositol-1-phosphatase in RBC of chronic schizophrenic patients. They interpreted that
the increased enzyme activity might compensate physiologically for a deficiency of inositol in these
patients. A trial of inositol therapy[54], however, showed no measurable psychoactive effect in
chronic schizophrenic patients treated with neuroleptics.

In human platelets, DAG can be produced within 5 s of thrombin activation[55]. The newly
formed DAG is either phosphorylated to phosphatidic acid (PA) by a specific DAG kinase[56] or
cleaved to monoacylglycerol (MAG) by DAG lipase (see below). Both reactions may be considered
as a termination for DAG intracellular signaling[57]. We have reported increased formation of
DAG in thrombin-stimulated platelets of both haloperidol-treated and drug-free patients[58], con-
sistent with the findings of Kaiya et al.[59]. Using [32P]orthophosphate as a precursor, we have
previously demonstrated that thrombin-induced formation of platelet PA was substantially higher in
schizophrenic patients than in normal controls[52]. Therefore, the increase in thrombin-induced
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platelet DAG may be due, at least in part, to an increased PI turnover in schizophrenic patients[51,52].
Although schizophrenic patients with abnormal PI turnover appeared to have a better outcome than
other patients[59], whether the second messenger (DAG) accumulation is correlated with clinical
response in schizophrenia requires further investigation.

The functionality of the PI intracellular signaling has further been investigated in the postmor-
tem human brain[60,61,62,63]. Using GTPγS to assess the activation of the G protein coupled with
the stimulation of PLC, Jope et al.[64] have further demonstrated selective increases in PI signaling
activity and Gαo levels in postmortem brain from schizophrenic subjects. This finding is in partial
agreement with the result of Wallace and Claro[63] showing a similar but not statistically signifi-
cant increase in GTPγS-stimulated PI hydrolysis in prefrontal cortex of schizophrenic patients com-
pared with controls. Thus, taken together with the findings in platelets, there is ample evidence of
hyperactivity of the PI signaling system in schizophrenia that is markedly different from diseases
with major depression and bipolar mood disorder showing a decreased activity of G protein–medi-
ated PI hydrolysis[62,65].

Eicosanoids

In addition to the formation of second messengers, the newly released AA from membrane phospho-
lipids can be converted to a variety of biologically active metabolites, which are collectively re-
ferred to as eicosanoids, through the concerted reactions of cyclooxygenase (COX) and lipoxygenases.
Eicosanoids are the potent messengers, which modulate neural cell function as well as involve in
pathophysiological processes[66]. Since AA is the major C20 PUFAs in mammalian tissues, the
prostaglandin-2 (PG2) and thromboxanes-2 (TX2) series are the predominant classes of eicosanoids.
Studies involving the inhibition of COX by nonsteroidal anti-inflammatory drugs have revealed the
significance of PG2 in the regulation of nerve conduction, neurotransmitter release, inflammation,
pain, fever, immune responses, and apoptosis.

In schizophrenia, there are reduced levels of AA in membrane phospholipids that could con-
ceivably lead to a decreased synthesis of eicosanoids. A deficiency of prostaglandins has previously
been related to schizophrenia[67]. One of the AA metabolites, PGD2, mediates vasodilatation dur-
ing the inflammatory response. Therefore, the reduced AA availability may in part to explain a
variety of clinical observations in schizophrenia that are usually ignored by the receptor-based
etiological hypotheses[68]. For example, in schizophrenia, there appears to be a lower risk of arthri-
tis and other inflammatory diseases[69], greater resistance to pain[70,71], and remission of psycho-
sis during fever has been observed[67]. These effects could be secondary to a reduced eicosanoid
signaling.

Endocannabinoid System

Cannabinoid and Schizophrenia

∆9-Tetrahydrocannabinol (∆9-THC), the psychoactive ingredient from Cannabis saliva or mari-
juana[72], has been known for centuries to cause acute euphoria, altered time perception, dissocia-
tion of ideas, paranoia, motor impairment, and occasional hallucinations[73]. The behavioral effects
of cannabinoids vary in humans and are mainly dose dependent. With severe intoxication, a variety
of cognitive and behavioral functions including memory, attention, reaction time, concept forma-
tion, motor coordination, and perception, can also be affected. Thus, a possible relationship be-
tween THC use and the development of psychosis has been explored in the early 1970s[74,75]. In
fact, many clinical symptoms from the cannabis users resemble negative symptoms in patients with
acute schizophrenia[76]. Later, Chopra and Smith[77] also reported psychotic episodes following
cannabis use in a group of East Indian marijuana users. Particularly, those with “schizoid” person-
ality features exhibited full-blown schizophrenic symptoms during the period of intoxication. Sub-
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sequently, Thacore and Shukla[78] have demonstrated an association of the paranoid psychosis
with long-term cannabis use in 25 patients with paranoid schizophrenia. Chaudry et al.[79] and
Abood and Martin[73] have further shown that moderate to severe THC intoxication closely mim-
ics many of the positive and negative symptoms of schizophrenia. However, whether cannabis psy-
chosis is a distinct clinical entity remains unclear[80].

Although the role of cannabis in the development of schizophrenia is unclear, the drug may
modify the course of an already established illness[80]. For example, cannabis can affect the sever-
ity of schizophrenic symptoms[81], increase relapse rates[82], and decrease the efficacy of antipsy-
chotic drugs[83]. In a longitudinal study of 45,570 subjects with 15 years follow-up, Andreasson et
al.[84,85] have demonstrated that individuals with cannabis consumption have increased risk up to
sixfold of developing schizophrenia as compared to normals or other drug users.

On the other hand, there were no differences in psychotic symptoms between schizophrenic
patients with and without cannabis abuse. However, decreased negative symptoms were observed
in cannabis users[86,87].

Tetrahydrocannabinol (THC) Ligands

In 1988, Devane et al.[88] first characterized cannabinoid receptor in rat brain membranes. Re-
cently, two endogenous THC ligands, anandamide[89] and 2-arachidonoylglycerol (2-AG)[90,91],
have been discovered in the brain. Both anandamide and 2-AG are derivatives of AA. Anandamide
is synthesized by the “transacylase-phosphodiesterase pathway”[92], which transfers the sn-1 linked
acyl group of a glycerophospholipid to the ethanolamine group of PE. On the other hand, 2-AG is
formed through the PLC-mediated degradation of PI as well as other membrane phospholipids. The
resulting DAGs are hydrolyzed by sn-1-DAG lipase to produce 2-MAG, including 2-AG.

Because AA is primarily esterified at the sn-2 position of glycerophospholipids, 2-AG is often
a major component of cellular MAG. On the other hand, NAEs that derive their fatty acids from the
sn-1 position contain only trace amounts of anandamide (20:4 NAE) in virtually all mammalian
cells and tissues, as well as in plasma. In brain, however, 2-AG is present in amounts 170 times
greater than anandamide[91].

Given the localization of endogenous cannabinoid receptor (CB1) system in brain areas (i.e.,
cortical and limbic structures) known to be implicated in schizophrenic brain pathology[93,94], it is
plausible that dysfunction of CB1 system with endogenous ligands be associated with the patho-
physiology of schizophrenia. Moreover, there is a close interaction between CB1 and dopaminergic
systems. Cannabinoid agonists such as THC and the endogenous ligands, anandamide and 2-AG,
can modulate the dopaminergic system[95,96,97]. Our lab[2] as well as others[16,18,20] have re-
ported abnormalities in membrane AA from patients with schizophrenia. Since AA is the precursor
of anandamide and 2-AG, it is possible that there exists a dysfunction of CB1 system in schizophre-
nia.

Recently, Berdyshev et al.[98] have shown that production of 2-AG is markedly elevated during
platelet activation. Taken together from the above observations, it is likely that an increased 2-AG
resulting from the hyperactivity of PI signaling system and DAG second messenger formation en-
hance the activation of cannabinoid receptor system in schizophrenia. This hypothesis is in agree-
ment with the view[99] that the ability of platelets to generate 2-AG and release it into the circulation
may affect cannabinoid receptors in the brain.

CLINICAL RELEVANCE

Clinical Correlates

Low levels of RBC AA have been associated with prominent negative symptoms[16] and persistent
positive symptoms[100]. In drug-free chronic schizophrenic patients, we found linoleic acid levels
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were inversely correlated with psychosis severity, suggesting the possibility of a defect in the con-
version of linoleic acid to AA. Although these studies were conducted in chronic schizophrenic
patients, no effects of long-term typical neuroleptics on AA levels were observed. Reduced incorpo-
ration of AA has been found in schizophreniform and untreated schizophrenic patients[101]. Re-
cently, we have also demonstrated a decreased level of PUFAs in RBC membranes of first-episode
neuroleptic-naïve schizophrenic patients[102], suggesting membrane pathology is present also early
in the course of illness. Thus, a specific membrane defect may be associated with poor outcome
(prominent negative and persistent positive symptoms), and may be present early in illness.

Tardive Dyskinesia (TD)

Approximately 20% of patients receiving neuroleptics long term develop TD, often in those pa-
tients who exhibit the deficit syndrome. Vaddadi et al.[15] found that psychiatric patients (primarily
schizophrenics) with TD had significantly lower RBC PUFA of both n-6 and n-3 series. The reduc-
tion of PUFA progressed as the severity of the TD worsened. These PUFA abnormalities were
thought to be due to dietary factors, drug therapy, and hospitalization status[103]. Low plasma AA
levels may also increase the risk for dyskinesia in the general elderly population. Nilsson et al.[104]
found in 446 older Swedish men that the rate of dyskinesia was 15.1%, with a robust association
with low AA. Zubenko and Cohen[105] have shown that platelet membrane fluidity, a direct mea-
sure of membrane function, is altered in patients with TD.

Niacin-Induced Flushing

Facial flushing is induced by 200 mg of oral niacin in about an hour in the majority of normal and
depressed subjects[106]. Schizophrenic patients with low levels of AA fail to flush in response to
oral niacin[107]. Some patients with schizophrenia, particularly those with the negative or deficit
syndrome, fail to flush facially in response to niacin[106,108,109]. Niacin flushing is dependent on
the release of prostaglandin E1 from 18:3(n-6)[108] and of prostaglandin D2 from AA[110]. It is
known that PGD2 is involved in the vasodilation during the inflammatory response. Since PGD2 is
synthesized from the AA released from membrane phospholipids, the reduced niacin-induced flush-
ing may be due to reduced membrane phospholipid AA. It is conceivable that endocannabinoid
overproduction may downregulate prostaglandin biosynthesis, since both pathways share the same
precursor, AA.

Later Onset of Illness in Female Patients

Males are more likely to develop schizophrenia at an earlier age, whereas females tend to have the
onset of illness[111,112,113]. Females may have a lower requirement than males for EFA, possibly
because of the presence of estrogen[114,115], and thus might be expected to retain membrane AA in
early life better than males. Such an advantage, however, would disappear after menopause[21].

Other Mental Disorders

Membrane phospholipid abnormalities have been observed in dyslexia and attention deficit hyper-
activity disorder (ADHD)[116,117]. Clinical features common to schizophrenia and these develop-
mental disorders include language system and attention deficits[118,119]. Thus, PUFAs membrane
deficits may explain many biological, physiological, and clinical consequences observed in schizo-
phrenia[68].
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THERAPEUTIC EFFICACY (AA, AN INDEX OF THERAPEUTIC EFFECT?)

The mainstay of treatment of schizophrenia is an antipsychotic agent, primarily the typical and
atypical neuroleptics. However, the response to current treatments is variable and far from accept-
able, with only 60% of schizophrenic patients responding favorably. Treatment nonresponders fre-
quently have prominent cognitive deficits and negative symptoms. Thus, any feasible method that
can mitigate the persistent positive and negative symptoms, as well as the cognitive deficits can
improve outcome.

PUFA Supplementation: Correlation between Clinical State and RBC AA

Investigating EFA metabolism has proved fruitful for generating and testing novel etiologic hypoth-
eses and new therapeutic agents for schizophrenia[120]. The early studies of PUFA supplementa-
tion were aimed at TD without significant success[121,122,123,124].

However, dietary supplementation with eicosapentaenoic acid (EPA), a precursor of
docosahexanoic acid (DHA), has shown promising results in decreasing some of the clinical symp-
toms of schizophrenia[18,125,126,127], as well as cognitive impairments associated with dyslexia
and ADHD[116,117]. There were no treatment-related side effects or adverse biochemical or hema-
tological effects[128]. In a multicenter study with EPA treatment, Peet and Horrobin[128] have
shown that patients on 2 g/day not only showed significant reduction of plasma triglycerides levels
which had been elevated by clozapine, but also clinically improved. In addition, there was a positive
correlation between clinical improvement and rise in RBC AA concentration.

Atypical Antipsychotic Treatment: Ability of Apolipoprotein D to Bind AA

Clozapine, a widely used atypical antipsychotic drug, has been shown to be effective and relatively
well tolerated in acute and long-term treatment of patients with schizophrenia, especially those who
have not responded to conventional pharmacotherapies[129]. In contrast to typical neuroleptics, the
dopamine D2 receptor antagonists, clozapine exhibits an expanded spectrum of affinity for other
neurotransmitter receptors, including 5-HT2, histamine, muscarinic and adrenergic receptors[130].
However, the improved clinical efficacy of clozapine may not be attributed exclusively to its drug-
blocking profile.

In order to understand the molecular mechanisms of clozapine’s potentially unique actions, a
PCR-based differential gene expression method, TOGA (Total Gene Expression Analysis) was used
to identify genes whose expression may be altered by clozapine administration[131]. Following
screening procedures, a regulation of apolipoprotein D (apoD) has been unveiled in the mouse brain
resulting from clozapine treatment. Increases in apoD expression were detected in white matter
regions, including corpus callosum, internal capsule and optic tract, and gray matter regions, in-
cluding the striatum and globus pallidus[131]. These results implicate apoD in the mechanisms of
action of clozapine.

In vitro, apoD has been shown to bind and transport ligands including AA, cholesterol, a human
axillary odorant, heme-related molecules and steroid hormones, such as progesterone and preg-
nenolone[132,133,134,135,136,137]. Despite the ability of apoD to bind these small molecules, the
physiological ligand(s) has yet to be identified definitively and it is possible that apoD has multiple,
tissue-specific physiological ligands that may function differently under normal and pathological
circumstances. Interestingly, the ability of apoD to bind AA implicates it in pathways associated
with membrane phospholipid signal transduction and metabolism. Clozapine has been shown to
increase AA and DHA levels in RBC phospholipids from schizophrenic patients[107,138]. It is
likely that the elevated apoD levels such as those caused by clozapine may be linked with the
observed clozapine-induced increase in AA, and possibly be beneficial for patients.
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Mood Stabilizers: Inhibition of AA-Specific Cytosolic PLA2 by Lithium or
Valproic Acid

Although lithium and valproic acid have been shown effectively in treating both phases of bipolar
disorders, it is not clear whether a common biochemical pathway underlie their action. Because of
lithium’s ability to inhibit inositol-1-phosphatase, the sensitivity of receptor systems that utilize PI
may be altered by prolonged exposure to lithium[46,139]. Thus, the therapeutic actions of lithium
have been targeted toward those neuronal systems in which the receptor-mediated PI turnover is
most active[140,141,142]. Changes in the second messengers may result in prolonged effector stimu-
lation that could underlie mania. Similarly, excessive receptor desensitization may lead to depres-
sion. However, the chronic lithium treatment at relevant clinical doses only exhibit modest or no
changes in PI turnover[143]. In addition, other membrane phospholipids were also altered in rat
brain following chronic lithium treatment[144].

Following intravenous infusion of radiolabeled palmitic acid and AA in awake rats treated
chronically with lithium, Chang et al.[145] have demonstrated decreased turnover rate of AA sec-
ond messenger in brain phospholipids by up to 80%. In contrast, lithium had a minimal effect on
turnover of palmitic acid. Decreased AA turnover was associated with a down-regulation of gene
expression and protein levels of AA–specific cytosolic phospholipase A2 (cPLA2), but not with the
intracellular PLA2[146]. Similarly, valproic acid had the same effect on AA turnover, although it did
not alter the cPLA2 protein levels[147]. Taken together, both lithium and valproic acid have the
same therapeutic action in reducing brain turnover of AA, probably via a different mechanism.

CONCLUSION

There is accumulating evidence of membrane fatty acid compositional deficits in schizophrenia.
These deficits have been found in peripheral tissues and the brain, in both neuroleptic-naïve and
treated patients. The membrane fatty acid deficits are specific, primarily reductions in the n-3 and
n-6 classes. Although much of the attention by early investigators has on n-3 fatty acids, increasing
attention is being paid to the potentially important role that AA may play in the pathophysiology of
schizophrenia. Recent clinical trials suggest that AA may be an index of therapeutic, and possibly
pharmacological, action. AA has a key role in many physiological mechanisms that mediate signal
transduction. Thus, future studies should clarify the specific role that AA has in the development,
illness presentation and treatment of schizophrenia and related disorders.
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