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For centuries, the question of “whether there is life after death” has intrigued the
mind of philosophers, and the same question fascinates researchers in the field of
apoptosis today. The death of a cell is by no means the end of the story. On the
contrary, growing evidence suggests that the clearance of apoptotic bodies by mac-
rophages is an important regulatory component in tissue renewal. Without death by
apoptosis, the life of reproductive tissues and their function would not be possible.
The survival signals that counteract cell death also prepare the cells for apoptosis,
and dead cells are important stimuli for tissue survival. The Fas/FasL system is an
important mediator in apoptosis and is an excellent example of this apparently con-
tradictory phenomenon.
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INTRODUCTION

Apoptosis, or programmed cell death, is an active process essential for the development and homeo-
stasis of all multicellular organisms[1]. Following cycles of proliferation and differentiation, un-
necessary or potentially dangerous cells undergo apoptosis without affecting neighboring cells. As
the primary mechanism of physiological cell loss, apoptosis plays an important role in the mainte-
nance of normal tissue function throughout the body[2]. A delicate balance between the factors
controlling cell proliferation and those controlling apoptosis properly maintains this tissue homeo-
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stasis. Disturbance in this balance may lead to either insufficient or excessive apoptosis which then
can contribute to a variety of pathological conditions including cancer, AIDS, and autoimmunity[2].

Due to the cyclic nature of the female reproductive system, imposed by the episodic release of
ovarian steroids, female reproductive organs such as the ovary, endometrium, and mammary gland
sustain continuous cycles of cell growth and apoptosis in response to hormonal changes, and, there-
fore, are particularly dependent on this means of cell death. These cycles of cell growth/death, also
known as “tissue remodeling”, play an important role not only in the normal physiology of the
tissue but also in the prevention of neoplastic transformation and cancer formation. Under the influ-
ence of survival factors such as estrogen, insulin, or LH/FSH, cells proliferate and increase in
number (stage I). Subsequently, hormones such as progesterone or prolactin induce cell differentia-
tion, which conveys two aspects—one is to reduce the rate of cell proliferation and the other to
commit differentiated cells to undergo apoptosis at the end of their function (stage II and III, respec-
tively)[3].

However, this picture would be incomplete without mentioning a fourth stage, which is the
removal of apoptotic cells (clearance) and its role in tissue homeostasis (Fig. 1).

In this review we will discuss the interaction between sex hormones as survival factors, the Fas/
FasL system, one of the main apoptotic pathways, and macrophages, in tissue remodeling of the
female reproductive organs and its implication in normal and pathophysiology.

APOPTOSIS

Apoptosis is a morphologically defined cell death, and can be divided into three sections: initiation,
execution, and termination. Unlike necrosis, which is generally caused by physical or chemical

FIGURE 1. A complete view of tissue homeostasis. Our understanding of proliferation, differentiation, and cell death is
incomplete without acknowledging the role of tissue clearance by macrophages.
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injury, apoptosis is normally triggered as a cellular response to survival factor deprivation. More-
over, necrosis results in the release of the cytoplasmic contents of the cell into the extracellular
matrix followed by an inflammatory response, whereas apoptosis occurs without activation of the
immune system. Apoptosis is typically characterized by membrane inversion, cell shrinkage, chro-
matin condensation, and DNA degradation[4]. In the terminal stages of apoptosis, the so-called
apoptotic bodies that form during the execution phase are quickly engulfed by phagocytic cells such
as macrophages[5], thereby preventing lysis and release of intracellular proteins, which otherwise
may trigger autoimmune responses (see below).

Apoptosis can be initiated either by external factors including UV- or γ-irradiation, chemo-
therapeutic drugs, and death receptors (known as the “extrinsic pathway”)[6,7], or by internal fac-
tors such as DNA damage and p53 activation (the “intrinsic pathway”)[8]. In this latter pathway, the
death signal is directed to the mitochondria and is regulated mainly by genes of the bcl2 superfamily
(reviewed in [9,10]). The proapoptotic Bcl-2 family members, such as Bax and Bak, increase the
permeability of the mitochrondrial membrane to cytochrome-c release. Consequently, a macromo-
lecular complex called an apoptosome is formed, which activates caspase-9 with the help of apoptotic
protease activating factor (APAF-1). In turn, caspase-9 activates caspase-3 and -7, the point at which
the two pathways converge.

If apoptosis is executed through the extrinsic pathway, the death signal is initiated by one of the
members of the Tumor Necrosis Factor (TNF) receptor superfamily[11,12]. In order to transduce
the apoptotic signal, TNF receptors have intracellular homophilic death domains (DD), which me-
diate protein–protein interactions with other DD-containing adaptor proteins[13]. To date, six mem-
bers of this family have been identified and include Fas (APO-1/CD95), TNF-R1, DR3, TRAIL-R1,
TRAIL-R2, and DR6[12,14]. Among the death receptors, Fas is the most widely studied and best
characterized[11,15]. Analogous to the other TNF family members, Fas is activated by its natural
ligand, FasL, which exists in a soluble and membranal form[12].

THE FAS/FASL SYSTEM

Structure and Function

The pathway by which signaling through Fas leads to cell death (apoptosis) has been studied exten-
sively[5]. It begins with the binding of FasL or an agonistic Fas monoclonal antibody (in experi-
mental setups) to the extracellular region of the Fas receptor, resulting in its trimerization. Upon
receptor oligomerization, the intracellular Fas-associated death domain (FADD) binds to the cyto-
plasmic tail of Fas via its death effector domain (DED)[13]. In turn, FADD recruits other cellular
proteins through DD to form the death-inducing signaling complex (DISC). Once the DISC is as-
sembled, procaspase-8 or -10, the ‘initiator’ cysteine proteases of the pathway, are able to bind to
FADD. Analogous to other proteases, caspase-8 and -10 normally exist in the cytoplasm in their
nonactive zymogen form until activated. According to the induced proximity model, high local
concentrations of procaspase-8 and -10 are trans- or autocatalytically cleaved once in close proxim-
ity to the DISC[16]. This is believed to occur by a two-step cleavage process that results in the
formation of active caspase-8 or -10 heterotetramers[17]. Following activation, caspase-8 or -10
initiate the caspase cascade, which terminates with caspase-3 and -7 cleavage. As effector caspases,
caspase-3 and -7 cleave a variety of substrates, including DNA repair enzymes and endonucleases
such as inhibitor of caspase-activated deoxyribonuclease (ICAD). Consequently, caspase-activated
deoxyribonuclease (CAD) is released from ICAD and enters the nucleus to nonspecifically cut the
genomic DNA into 200 base-pair fragments, eventually ending in apoptosis[18]. Altogether, this
signaling through protein–protein interactions and proteolytic cleavage steps provide several points
in the Fas-signaling pathway to modulate apoptosis (see Fig. 2).
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Regulation

Since the machinery for Fas-mediated apoptosis is readily present within most cells, several mecha-
nisms exist to keep cell death under control. Regulation of Fas-mediated apoptotic machinery may
occur at many steps along the recruitment-activation pathway. At the receptor level, Fas-mediated
apoptosis can be blocked by either dominant negative decoy receptors, receptor endocytosis or by
soluble FasL (sFasL)[17]. Additionally, several intracellular inhibitors that block the Fas-signaling
pathway have been characterized. As proximal inhibitors of the extrinsic pathway, Flice-like inhib-
iting proteins (FLIPs) are believed to compete with caspase-8 for binding to FADD, thereby pre-
venting apoptotic signaling events downstream caspase-8 activation[5]. The blocking of the
Fas-pathway also may occur at the effector stage (casapase-8 and -3 activation) by viral protein
products, such as cytokine response modifier A, p35, and inhibitors of apoptosis (IAP)[19].

Signaling by Fas: The Two Pathway Model

What was originally thought to be a discrepancy between the data obtained from independent Bcl-
2 overexpression studies and their effect on Fas led to the identification of two cell types termed
Type I and Type II[20] (Fig 2). Type I cells can undergo death receptor–mediated apoptosis without

FIGURE 2. Schematic representation of the intracellular components of the Fas/FasL pathway.
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mitochrondrial support (extrinsic pathway), whereas type II cells require the release of cytochrome-
c from mitochrondria (intrinsic pathway) in order to translate the death signal. In contrast to type II
cells, type I cells contain large amounts of DISC and caspase-8. As a consequence, type I cells can
rely solely on the extrinsic pathway, whereas type II cells are dependent on both the extrinsic and
intrinsic pathways to execute apoptosis. Thus, since Bcl-2 overexpression blocks the intrinsic path-
way only, these observations might explain why certain cells are sensitive and others insensitive to
Bcl-2 overexpression[21]. Besides cell lineage, the nature of the apoptotic stimulus and the mi-
croenvironment (cytokines, growth factors, etc.) are likely to play a role in whether apoptosis is
executed by the extrinsic or intrinsic pathway[22]. However, the idea of type I and II is still subject
of controversy, some investigators have proposed that that type I or type II cells do not exist but
FasL-induced apoptosis in any cell type (being sensitive to this form of apoptosis) occurs as a
mixture of both pathways[23].

THE ROLES OF THE FAS/FASL SYSTEM IN TISSUE HOMEOSTASIS

The Fas/FasL system was originally characterized in lymphocyte homeostasis, during which both
immature and mature T cells are eliminated by a Fas-dependent mechanism termed activation-
induced cell death (AICD)[24]. In particular, Fas and FasL have been implicated in the clonal dele-
tion of self-reactive thymocytes in secondary lymphoid tissues, cytotoxic T cell killing, and the
removal of activated peripheral T cells following an immune response[25,26]. A loss-of-function
mutation in the gene encoding either Fas or FasL, as demonstrated in homozygous lpr
(lymphoproliferation) and gld (generalized lymphoproliferation disease) mice, respectively, results
in progressive lymphocyte accumulation and severe autoimmunity[27]. Details about the role of the
Fas/FasL system on lymphocyte homeostasis have been reviewed extensively (see recent reviews
by Kramer[5] and Sharma[28]).

THE FAS/FASL SYSTEM IN REPRODUCTIVE TISSUES

Reproductive organs such as the endometrium, mammary gland, and ovary undergo cycles of cell
proliferation and cell death as a result of changes in hormonal levels. During each cycle there is a
massive increase in cell number, which is then decreased by a coordinate process of cell death. New
evidence from our laboratory and others indicate the existence of a close interaction between sex
hormones, mainly estrogen and progesterone, and the Fas/FasL system in the control and mainte-
nance of tissue homeostasis. We will review work done in the endometrium, mammary gland, and
ovary.

Endometrium

The human endometrium, in preparation for pregnancy, undergoes cell growth in response to estro-
gen and progesterone. Recent studies have demonstrated the expression of Fas and FasL in human
endometrium throughout the menstrual cycle. Using electron microscopy and immunohistochemis-
try, Yamashita and coinvestigators localized Fas and FasL to the Golgi apparatus and vesicles in the
late proliferative phase. In addition, the same study revealed that both Fas and FasL are coexpressed
in the plasma membrane of endometrial cells during the secretory phase of the menstrual cycle[29].
This expression pattern suggests that the Fas/FasL system is involved in apoptosis of the human
endometrium during menstruation and responds to hormonal changes.

Under the influence of estrogen, endometrial cells in the proliferative phase of the menstrual
cycle are stimulated to divide and become resistant to apoptosis. Surprisingly, we found that estro-
gen increased FasL expression in endometrial cells, thymocytes, and breast cancer cells[25,30,31].
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It became clear that estrogen–estrogen receptor complexes directly regulate the FasL expression
through the presence of an Estrogen Regulatory Element (ERE) in the FasL promoter and mutations
in the ERE region were shown to block the estrogenic effect completely[31,32]. Furthermore, the
estrogenic effect on the FasL expression is not only dependent on the ERE but also on the transcrip-
tion factor AP-1 motif, also present in the FasL promoter[33]. Introduction of mutations in the AP-
1 motif reduced the effect of estrogen by 40%. However, the effect of estrogen on FasL expression
seems to be dependent on the subtype of the estrogen receptor (ER-α or ER-β) present, since no
reduction was observed in cells expressing ERβ alone (Fig. 3). This suggests that only ERa is
capable of activating AP-1. Furthermore, we demonstrated that estrogen induces cell proliferation
in neuronal-like cells expressing ERa, but induces apoptosis through the Fas/FasL system in those
expressing ERβ, which correlates with the loss of ERβ in proliferative and malignant cells[34,35,36].
Since estrogen enhances proliferation and increases FasL-expression, which seems contradictory, it
is essential to note that an increase in FasL expression does not necessarily result in an increase in
apoptosis, because Fas needs to be expressed as well. Therefore, increase in FasL expression by
estrogen while it induces cell proliferation might serve to prepare the cell for apoptosis after prolif-
eration and differentiation and thereby maintaining tissue homeostasis.

During the secretory phase, progesterone inhibits further proliferation and induces terminal
differentiation. Through the process of differentiation, cells become again sensitive to apoptosis by
the increase in the expression of proapoptotic genes. While estrogen has a regulatory effect on FasL
expression it does not affect Fas expression[31]. Contrary to estrogen, progesterone regulates the
expression of Fas but not FasL. The induction of Fas by progesterone prepares the cells to undergo
apoptosis at the end of their function, which is determined by decrease in hormonal levels, as is the
case in the endometrium if implantation fails to occur[37]. Thus, circulating estrogen and progest-
erone levels decrease and the endometrium is shed during a process called menstruation. Until
electron microscope studies confirmed the presence of apoptotic bodies in human endometrial cells
during the late secretory phase of the cycle, menstruation was regarded as ischaemic necrosis of the
functional layer of the endometrium. Today we have enough evidence showing that during involu-
tion of the endometrium, endometrial cells undergo rapid regression via apoptosis in preparation for

FIGURE 3. Effect of estrogen on FasL promoter activity. The effect of estrogen on FasL activity was determined using a
luciferase reporter gene system. Both ERE and AP-1 motifs are necessary for estrogen-induced FasL activation in ERa
bearing cells. On the other hand, only the ERE motif is necessary in ERβ bearing cells.
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the next menstrual cycle. Part of this process is mediated by the Fas/FasL system[37]. We demon-
strated the role of Fas/FasL in endometrial cells by showing that withdrawal of estrogen and proges-
terone activates the Fas pathway and induces cell death in endometrial cells in vitro. Additionally,
blocking the Fas pathway with a competitive FasL antibody prevented apoptosis following estrogen
and progesterone withdrawal[37].

The effects of estrogen and progesterone on the expression of FasL and Fas, respectively, exem-
plify the delicate balance existing between cell survival and cell death and the role sex hormones
play in the regulation of this important apoptotic pathway.

Mammary Gland

The normal development of mammary glands during pregnancy is characterized by a period of
epithelial cell proliferation followed by the differentiation of milk-producing cells after parturi-
tion[38]. Walker and coworkers have demonstrated that in mouse and rat, mammary tissue involu-
tion is accompanied by the cleavage of chromatin into oligonucleotide fragments[39], a characteristic
of apoptosis[1,40,41]. These and other studies[42,43] provide strong evidence that cell loss during
involution occurs by programmed cell death. The occurrence of such remodeling is supported by
experimental manipulations which have shown that after litter removal, lactation can be maintained
and involution impeded by injection of lactant hormones[44,45].

In a recent study we demonstrated that although Fas protein is present during normal breast
development, it is absent during pregnancy and lactation, only to return after weaning. On the other
hand, FasL is present during pregnancy, lactation, and weaning but not in the virgin mouse. The
overlapping expression of Fas and FasL during involution is accompanied by apoptosis of the mam-
mary epithelium[3].

We further evaluated the role of Fas and FasL in mammary gland remodeling using the Fas
deficient MRL/lpr mice, in which the Fas gene is interrupted by an early transposable element and
carries a point mutation in the death domain, and the C3H/gld mice, which have a nonfunctional
FasL[46,47]. Lack of Fas or functional FasL in the MRL/lpr and C3H/gld mice, respectively, pre-
vented apoptosis of mammary cells during the first 3 days of involution. However, apoptotic cells
were found at day 4 of involution, suggesting that the Fas/FasL system may play an important role
in early stage of involution. The timing of the differences in mammary apoptotic cells in the MRL/
lpr and C3H/gld mice is crucial in light of the two-stage model of involution proposed by Lund and
coworkers[48]. The authors proposed that, postlactational involution of the mammary gland is char-
acterized by two distinct phases. The first phase of involution is characterized by rapid induction of
proapoptotic genes within the epithelium (days 1–4)[48,49]. This is the period when Fas and FasL
are active based on the absence of apoptotic cells in the mammary glands of MRL/lpr and C3H/gld
mice. The second phase of involution is characterized by the induction of genes encoding proteases
within stroma cells that result in the remodeling of the gland[48]. This phase is Fas/FasL indepen-
dent as shown by the presence of apoptotic cells in the mammary glands of MRL/lpr and C3H/gld
mice. This chronology is consistent with Fas and FasL being expressed in the cell surface during the
first phase resulting in the “suicide” of the secretory epithelium. Cells escaping the first phase are
then removed by secondary mechanism that is Fas-independent. At this time, stroma cells, including
macrophages, may induce cell death of the epithelium to ensure the removal of secretory cells[50].

The expression of Fas and FasL on the involuting mammary gland is not homogeneous, even in
the same gland or duct. Using immunohistochemistry, we found that some cells were positively
stained while other nearby cells were negative, suggesting differences in remodeling stages be-
tween cellular districts of the glands and ducts. Moreover, this heterogeneity of apoptosis provides
a survival advantage since the entire function of the gland is not lost immediately when sucking
stops. Rather, apoptotic factors (e.g., Fas/FasL) trigger graded programmed cell death and decreased
milk production, allowing for sucking to be restarted if necessary. If pups resume suckling, the
hormonal microenvironment, which constitutes a survival factor, inhibits apoptosis and promotes
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restoration of milk production. However, if suckling is not restored, the second phase of involution
takes place, promoting disruption of basement membrane and extracellular matrix, resulting in a
complete remodeling of the gland to a state resembling the mature virgin[3,49].

Ovary

Two major stages of oocyte degeneration can be distinguished in the ovary: germ cell attrition,
which occurs mainly prenatally, and follicle atresia, a process during reproductive life (reviewed in
[51]). At 24 weeks of gestation, the number of oocytes in the human ovaries reaches a maximum of
7 million. At birth, about 0.7 to 2 million oocytes remain in the ovaries and at puberty only 400,000
are left. Additionally, during every estrous cycle, about 5–12 follicles resume development, and
usually only 1 follicle becomes dominant and is ovulated, whereas the other follicles degenerate.
Ovarian follicular degeneration or atresia is a hormonally controlled apoptotic process of the granu-
losa cells and to some extent the theca cells, which eliminates subordinate follicles[52]. Ovulation
results in damage of the ovarian surface epithelium, which will be repaired by subsequent prolifera-
tion and apoptosis. After ovulation, the corpus luteum develops, which regresses after a few days in
the case of nonpregnancy, or after a few months when successful pregnancy occurs. Several experi-
ments suggest that there is an important role for the Fas-pathway in follicular atresia, ovarian sur-
face epithelium repair and luteolysis.

The expression of Fas and FasL in mammalian ovaries varies between different cell types and
throughout the menstrual cycle. Studies on mice ovaries revealed that granulosa cells of large fol-
licles and some medium follicles express Fas, whereas no Fas expression was detected in granulosa
cells of small follicles and in oocytes[53]. When we evaluated Fas and FasL expression in the
female rat, FasL was highly expressed in estrous, decreased during metestrous and diestrous, and
was not detected in proestrous, while Fas protein expression increased during proestrous and es-
trous and decreased during metestrous and diestrous[36]. In cows, Fas and FasL are expressed in
granulosa and theca cells of day 5 and 11 follicles, however, the Fas mRNA level is higher in
granulosa cells and the FasL mRNA level is higher in theca cells[54]. At day 5 of the estrous cycle,
granulosa and theca cells of subordinate atretic follicles have higher Fas and FasL mRNA content
than healthy dominant follicles, which correlates with increased sensitivity to FasL-induced apoptosis
in granulosa, but not theca cells[54,55]. During transition of healthy dominant bovine follicles (day
5) into atretic dominant follicles (day 11), the level of Fas mRNA increases in theca cells, whereas
the FasL mRNA level increases in granulosa cells[55]. Similarly, in human ovaries, Fas was local-
ized to granulosa and theca cells of atretic, but not healthy antral follicles[56,57]. Therefore, it is
likely that the Fas pathway is involved in the regression of subordinate follicles and follicle atresia.

Several studies also suggest that apoptosis during the regression of the corpus luteum (CL) may
be mediated by the Fas-pathway. In mice, luteal cells of regressing CL have a marked increase in
Fas expression compared to that of nonregressing CL[53]. Other evidence comes from studies per-
formed on rat CL, where Fas and FasL were found in the cytoplasm of luteal cells, but not in
endothelial cells[58]. When immunocytochemistry was performed on rat CL, Fas was detected only
at day 1 of pregnancy and postpartum during luteolysis. Additionally, although FasL mRNA was
present throughout pregnancy and postpartum, an increase in Fas-protein was found only during
luteolysis[58].

In vivo experiments strengthened the in vitro experiments described above: intraperitoneal in-
jection of an agonistic Fas antibody (RK-8) into mice resulted in the presence of more pycnotic
bodies in granulosa cells of the follicles and a decrease in the number of ovulated ova and corpora
lutea[53]. Additionally, 20-week old lpr and gld mutant mice, which have an extremely reduced Fas
expression or encode a nonfunctional FasL protein, respectively, showed an increase in the number
of medium follicles[53].
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Role of Gonadotrophic Hormones on Fas-Mediated Apoptosis

Ovarian cells are hormonal sensitive and respond to hormonal changes either by proliferating or
dying. Numerous studies suggest a role of gonadotrophins in ovarian homeostasis. For example,
gonadotrophin decreased the amount of apoptosis in rat granulosa cells and in primary cultures of
human granulosa cells, which correlated with a decreased expression of both Fas and FasL[59,60].

In cycling rats, the prolactin surge during the proestrous afternoon induces apoptosis in luteal
cells and correlates with an increase in FasL expression[61]. In another set of experiments, FasL
mRNA was specifically found in CD3-positive luteal immunocytes, whereas Fas mRNA was only
detected in the luteal steroidogenic cells[62]. Separation of the nonsteroidogenic from steroidogenic
cells in vitro abolished prolactin-induced apoptosis, showing that the FasL-expressing immune cells
are required for the prolactin-induced apoptosis of the steroidogenic cells[62]. However, during
pregnancy, prolactin did not induce apoptosis in luteal steroidogenic cells, which was due to the
action of progesterone[63]. Progesterone turned out to reduce the amount of Fas mRNA in the CL,
and, thereby, suppressing the sensitivity of luteal steroidogenic cells to prolactin-induced apoptosis.

MACROPHAGES, CLEARANCE, AND THE FAS/FASL SYSTEM

Macrophages are not merely scavengers of apoptotic cells, they are crucial both for the clearance of
apoptotic cells, generated by tissue remodeling or injury, and for host defense against bacteria or
protozoa. Where ingestion of bacteria triggers macrophages to secrete molecular mediators capable
of inducing a protective, but potentially injurious inflammatory response[64], ingestion of apoptotic
cells elicits the production of anti-inflammatory cytokines[65]. It was shown that the production of
Th2-type cytokines by macrophages helps creating an anti-inflammatory microenvironment, which
facilitates cell survival and proliferation and prevents tissue damage, and induces immune toler-
ance[65] .

Additionally, the lack of an inflammatory response during apoptosis has also been attributed to
the rapid phagocytosis of apoptotic cells before cell lysis, thereby preventing the release of noxious
contents which provoke inflammation and tissue damage[65]. Survival factors, such as estrogen,
increase the phagocytic capacity of macrophages and, therefore, contribute to tissue survival[66].

For example, during the first few weeks of human implantation, a high number of macrophages
is found in the maternal decidua and in tissues proximal to the placenta[67]. Similarly, macrophages
accumulate at or near the implantation site in rodents[68]. Hunt and coworkers proposed that mater-
nal macrophages assist in the tissue remodeling necessary to accommodate expansion of extraem-
bryonic tissue[69]. Macrophages eliminate apoptotic uterine epithelial cells surrounding the
blastocyst, during which an anti-inflammatory environment may be formed by increased anti-in-
flammatory cytokines[32] (Fig. 4).

The anti-inflammatory action of apoptotic cell phagocytosis may be perturbed in certain dis-
eases ([32] and Fig. 5 ). For example, in the antiphospholipid syndrome, phospholipid antibodies in
apoptotic cells bind to the Fc receptors in macrophages, resulting in secretion of TNF-a, a Th-1
type, proinflammatory cytokine[70]. If this occurs during pregnancy, cytokine production by mac-
rophages and other cells at the maternal-fetal interface may be drastically altered[71]. Our studies
with trophoblast cells are in concert with this concept, because they indicate that enhanced levels of
proinflammatory macrophage products increase Fas expression and enhance trophoblast sensitivity
to Fas-mediated apoptosis[32]. Two recent studies have described an increase in trophoblast cell
apoptosis in pregnancies complicated by preeclampsia[72,73]. Interestingly, high levels of neutro-
phil activation have also been described in preeclamptic patients[74,75,76]. It is possible that a
dense neutrophil infiltration may alter the surrounding environment at the maternal-fetal interface,
thereby promoting the upregulation of Fas expression in nonimmune cells such as trophoblast and
vascular endothelium and allowing FasL-induced inflammation and apoptosis[77].
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FIGURE 4B

FIGURE 4. Immune Privilege. A. Trophoblast cells induce apoptosis of activated immune cells through the expression of
FasL on its surface. FasL expression is supported by locally produced anti-inflammatory cytokines. B. Bacterial infection
or excessive apoptosis activates macrophages towards a proinflammatory cytokine profile. The inflammatory response
further induces cell apoptosis and tissue damage.

FIGURE 4A
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FAS AND FAS LIGAND EXPRESSION AND FUNCTION IN GYNECOLOGICAL
CANCERS

Since Fas and FasL are expressed in reproductive tissues and, as discussed above, have an important
role in tissue remodeling, aberrant alterations in the Fas or FasL expression may lead to abnormali-
ties. Both Fas and FasL proteins are found in ovarian cancer tissue and primary ovarian cancer
cultures[78,79]. Similarly, FasL expression was found in breast cancer cells[80,81] and its levels of
expression have been shown to correlate with low prognostic value and decreased survival[82].

In ovarian carcinoma tissue, Fas mRNA levels, but not FasL mRNA levels, are decreased com-
pared to normal ovarian tissue[83] Similarly, Mottolese and coinvestigators showed that breast
cancer patients with Fas positive tumors exhibited longer disease-free survival than those having
Fas-negative tumors[84].

Despite the presence of Fas and FasL, ovarian and breast cancer cells are resistant to Fas-
mediated apoptosis[78,85].

THE ROLE OF FAS LIGAND IN IMMUNE PRIVILEGE: THE GOOD AND THE
BAD

The Fas/FasL system is involved in the establishment and maintenance of immune-privileged sites
such as the eye, brain[86], testis, and trophoblast[87,88]. Immune privilege refers to organs or
tissues that prohibit the spread of inflammation in response to an antigen in order to avoid the
destruction of nearby tissue. Recent studies revealed that FasL expression in the eye limits inflam-
mation by removing Fas-bearing immune cells that infiltrate the blood-ocular barrier. Similarly, in
addition to the classical Brain Blood Barrier, we described the existence of an Immune Brain Bar-

FIGURE 5. Model of tissue remodeling, normal and cancer.
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rier (IBB), which represents an active system regulating the movement of immune cells to and from
the central nervous system. This IBB is generated by the expression of FasL on neurons and micro-
glia cells in the neuropil and on astrocytes around blood vessels, functioning as an active and selec-
tive barrier to activated immune cells[36].

Tumors are also established as immune privileged sites since neoplastic cells are able to escape
immune surveillance and avoid an inflammatory response. We and others have demonstrated that
the expression of FasL in cancer cells may represent a mechanism by which neoplastic cells escape
immune surveillance[81,89,90,91]. Cancer cells express FasL, which interacts with and activates
the Fas receptor present on the surface of immune cells that infiltrate the tumor[81]. Furthermore,
FasL expression on neoplastic cells is enhanced by cytokines and hormones produced by the im-
mune infiltrate present in the vicinity of the tumor[92]. Besides reducing the number of circulating
cytotoxic T cells, the expression of FasL on tumor cells can also abolish the production of antibod-
ies and limit immunological memory against the tumor during a process called tumor counterat-
tack[81,89].

In summary, it can be concluded that the Fas/FasL system mediates tissue remodeling and pro-
tects against the accumulation of malignant cells (the good); however, if the Fas pathway is blocked
and the cell becomes resistant to Fas-mediated apoptosis, FasL in the malignant cell will induce
apoptosis in the immune cells (the bad).

THE MODEL

We can summarize the above-discussed studies in the following model using the mammary gland as
an example of reproductive tissue (see Fig. 5). Thus, apoptosis of proliferating cells is prevented
through the inhibition of Fas expression. Changes in the mammary gland microenvironment, such
as hormonal withdrawal (e.g., postlactation), will deprive the cells of their support/survival stimuli,
thereby allowing the activation of the apoptotic machinery through the Fas receptor. Tumor sup-
pressor genes, such as p53 and c-myc, induce Fas expression and/or its translocation to the cell
surface, where it meets its ligand and induces apoptosis. This process allows both normal tissue
remodeling and removal of mutated cells (Fig. 5: Normal). However, a decrease in Fas expression/
activation may lead to proliferation of transformed cells. Furthermore, FasL expression on neoplas-
tic cells is enhanced by cytokines and hormones produced by the immune infiltrate present in the
vicinity of the tumor. Cancer cells with an increased FasL expression might send apoptotic signals
to the wrong cells, such as immune cells, and escape immune surveillance. Thereby an immune
privileged site is created similar to those natural sites such as the eye, testis, and brain (Fig. 5:
Cancer).
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