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SUMMARY

Measles is a major cause of childhood morbidity and mortality in many parts of the world.
Estimates of the case-fatality rate (CFR) of measles have varied widely from place to place, as
well as in the same location over time. Amongst populations that have experienced famine or
armed conflict, measles CFR can be especially high, although past work has mostly focused on
refugee populations. Here, we estimate measles CFR between 1970 and 1991 in a rural region of
Bangladesh, which experienced civil war and famine in the 1970s. We use historical measles
mortality data and a mechanistic model of measles transmission to estimate the CFR of measles.
We first demonstrate the ability of this model to recover the CFR in the absence of incidence
data, using simulated mortality data. Our method produces CFR estimates that correspond
closely to independent estimates from surveillance data and we can capture both the magnitude
and the change in CFR suggested by these previous estimates. We use this method to quantify
the sharp increase in CFR that resulted in a large number of deaths during a measles outbreak in
the region in 1976. Most of the children who died during this outbreak were born during a
famine in 1974, or in the 2 years preceding the famine. Our results suggest that the period of
turmoil during and after the 1971 war and the sustained effects of the famine, is likely to have
contributed to the high fatality burden of the 1976 measles outbreak in Matlab.
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INTRODUCTION

Despite the existence of an effective vaccine, measles
remains a major cause of childhood morbidity and
mortality in many parts of the world. In 2015, more
than 134 000 measles-related deaths occurred globally
[1]. Most measles-related deaths can be attributed to
complications such as encephalitis (which causes

brain swelling), severe diarrhoea, or respiratory infec-
tions such as pneumonia, all of which are more com-
mon in children under the age of 5, or adults over the
age of 20 [1].

Estimates of the case-fatality rate (CFR) for mea-
sles, an important component of disease burden,
have varied widely from one study to another. The
CFR is defined as the proportion of cases that results
in death that is attributable to the disease. For acute
infections, such as measles, the CFR provides a meas-
ure of the risk of death due to the disease (it is the per
capita probability of dying as a result of infection) and
also allows estimation of the mortality burden of a
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disease from case report data. Estimates of measles
CFR have varied across space and time and even for
the same geographic area over time and across studies
[2]. A comprehensive review of community-based
studies, published between 1980 and 2008, found
that estimated CFRs have ranged from 0 to 0·40,
with a median CFR of 0·0391 across studies [2].

There is evidence to suggest that malnutrition (typ-
ically measured as being low on anthropometric indi-
cators such as weight-for-age or weight-for-height) is
often an underlying cause of childhood deaths from
infectious diseases in developing countries [3]. While
this association has been consistently documented
for diarrheal and acute respiratory infections, the evi-
dence for deaths due to measles has been less consist-
ent across studies [3]. Most community-based studies
have found no evidence for an association between
measles mortality and nutritional status [4, 5], while
many hospital-based studies [6, 7] have shown an
association [2, 3]. However, the majority of these stud-
ies, both hospital and community-based, are unable to
examine the association of measles mortality with
nutritional status prior to infection with measles.

While the evidence is generally mixed, amongst
populations that have experienced a famine or
armed conflict, malnutrition and measles mortality
have been shown to be strongly associated [6, 8, 9].
Further, a growing body of evidence suggests that
exposure to malnutrition or other adverse environ-
ments in the fetal period and early childhood exerts
a lasting effect on health [10–12]. In particular, previ-
ous studies have documented the long-term health
consequences for birth cohorts that were in-utero or
born during a famine [11–13].

Here, we use historical measles mortality data, to
estimate the CFR of measles in the Matlab region of
Bangladesh. Matlab, like the rest of the country,
suffered from two major disruptive events in the
1970s – civil war in 1971 and famine in 1974. The
death rate in Matlab climbed from around 15 per
thousand to 21 per thousand during the 1971 war
and then declined to the pre-war level by the end of
the year [14]. The effect of the 1974 famine on mortal-
ity was more prolonged than the effect of the war – the
death rate increased to 20 per thousand in 1974 and
remained high until June 1976 [14, 15]. Among chil-
dren under five, the most common assigned causes
of death were (in order of importance) diarrhea, tet-
anus, fever, respiratory infections, oedema and mea-
sles [16]. Deaths due to diarrheal diseases were
particularly high during the famine period, while

deaths from measles and respiratory infections were
significantly higher in the few years following the
famine compared with non-famine years [15].

The majority of studies on famine mortality have
focused on refugee populations, largely due to lack
of reliable vital registration data [17]. The availability
of detailed death reports fromMatlab over a long time
period, thus, provides a unique opportunity to explore
the impact of famine and conflict on measles mortal-
ity. We fit a mechanistic model of measles transmis-
sion to the mortality time series data to estimate the
CFR. We first demonstrate the ability of this model
to recover the CFR in the absence of incidence data,
using simulated mortality data and compare our
CFR estimates with those from studies based on
surveillance data in the same region. We then use this
method to quantify the combination of transmission
and CFR that resulted in a large number of deaths dur-
ing a measles outbreak in the region in 1976.

METHODS

Data

Matlab is a rural area in Bangladesh, located about 40
miles south of the capital city. The Matlab research
site consists of several hundred densely populated vil-
lages located in a riverine area. The area experiences
three distinct seasons: hot and dry (March–June);
hot and wet during the monsoon season (July –

October); and cool and dry (November–February)
and is often flooded as a result of heavy monsoon
rain. Historically, rice cultivation, followed by
fishing, have been the most common occupations.
Literacy and schooling rates were historically quite
low in the region [18, 19]. Matlab, like the rest of
the country, suffered from two major disruptive events
in the 1970s that resulted in well-documented demo-
graphic changes [20, 21]. First, the Bangladesh war
of independence occurred between March and
December of 1971. Second, unusually heavy monsoon
rains in 1974 destroyed much of the rice crop. The pol-
itical instability following the war and the destruction
of the rice crop in 1974, in combination with many
other factors, led to widespread famine and a period
of mass starvation in 1974 [20, 21], particularly in
rural areas [22]. Food shortages during the war and
the famine greatly increased the proportion of mal-
nourished children leading to increased mortality
and morbidity rates [20]. The war also led to migra-
tion that may have had important consequences for
infectious disease transmission. First, urban workers
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in Bangladesh returned to their village homes at the
start of the conflict. Second, the war led to a massive
short-term migration, as refugees from Bangladesh
first fled to India in 1971 and then returned to
Bangladesh by early 1972.

Since 1966, the International Center for Diarrheal
Disease Research, Bangladesh has maintained a regis-
tration system for births, deaths and migration in the
Matlab area. The continuous surveillance of vital
events began with about 111 000 persons in 132 vil-
lages in 1966. The study area was expanded in the
late 1960s to include an additional 101 villages (this
is reflected in the data from 1971 onwards). The defini-
tion of the demographic surveillance area was chan-
ged again in 1978 and was reduced to 149 villages
with a population of about 176 000 people. Trained
field workers visited households on a weekly basis in
the early years and later fortnightly basis, to collect
information on vital events.

In this study, we use the death reports collected in
the Matlab area between January 1970 and
September 1991 (Fig. 1). The death reports contain
information on the date of death, age at death and
the cause of death. The cause of death was assigned
by non-medical personnel who received training on
the signs and symptoms of common diseases. After
1986, the cause of death was determined by medically
trained staff based on the description provided by rela-
tives during the interview. Because of the frequency of
visits and the well-known symptoms of measles,
under-reporting of deaths directly due to measles is
likely to be low. Surveillance continued even during
the war, as many female field workers remained in
the villages and continued to record vital events [20].
A post-war census and enumeration effort revealed
that only 2·7% of births and 4·9% of deaths were
not registered during the war [20]. Measles vaccination
was slowly phased into the Matlab region, under an
experimental maternal and child health program,
between 1982 and 1986 [23].

Estimating CFR using the time series
Susceptible-Infected-Recovered (TSIR) framework

We use a modification of the TSIR model developed
by [24]. The TSIR is an autoregressive model, that
describes the dynamics of the infected and susceptible
populations over time as a set of difference equations.
The number infected at each time step is described by:

E It+1[ ] = βsI
α
t St

Nt
(1)

where E[It+1] is the expected number of infected indi-
viduals, It and St are the numbers infected and suscep-
tible at time, t, respectively, Nt is the total population
size at time, t; βs is the seasonal transmission factor;
and α captures heterogeneities in mixing and the
effects of discretizing a continuous time process.

To fit the TSIR to mortality time series data, we
model the number of deaths due to measles at each
time step, Dt as a fraction, ρt, of the number of
infected cases, It:

Dt = ρtIt (2)

We aggregated the number of deaths to produce
observations for 24-time points in the year. This
allows us to fit the TSIR to biweekly observations,
which is close to the generation time for measles
[25]. Assuming that under-reporting of deaths due to
measles is low, ρt is the time-varying CFR for measles.
We can use the same method for estimating the under-
reporting rate in the TSIR framework, described in
detail in [24], to estimate ρt. Assuming all individuals
eventually become infected, the number of infected
individuals tracks the births, Bt and the number of
susceptible individuals is defined by:

St+1 = St + Bt − It + ut (3)
where, ut is additive noise, with E[ut] = 0. If the num-
ber of susceptible individuals fluctuates around a
mean, thenSt = �S �N + Zt, whereS is the average pro-
portion of susceptible individuals in the population,
�S �N is the mean number of susceptible individuals in
the population and Zt is the unknown deviation
around the mean number of susceptible individuals.
We can rewrite the susceptible difference equation in
terms of the deviations, Zt and iterate successively

Fig. 1. Deaths due to measles (aggregated to the biweekly
level) from January 1970 to September 1991. The three
colors represent the three different data collection efforts
over this time period (with varying numbers of villages
under surveillance).
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with an initial starting condition, Z0. This yields:

∑t−1

k=0
Bk = −Z0 +

∑t−1

k=0
Ik + Zt + ut (4)

We can replace Ik with Dk/ρk and the time-varying
CFR can be estimated as the inverse of the slope of
the regression line relating the cumulative number of
births to cumulative number of deaths. To allow for
local variation in the slope of the regression line, i.e.
to allow the CFR to vary temporally, we used a
locally varying regression method. Based on our simu-
lation results, we use a cubic smoothing spline with
5 degrees of freedom. Our CFR estimates, however,
are generally robust to the method used (loess regres-
sion, lowess regression and spline regressions with
higher and lower degrees of freedom); all estimation
methods produce similar temporal trends and magni-
tudes. Once we have estimated the CFR, we can use
the TSIR framework to reconstruct the susceptible
population and to estimate the seasonal transmission
rates, βs (see [24] for details).

The surveillance area changed twice between 1970
and 1991; thus, slightly different populations are
included in each of the three observation periods,
although the majority of villages are included in
all three surveillance area definitions (1970–1971,
1971–1978, 1978 onwards). In order to account for
the fact that the population size and births are differ-
ent over these three surveillance periods, we estimate
the CFR separately for each time period. Although
the population size is different in each surveillance
period, we assume that the mean proportion of the
population that is susceptible, S , was the same in
each period, which allows us to fit the model to the
entire mortality time series. Since the majority of vil-
lages were included in all three surveillance area
definitions, we assume that the seasonal transmission
rates, βs, were the same in each of the three surveil-
lance populations. We drop the observations for the
endpoint of each surveillance period and fit the model
to the rest of the data to estimate ρt, S and βs.

To examine the robustness of our method of esti-
mating the CFR, we simulated measles incidence
and mortality using different assumptions about the
CFR over the simulation time period and examined
the ability of the TSIR framework to recover the
CFR from the simulated mortality data. We sampled
incidence, It+1, from a negative binomial distribution:

It+1 � NB
βsI

α
t St

Nt
, It

( )
(5)

with mean E[It+1] = βs I
α
t St/Nt and shape parameter

It. We simulated St according to equation (3). We
simulated It and St from 1978 to 1991, using the
observed population and births over that time period
and the estimates of the seasonal transmission rates
from the TSIR fit to the data. We used I0 = 100 and
the estimated S0 as the initial conditions and allowed
the simulation to continue until the end of the
observed time series. We then sampled deaths from
the simulated incidence data assuming (1) constant
CFR over the entire time period, (2) linearly increas-
ing CFR over the time period, (3) linearly decreasing
CFR over the time period and (4) non-linear CFR
with an increase in the middle of the time period.
For the first scenario, we kept the CFR constant at
0·0286, which was the average CFR estimated for
Southeast Asia, based on studies conducted between
1980 and 2008 [2]; for the increasing and decreasing
CFR scenarios we used the range of measles CFRs
that have been estimated for Southeast Asia [2]. For
the final scenario, we create an abrupt increase in
CFR for a year (24-time steps). We assumed deaths
were drawn from a binomial distribution with the
size given by It and probability of a death occurring
given by the CFR for each time step. For each scen-
ario, we estimated the CFR using the TSIR frame-
work and compared with the true CFR used to
simulate the time series. We estimated the CFR
using loess regression, lowess regression and spline
regressions with degrees of freedom ranging from
2 to 8.

Estimating transmission rate and CFR simultaneously

To examine the combination of CFR and transmis-
sion rate during the largest outbreak in our time series
(from October 1975 to July 1976), we estimated the
two parameters using the maximum likelihood
‘removal’ method introduced by [26]. This method is
similar to the TSIR, but allows us to simultaneously
estimate the CFR and the transmission rate for a sin-
gle epidemic. Assuming contacts occur at random in
the population, infections will occur with probability
1− e−βI/N. Ignoring births and variance in the trans-
mission rate over the course of this short outbreak,
we can model the transmission as a chain-binomial
process, such that:

It+1 � Binomial St, 1− e−βI/N
( ) (6)

St+1 = St − It = S0 −
∑t
k=0

Ik (7)
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As before, the number of deaths due to measles is
given by equation (2), except now we assume a con-
stant CFR, ρ, over the course of the outbreak.
Therefore, deaths occur with probability 1− e−βI/N× ρ.
In this framework, the inherent infection dynamics are
captured by β and is identifiable relative to ρ. We esti-
mate the two parameters simultaneously by using
numerical methods to maximise the log-likelihood of
observing the data given the model.

RESULTS

Between 1970 and September 1991, one large out-
break of measles occurred in Matlab, with more
than 4000 estimated cases (Supplementary Fig. S1)
during the peak week of incidence (late March 1976)
and about 465 deaths over the course of the outbreak.
Several smaller outbreaks occurred between 1970 and
1991 with an estimated peak incidence between 500
and 1000 cases (Supplementary Fig. S1). The age at
death due to measles did not vary much over this
time period (median = 2·22 years; mean = 2·85
years), including during the larger outbreaks
(Supplementary Fig. S2). The estimated average trans-
mission rate, from the TSIR fit, is low (�β = 9·88) com-
pared with previous estimates for measles [24, 25],
likely due to our use of mortality data rather than
incidence data (see discussion below).

Measles case-fatality rate in Matlab

Figure 2 shows the estimated CFR of measles in
Matlab between 1970 and 1991. The CFR increased
slightly after the 1971 war and was considerably
higher between January 1975 and December 1976.
Our CFR estimate is within the 95% confidence inter-
val of the estimate from 12 villages in the Matlab area
between August 1975 and July 1976 [5]. However, our
estimate is slightly lower than the CFR estimated for
the Matlab area in 1980 by [27]. There are several pos-
sible reasons for this discrepancy. Bhuiya et al. [27]
only included children five and under in their sample.
Even within this age range, they found variation in
measles CFR by age, with CFR highest for children
12–35 months of age and lower among younger chil-
dren (likely due to maternal immunity) and older chil-
dren. Our estimates for the measles CFR are based on
the entire population of Matlab and thus will be lower
than the under-5 CFR estimate, since CFR decreases
with age after the first 12 months [2]. In the absence of
incidence data by age, we cannot directly compare our

estimates, which are unadjusted for the population
age-distribution, to age-specific CFRs. The discrep-
ancy could also be due to our estimation method,
which may underestimate CFR depending on the
underlying trend over time (see Fig. 3).

Robustness check

We simulated measles deaths in Matlab under a var-
iety of scenarios, using a range of CFR values based
on past estimates for Southeast Asia [2]. Results
from our simulations (Fig. 3) suggest that the TSIR
framework is generally able to capture the magnitude
and temporal trend in CFR from mortality data. If the
CFR is changing over time, the CFR estimate at the
start and end of the observation period, as well as dur-
ing sudden large fluctuations, may be biased depend-
ing on the estimation method used. The optimal
estimation method, i.e. choice of local regression
method will depend on the underlying trend in the
CFR and the length of the time series. For the plaus-
ible range of CFR values in our simulations, spline
regressions perform best (see Supplementary Figs S5
and S6 for comparison with other methods). Here,
we choose spline regression with 5 degrees of freedom
which avoids overfitting to fluctuations in the mortality
data (which increases variability in the estimates) and
produces reasonable estimates of the CFR under the
various simulation scenarios (Supplementary Fig. S7).

One important limitation of this method of estimat-
ing CFR is that while we are able to capture long-term
changes in CFR (such as increases, decreases, or sharp
changes) we are unable to pick up regular annual sea-
sonal changes in CFR (Supplementary Figs S8 and
S9). A comparison of mortality and incidence data
from England and Wales, however, showed that
seasonal measles mortality patterns closely followed
measles incidence patterns, with a small delay of less
than 2 weeks [28], suggesting negligible seasonality
in CFR. Further, a 2-year measles surveillance study
in Matlab also found no significant difference in
CFR by season [29].

The 1976 outbreak

We estimated the transmission rate and CFR during
the 1976 outbreak using the chain-binomial model.
Assuming that deaths were not under-reported, the
transmission rate was 15·11 (95% CI 12·90–17·56)
and the CFR was 0·031 (95% CI 0·026–0·043) during
the 1976 outbreak (Supplementary Fig. S10 shows the
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fitted model for the 1976 outbreak). Our results sug-
gest that both the CFR and the transmission rate
were higher during the 1976 outbreak. The estimated
transmission rate during the famine was higher than
the mean transmission rate over the entire time period
( �β = 9·88 from TSIR fit). The estimated CFR is in
close agreement with our estimate of the CFR from
fitting the TSIR model (CFRTSIR = 0·031 at the peak
of the outbreak); Koster et al.’s [5] estimate of CFR
from roughly the same time period is also within the
95% confidence interval of our estimate. Forward
simulations using these estimates for the CFR and
transmission rates for the 1976 outbreak and TSIR
estimates for the rest of the observation period,
provides a reasonably good fit to the data, despite
the erratic nature of the outbreaks (Fig. 4).

Our results suggest that the CFR during the 1976
outbreak was 2·7 times higher than the CFR during
the rest of the observation period. About 66% of the
children who died during the 1976 outbreak was
born between 1972 and 1974, with the largest propor-
tion born during the 1974 famine (Supplementary
Fig. S11). The estimated CFR also begins to increase
after 1974, which suggests that the famine played a
role. The distribution of age at death, normalised by
the total number of children born in each year,
shows that children born during the famine year had
a higher probability of dying from measles within a
3-year window from birth, compared to children

born in earlier and later years (Supplementary
Fig. S12). This pattern may be explained by many
potential factors such as differing exposure to the
risk of measles incidence or differing exposure to the
risk of dying from other causes for children born in
different years. However, descriptions of the famine
in 1974 and the few years preceding it, suggests that
there was widespread malnutrition [22], which is likely
to have led to the higher CFR for measles. In com-
parison, the outbreak following the 1971 war was
characterised by a much smaller increase in the CFR
(ρ= 0·016 (S.E. = 0·001); β= 10·56 (S.E. = 1·071)),
which suggests that the direct effects of the war on mor-
tality were more acute.

DISCUSSION

In 1976, Matlab experienced a large measles outbreak
with more than 4000 estimated cases. Several smaller
outbreaks occurred between 1970 and 1991. Unlike
historical measles data from England and Wales and
elsewhere [24, 30], the outbreak patterns in Matlab
were erratic and annual cycles were only evident for a
short period between 1976 and 1988 (Supplementary
Fig. S1). This may be due to differences between mor-
tality and incidence data. For instance, mortality data
typically contains many more weeks with zero notifica-
tions since measles CFR is typically quite low. Further,
changes in the CFR over time can cause the dynamics
of the mortality time series to deviate from that of the
incidence time series [28]. However, a comparison of
the mortality time series in Matlab, with available mea-
sles surveillance data (surveillance of 16 270 children in
the Matlab area between 1982 and 1985) suggests a
strong association between reported deaths and inci-
dence (Supplementary Fig. S3).

The estimated average transmission rate for measles
in Matlab is low (�β = 9·88) compared with previous
estimates for measles [24, 25], likely due to our use
of mortality data rather than incidence data.
Previous work has suggested that estimates of sea-
sonal transmission rates from mortality data, using
the TSIR framework, tends to underestimate the aver-
age transmission rate and overestimate the degree of
seasonal variability [28]. This is owing to the fact
that mortality data generally resembles poorly
sampled case notifications data, with a reduced amp-
litude [28]. The estimated transmission rates peaked
in March and were low between May and October
(Supplementary Fig. S4). A reduction in the transmis-
sion during the summer months has been well-

Fig. 2. The estimated CFR from the regression of
cumulative births against cumulative deaths using three
estimation methods (black solid line: spline regression;
blue dashed line: loess regression, green dashed line:
lowess regression). The case-fatality rate for measles was
estimated to be around 0·037 (95% binomial CI 0·025–
0·049) in the Matlab area between August 1975 and July
1976 [5], and 0·018 (95% binomial CI 0·013–0·022) in 1980
[27] (indicated by solid red lines). The dashed vertical
black lines indicate the onset of the war (1971) and the
famine (1974).
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documented for measles epidemics in major European
and American cities prior to the start of vaccination
and has been attributed to the role of school terms
[24, 30–32]. In Matlab, the decline in transmission
during summer was not significantly lower than the
mean transmission across the year. This is likely a
result of low schooling rates in Matlab during this
time period [18, 19], which would reduce the ampli-
tude of seasonal forcing due to school terms.

The TSIR framework offers a novel way for esti-
mating the CFR for measles and possibly other
acute, directly-transmitted, immunizing childhood
infections. Our simulation results suggest that the abil-
ity of this method to recover the CFR using measles
mortality data and demographic data depends on
the underlying change in the CFR over time.
Nonetheless, across a range of plausible CFR values
and trends over time, the TSIR framework was able
to recover both the magnitude and fluctuations of
the CFR from simulated mortality data. We also
mapped our CFR estimates to previous estimates
from surveillance data for two-time points in our
time series. We can capture both the magnitude and

the change in CFR suggested by these previous
estimates.

We document a sharp increase in measles CFR fol-
lowing the 1974 famine, with peak CFR occurring in
1976. The majority of children who died during this
outbreak were born between 1972 and 1974. In add-
ition to the cohorts born during the famine (the 1
and 2-years-olds in 1976), cohorts that were born
after the end of the war, but before the declared
start of the famine (the 3 and 4-year-olds in 1976)
were likely to also have been suffering from some
degree of malnutrition as a result of the food shortages
during the post-war period [15, 22]. Deteriorating
levels of domestic rice production and food scarcity
in Bangladesh continued from 1971 to 1974, with
only temporary relief provided by foreign aid immedi-
ately following the end of the 1971 war [22].

We find that a significantly higher proportion of
children born in 1974 died of measles compared
with children born 3 years earlier and children born
3 years later. Because the mean age of death was fairly
constant across our time series, the timing of the 1976
outbreak resulted in a large number of deaths, most

Fig. 3. Estimates of CFR using spline regression (with 5 degrees of freedom) of cumulative births on cumulative simulated
deaths. Stochastic simulations of deaths are shown in the top panel of plots. Black line shows the median of 500
simulations; the shadowed region corresponds to the range between the 10th and 90th percentiles of the simulations.
Deaths were simulated assuming four scenarios: (a) constant CFR= 0·02; (b) linearly increasing CFR over the time
period, (c) linearly decreasing CFR over the time period and (d) non-linear CFR with an increase in the middle of the
time period. The bottom panel of plots shows median estimated CFR in black; the shadowed region corresponds to the
range between the 10th and 90th percentiles of the estimates. Red line indicates the actual CFR assumed for each
simulation scenario.
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likely as a result of higher CFR experienced by
cohorts born during the period of food shortage.
Our results are consistent with past work showing
an increase in all-cause mortality continuing into the
second year of life for famine-born cohorts in
Matlab, compared with non-famine born cohorts
[15]. Since the famine was over before these children’s
first birthday, Razzaque et al. [15] argue that the
increase in all-cause mortality was likely a result of
‘debilitation during the famine period, which
increased the risk of later mortality.’

In contrast, there was only a slight increase in mea-
sles CFR during the 1971 war. One possible explan-
ation for this is the relatively short duration of the
conflict. As Curlin et al. [20] notes, ‘the war began
in March and ended in December; moreover, during
the first three months civil disturbances and food
shortages were localised and limited. Thus, the vulner-
able period was brief.’ Further, massive international
aid donations, primarily in the form of wheat, imme-
diately following the end of the war, helped avert star-
vation temporarily [22]. Nutritional surveys
conducted in Matlab in 1972 and 1975 showed a
higher prevalence of malnourishment among children
following the 1974 famine compared with the 1971
war [14].

Improving our understanding of the relationship
between nutrition, disease and mortality is fundamen-
tal to improving public health response during
emergency situations such as armed conflicts and fam-
ines. Our results suggest that vaccination efforts
should not only be intensified during famines, but

also for a few years following a famine in order to
reach children who were in-utero, or born, during per-
iods of food shortages. To fully examine the effect
of food shortages on measles CFR will require cohort
studies that track nutrition status over time. Exploring
optimal vaccination strategies during emergency situa-
tions, where resources are constrained, is another
avenue for future research. Future research should
also explore the indirect longer-term adverse effects
of measles immunosuppression on mortality from
other diseases [33], among cohorts that experience
severe malnutrition early in life. Finally, the link
between mother’s nutritional status and the preva-
lence of maternal antibody to measles virus in infants
is not well established [34]. Examining this is beyond
the scope of our data, but is an important open ques-
tion for future research: if maternal malnutrition
reduces the transfer of protective measles antibodies
to children, it could be another potential amplifier of
measles mortality following a famine.

SUPPLEMENTARY MATERIAL

The supplementary material for this article can be
found at https://doi.org/10.1017/S0950268817002564
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