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Abstract

Discovery of novel tool compounds and drug leads against a range of unorthodox protein targets 

has pushed both experimental screening methodologies as well as the field of structure based 

design to the limit in recent years. Increasingly, it has been recognized that some of the most 

desirable targets for the development of small molecule effectors are actually protein-protein and 

protein-nucleic acid interactions. There are numerous nontrivial challenges to pursuing small 

molecule lead compounds directed toward PPIs and PNIs: relatively shallow cavities, large surface 

areas that are natively complexed to macromolecules, complex patterns of interstitial waters, a 

paucity of “hot spots”, large conformational changes upon ligand binding, etc. Although there 

have been some notable successes targeting PPIs in the last decade, there has been distinctly less 

success in the realm of targeting PNIs. This chapter focuses on an approach, successfully applied 

by our group to address the challenge of gaining traction on the PPI target RAD52, which is a 

protein that binds both single stranded and double stranded DNA, and is an anti-cancer target for 

certain types of cancer. There are many approaches to tackling the difficult problems of finding 

effective small molecules that disrupt PPIs and PNIs, but the methods presented here offer a series 

of elegant solutions, which integrate experimental HTS, biophysical methods, docking and 

molecular dynamics in a powerful way. Additionally, the structural knowledge gained from these 

studies provides a means for rationally understanding what features lead to ligand affinity in these 

fascinating and highly unorthodox pockets.

1. The Challenge of Ligand Discovery and Design Targeting Protein-Nucleic 

Acid (and Protein-Protein) Interactions

It has become increasingly desirable to develop drug lead compounds against protein-

macromolecular complexes. This is not surprising, as these unorthodox drug targets make up 

the bulk of the human proteome, and are involved in an array of pharmaceutically attractive 

phenomena, including cellular movement, assembly and disassembly of protein-complexes, 

chaperon activity, subcellular transport, nucleic acid binding, signal transduction, 

transcription, and other functions (Makley and Gestwicki, 2013, Venter et al., 2001). 

However, regardless of their medical importance, these unorthodox targets have been very 
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recalcitrant to the facile identification of small molecule inhibitors of their native activities. 

Unlike classic drug targets, such as enzymes, the native ligand in PPIs or PNIs, even when 

known (which may often not be the case) does not usually provide a clear picture about how 

to proceed with small molecule scaffold discovery and/or development. Additionally, PPIs 

and PNIs often lack clearly distinguishable binding pockets, or have highly diffuse binding 

interfaces. The nature of these interfaces is complicated by the presence of “hot spots” that 

largely control the magnitude of the ligand binding energy (Yap et al., 2012, Makley and 

Gestwicki, 2013, Scott et al., 2016). Furthermore, additional complications arise when 

considering protein flexibility and the ligand associated changes pocket distribution (Dean et 

al., 2015, Eyrisch and Helms, 2007, Sperandio et al., 2008).

Most of what we know about the ability to successfully identify drug lead molecules against 

protein-macromolecular targets comes from the field of PPIs. There are certain types of PPIs 

that have been more amenable to drug discovery than others (Scott et al., 2016). Particular 

success has emerged from strategies that attempt to mimic a peptide or protein ligand, such 

that small molecule leads directly compete with the native macromolecular ligand (de Vega 

et al., 2007). In the field of PPI research, structural and biophysical approaches play a key 

role, often in iterative cycles of ligand development (Scott et al., 2016). These discovery 

campaigns have often revealed the fascinating, but complicated role that water plays in the 

shape, accessibility and binding activity of the PPI protein target. A number of key lessons 

should be noted from PPIs, which are likely to be at least partially relevant to PNIs. The 

buried regions in PPIs that have been amenable to inhibitor development are usually between 

1,000 to 6,000 Å2 (Scott et al., 2016), with regions larger than 2,000 Å2 often consisting of a 

patchwork of buried and solvent accessible groups. Often there are increases in Trp and Tyr 

residues around the PPI binding pocket, as well as polar residues (e.g., Arg, Asp and His). 

The classical PPI possesses some hydrophobic core region flanked by a patchwork of polar 

regions, often utilizing interstitial waters. Generally, PPI inhibition strategies are more 

successful when the binding hot spots are relatively contiguous. Experimental approaches 

that have yielded results include classical HTS, fragment based drug discovery (FBDD), 

design of targeted peptides and peptidomimetics and computational approaches (i.e., 

structure based discovery and design). Traditional computational approaches to 

identification of PPI inhibitors are extremely challenging, due to the often ambiguous role of 

water and the inherent ligand-associated protein conformational changes in most PPIs 

(Huggins et al., 2011, Scott et al., 2016).

Although there are a vast array of difficulties in executing drug discovery campaigns against 

PPIs, it is potentially more challenging to attempt to disrupt PNIs, as much less is known 

about them (Yap et al., 2012). Nevertheless, our research group was interested in designing a 

campaign targeting the DNA repair protein RAD52, by specifically disrupting its ssDNA 

binding activity. The essence of our approach was to first carry out an experimental (in vitro) 

HTS campaign targeting the RAD52-ssDNA PNI, and to then employ computational and 

structural methods to learn about how certain chemotypes were disrupting the PNIs. A 

statistical approach was used to test the strength of our structural hypotheses about PNI 

disruption. Finally, this knowledge was then put to the test in an independent in silico HTS 

campaign against a database of interesting natural product compounds. Amazingly, a single 

natural product was selected for detailed biophysical study, and found to be in the high nM 
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to low μM range (depending on the assay employed). A rational strategy for targeting the 

RAD52 PNI is, ostensibly, a nightmarish challenge for structure based design, in that only 

an unliganded crystal structure of RAD52 was available (PDB 1KN0), which suggests an 

exotic circular continuous ssDNA binding epitope (Hengel et al., 2016, Kagawa et al., 

2002), with a patchwork of alternating hydrophobic and hydrophilic regions and complex 

water networks in the biding groove. Given the uncertainty of PDB 1KN0 representing the 

liganded conformation of the protein in solution, the lack of any known ligands that bind in 

this groove and the complex role of water, we sought to build an integrated workflow for 

PNI inhibitor discovery which capitalized on in vitro HTS initially, followed by 

computational studies built on a rigorous statistical framework for understanding why 

certain chemotypes disrupt the RAD52 PNI. This validated computational approach is then 

used to identify completely novel scaffolds in an in silico screening. Finally, we take great 

care in experimentally validating these PNI inhibitors via biophysical methods that confirm 

the projected activity of preventing ssDNA binding to the RAD52 target.

This chapter focuses largely on how to parlay the experimental HTS data into models that 

can be meaningfully tested for accuracy, and how to extrapolate these validated models into 

in silico screens against the challenging RAD52 target. Not only are these approaches 

relevant to discovering inhibitors against other DNA repair proteins, such as RAD51 

recombinase and RPA ss-DNA binding proteins, whose binding may be assayed in a similar 

fashion(Grimme and Spies, 2011, Subramanyam et al., 2013), but to many types of PPI 

targets as well. The sections described below focus on I) how experimental HTS data was 

obtained for disrupting the RAD52 PPI, and an analysis of the most promising inhibitors, II) 

employing docking and molecular dynamics simulations to obtain information about the 

locus of action of the new inhibitors obtained from HTS, III) utilizing the Receiver 

Operating Characteristic (ROC) (Yap et al., 2012, Metz, 1978) statistical method to 

determine the accuracy of various computational workflow models, IV) application of the 

ROC-validated model in an in silico screening campaign against a database of natural 

products and a discussion of the role of biophysical validation using NMR WaterLOGSY.

2. Employing experimental HTS as a tool for learning about the nature of 

PNI lead compounds that disrupt the RAD52 PNI

To identify compounds that disrupt the RAD52-ssDNA interactions, a previously established 

Förster Resonance Energy Transfer (FRET)-based assay was adapted to the HTS format 

(Grimme and Spies, 2011, Grimme et al., 2010). The assay took advantage of certain known 

characteristics of RAD52; the ssDNA-binding region of RAD52 is continuous around the 

circumference of the ring with a shallow nucleic acid interactive groove that repeats in each 

monomer. Our FRET-based assay relied on the ability of ssDNA to bind and wrap around 

the narrow groove spanning the protein ring (Grimme and Spies, 2011, Grimme et al., 2010). 

FRET donor (Cy3) and acceptor (Cy5) were incorporated at the opposite ends of a 30-mer 

ssDNA to form Cy3-dT30-Cy5 (which can be synthesized commercially from IDT 

(Integrated DNA Technologies, INC)). An increase in the FRET signal occurs when the two 

fluorophores Cy3 and Cy5 were brought into proximity to one another during the process in 

which Cy3-dT30-Cy5 forms a 1:1 stoichiometric complex with RAD52. The positive control 
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for disrupting the RAD52-ssDNA interaction was achieved using a stoichiometric complex 

of RAD52 with Cy3-dT30-Cy5 substrate competing with an excess amount of unlabeled 

ssDNA (Poly dT100); while the negative control consisted of an unperturbed stoichiometric 

complex of RAD52 with Cy3-dT30-Cy5 (Figure1A). A Multiflo dispenser (Biotek) was used 

for dispensing control mixtures into the plate, and compounds of interest were dispensed and 

mixed three times using a Microlab Star liquid handling robot (Hamilton). It is noted that 

from our experiment, the appropriate reaction volume along with the right plate type are 

valuable in producing an acceptable single/noise ratio. The quality of the HTS assay was 

quantified with the Z-factor, which accesses the assay’s performance in terms of separation 

between the positive and negative controls. A more detailed derivation of the Z-factor is 

described in Zhang et al (Zhang et al., 1999). For the evaluation of any assays, a Z-factor of 

1 is ideal. The Z-factor from our RAD52-ssDNA FRET HTS assay was calculated to be 

0.94, which fell between the range of 1 and 0.5, indicating an excellent assay with a large 

separation band for clear signal detection and superb reliability. Using this assay, the 

MicroSource SPECTRUM collection library (Microsource, Gaylordsville, CT), which 

contains a wide structural diversity, including 2320 drug, drug-like synthetic compounds and 

natural products with a range of known biological activities. Of the 2320 examined 

compounds, 96 preliminary hits were screened further for signal reproducibility and 

compound concentration dependent signal detection (Figure 1B). Based on the reported 

FRET signal and biochemical validation, 12 compounds were purchased with chemical 

structure confirmed by 1D NMR (Table 1).

In addition, similar FRET-based biochemical studies investigated the specificity of inhibition 

achieved by compound ‘1’ and ‘6’ to show that, compound ‘6’ interfered with the RAD52-

dsDNA interaction while compound ‘1’ had no effect on the interaction between RAD52 

and dsDNA. Furthermore, unlike the known RAD52 inhibitor 6-hydroxy-DL-dopa 

(Chandramouly et al., 2015), the inhibition exhibited by our hit compounds ‘1’ and ‘6’ did 

not disrupt the ring structural assembly of RAD52 as no tertiary structural changes were 

observed from our dynamic light scattering (DLS) experiments. Specifically, through 

performing WaterLOGSY experiments (see section 3 for more detailed descriptions), direct 

binding interactions were detected between RAD52 and hit compound ‘1’ and ‘6’ 

respectively (Figure 2).

3. Using docking and molecular dynamics simulations to make hypotheses 

about RAD52 PNI pharmacophores

Understanding small molecule placement in the ssDNA binding groove

Our next task was to find, with very high confidence, the features that are necessary for 

molecular recognition of our known (active) ligands with RAD52 (i.e., the binding 

orientation, ligand confirmations, and eventually the atomistic level structure of the RAD52-

small molecule complexes). This information defines the RAD52 pharmacophore for our 

initial hits. Our primary interests focused on the compounds ‘1’ and ‘6’ from the HTS 

screen. For orthodox pockets, this would be an almost routine task using any number of 

docking approaches. However, due to the many challenges in targeting PNIs listed above, we 

required a multilayer approach that eventually led to a robust in silico screening. As the 
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overall workflow in Figure 3 shows, our overarching goal is to confidently use in silico 
screening to identify novel chemical scaffolds that target RAD52. In order to accomplish 

this, we must first grapple with several stark problems. Firstly, a direct in silico campaign 

against this particular target is likely to generate too many false positives to be truly useful. 

Briefly, docking is an excellent tool for identifying the binding loci and orientation of small 

molecules, but is not good at making meaningful predictions of affinity rank ordering across 

ligand classes (Head, 2010). Additionally, although the technique can be useful in in silico 
screening, the large number of false positives is only amplified by increasing the size of the 

docking library. In addition to these classical problems, our lack of structural knowledge 

about the native liganded complex of RAD52 and the role of interstitial waters is 

concerning. Nevertheless, we believed that, given the current apo-structure and our HTS 

hits, particularly, ‘1’ and ‘6’, that we could employ various integrated docking and 

molecular dynamics strategies to inevitably determine the locus and orientation of these 

RAD52-ssDNA inhibitors. An increasing body of literature has shown that when docking 

and MD are employed together that meaningful binding affinity rank ordering can be made, 

and that the many complex roles of water can often be inferred from these simulations 

(Whalen et al., 2011, Whalen et al., 2013).

Generally, the docking of small molecules involves positioning of the ligand with respect to 

a receptor structure, and determining the most likely binding mode, with regard to the 

geometries and projected affinities using scoring functions (Kitchen et al., 2004). The 

primary goal of a typical in silico screen would be to maximize the detection of known 

ligand as actives (i.e., true positives) while minimizing the errors of false positives (inactives 

wrongly assigned as actives) and false negative (actives wrongly assigned as inactives)(Malo 

et al., 2006). These classic approaches have been successfully applied to numerous receptor 

types for over three decades now. However, due to the many challenges associated with 

unorthodox targets, as mentioned above, very few in silico campaigns have succeeded in 

identifying leads against such target classes involved in PPI and PNI, and the prognosis for 

classical in silico screening approaches is not good (Scott et al., 2016).

The campaign described in this chapter is fundamentally different from the classical 

approach in that molecular dynamics approaches are used in the early phases to scrutinize 

both the positioning and the global conformation of the receptor-small molecule complex, 

such that we are explicitly and globally dealing with protein flexibility and solvation. The 

utility of performing MD simulations in the early phase of our workflow was to have the 

highest possible confidence for establishing a set of “true positives” that could be used in a 

statistical approach for assessing the degree of success in our in silico screening procedure, 

using the method of Receiver Operating Characteristic (Metz, 1978), which is described in 

detail below (Figure 4).

There are an enormous array of potential docking approaches, and there are many factors 

that can affect the quality (accuracy and selectivity) of in silico screening approaches (Head, 

2010). There is no one best method or docking method across target classes (Head, 2010), 

and certainly in the realm of attempting to disrupt a PPI or PNI, there is no clear indication 

about which docking algorithms are optimal. It was our contention that it is best to directly 

empirically assess any in silico screening workflow using quantitative metrics before 
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attempting an actual production screen. Sections 3.2 to 3.4 detail I) the features used in the 

initial docking of the HTS lead compounds II) how molecular dynamics using a knowledge 

based force field approach was used to parse the docking results and to provide a much 

deeper level of detail in terms dealing with water III) how the ROC statistical approach was 

used to quantify the accuracy of an in silico screening approach.

I) Docking of HTS leads to the ssDNA binding grove of RAD52—As described 

above, RAD52 forms an oligomeric ring (Kagawa et al., 2002, Lloyd et al., 2002, Singleton 

et al., 2002); in which ssDNA binding site is located in a narrow groove, which is a 

continuous epitope that spans the ring circumference (Lloyd et al., 2005, Mortensen et al., 

2002). There are repeated sub-pockets within each monomer, with alternating hydrophobic 

and hydrophilic regions, as well as numerous crystal waters. Our docking workflow 

employed a combination of sequences which initially used the Triangle Matcher approach 

for pose determination, followed by the London dG scoring function implemented in 

Molecular Operating Environment (MOE) 2013.08 (Chemical Computing Group Inc.). 

London dG is an empirical scoring function which attempts to approximate the binding 

energy of a small molecule to a protein (Chemical Computing Group Inc.). We then 

employed an additional layer of rigor by performing an all atom force field energy 

minimization of each docked pose, while the receptor was fixed, using the MMFF94x force 

field in MOE 2013.08, followed by rescoring the low energy pose with a physics based 

forcefield scoring function, GBVI/WSA dG; this approach is a highly parameterized version 

of the general MM/PBSA (or MM/GBSA) methodologies (Steinbrecher and Labahn, 2010, 

Wang and Kollman, 2000), in that it employs a forcefield interaction energy between ligand 

and receptor, and also calculates the difference in solvation energy using the GB/VI 

solvation model, and determines the change in the solvent accessible surface area (Naim et 

al., 2007). Not surprisingly, there were very large discrepancies between the top ranked 

poses when comparing the two different approaches. Additionally, there were some 

dissimilar poses, even within a single metric, which were different from one another as well. 

We addressed these challenges by using all atom molecular dynamics simulations with a 

Knowledge-Based Force Field (KBFF) to guide the selection process, which is described in 

detail below.

All of the lead inhibitors identified by HTS were subjected to the two docking protocols 

described above, using MOE 2013.08 to a portion of the ssDNA-binding groove of RAD52 

spanning nearly a quarter of its circumference, which consists of three adjacent monomers. 

The receptor was built using PDB 1KN0, and subjected to preprocessing, including adding 

hydrogens, optimizing hydrogen bond networks, and assigning charges and protonation 

states. Additionally, ligands were preprocessed to assign protonation states, assign charges, 

and energy minimized using the MMFF94x force field in MOE (Chemical Computing 

Group Inc.). The ligands were then docked into the large (quarter circumference) pocket 

described above, using the systematic Triangle Matcher search algorithm in MOE (Chemical 

Computing Group Inc.). One then has a database of potential poses with docking scores. We 

kept the top 30 poses (based on the London dG scoring function) and these were further 

subjected to the ligand energy minimization with a rigid RAD52 receptor using the 
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MMFF94x force field, followed by a free energy scoring using the GBIV/WSB dG approach 

described above.

II) Use of Molecular Dynamics Simulations to Expand on Docking Pose 
Selection—Following the docking workflow outlined above, we subjected all docked 

poses to a much more physically rigorous treatment, employing an all atom molecular 

dynamics simulations with simulated annealing, using the Yamber03 KBFF (Krieger et al., 

2004), using fully explicit solvent conditions (Dean et al., 2015). Briefly, each docked 

complex (i.e., each pose structure) was placed into a simulation cell and solvated, and 

charge-neutralized with physiological salt concentration, followed by optimizations of the 

solvent and the hydrogen bond network of the receptor-ligand complex, and finally a phased 

simulated annealing minimization was performed (the full technical details of a very similar 

MD simulation are described in more detail in Whalen et al., 2011 (Whalen et al., 2011) and 

Dean et al., 2015(Dean et al., 2015) No restraints or fixed atoms were employed (i.e., all 

atoms in the ligand and the entire RAD52 complex, ions and solvent were free). When the 

convergence criteria for the simulated annealing was met, the VINA (Trott and Olson, 2010) 

docking utility in YASARA(Krieger et al., 2002) was invoked to perform a “local docking”, 

which means that the VINA simulation cell is placed only in an area just around the ligand, 

so that the docking score reflects the position via molecular dynamics. Additionally, 

interstitial water molecules were determined and retained to be used by the VINA scoring 

function. Our workflow (Hengel et al., 2016), featured a user-specified parameter for 

defining what constituted an interstitial water. This allowed us to parse all the docking poses 

from the docking workflow outlined above. In these studies, we found that interstitial water 

structure was a major factor contributing to ligand pose and the quality of the docking 

scores. In Hengel et al., we referred to this automated process as Simulated Annealing 

Energy Minimization (SEAM) (Hengel et al., 2016).

The nature of the many sub-pockets along this three monomer continuous epitope provided a 

large number of potential poses for both compounds ‘1’ and ‘6’. The automated SEAM 

approach was applied to 34 unique docked poses, respectively, along the large quarter 

circumference ssDNA binding groove (Figure 5A). There was a clear lack of consensus in 

the docking, which was clarified by the SEAM. Generally, what one finds is that regardless 

of the docking approach used, the vast majority of docking poses that yield high scores 

result in poor performance when subjected to SEAM, since introduction of both realistic 

water structure and full ligand and receptor flexibility expose these poses as weak binders.

Interestingly, the top scoring poses of compounds ‘1’ and ‘6’ using the SEAM approach 

yielded complexes with unique binding sub-pockets along the RAD52 binding groove, 

suggesting that they may have distinct activities with regard to disrupting complexation with 

ssDNA (Figure 5). Both compounds occupy complex pockets lying at the interface of the 

two RAD52 monomers. ‘1’ mediates its interactions through an array of residues, including 

R55, V128, E140, as well as through water contacts via G59, M56, and K141. ‘6’ binds via 

hydrogen bonding with D149 and I166, and acts via water mediated contacts with E140, 

K144, and R153 (Figure. 5B). It was very interesting and encouraging for our SEAM 

approach to note that all final compound placements include interactions, directly or through 

interstitial waters, with key RAD52 residues, which have previously been reported to be 
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involved in ssDNA binding (Lloyd et al., 2005) (Figure. 5B). Particular key residues in the 

locus of the docked compounds include R55, Y65, K152, R153 and R156, which have been 

shown to be critical to ssDNA binding to RAD52 (Lloyd et al., 2005) (Figure. 5B). 

Additionally, K141 and K144, also involved in the SEAM pharmacophore, have been linked 

to particular RAD52 activities via mutation studies (Mortensen et al., 2002).

Importantly, all of the lead compounds subjected to the SEAM approach yielded complexes 

in which interstitial water plays a role in the binding of the ligand. In retrospect, it is clear 

that the unorthodox nature of the RAD52 ssDNA binding groove demands the use of some 

type of explicit solvent treatment to accurately capture small molecule binding. Interestingly, 

many of the interstitial waters identified in the SEAM method are not involved in high 

quality hydrogen bonds that one may frequently see in very buried enzyme active sites, but 

rather, represent a van der Waals binding surface. This suggests that it may be possible to 

design better ligands, which both displaces these waters, and gain binding energy by filling 

these potential hydrogen binding positions with the receptor.

III) Use of the ROC method for assessing docking workflow accuracy—It should 

be kept in mind that the overall goal of this project was to build a workflow that would lead 

to a high accuracy in silico screening method for RAD52 (i.e., a structure based approach for 

identification of novel inhibitors). In essence, the SEAM method outlined above has 

provided us with what will be used as “actual positives” in a statistical assessment of 

docking workflow accuracy. That raises the question about what approach one may use for 

“actual negatives” in such a docking workflow. An excellent choice in lieu of using 

experimental negatives, is to employ decoy compounds that possess a number of similar 

properties as true hits, but that are topologically distinct. We employed the Database of 

Useful Decoys-Enhanced (DUD-E) website to generate a series of 50 “DUDS” for each true 

positive. The general utility of employing DUDS is discussed in Huang et al (Huang et al., 

2006). The idea is to use property matching to compounds of interest, such that compounds 

with similar molecular weight, estimated water-octanol partitioning coefficient (cLogP), 

number of rotatable bonds, number of hydrogen bond acceptors, number of hydrogen bond 

donors and net charge are selected from among a data base.

Having a set of true positives and true negatives allows one to apply quantitative tests of 

accuracy to docking workflows. We used the statistical method of analyzing ROC curves to 

optimize the balance of true positives, false positives, true negatives and false negatives 

(Alexandre Varnek, 2008, Metz, 1978). The ROC approach allows one to make informed 

decisions about the type of accuracy desired. For screening purposes, accuracy itself is not 

the goal. It helps to understand that the performance of a classifier can be defined by the 

following indices:

Sensitivity = Number o f True Positives (TP) classification
Number o f Actual Positives = Fraction o f True Positives

Sensitivity = Number o f True Negatives (TN) classifications
Number o f Actual Positives = Fraction o f True Negatives

One way to view accuracy is that it can be represented by these two different indices:
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Accuracy = Number o f Correct Decisions
Number o f Cases = Sensitivity + Specificity

We can also examine the number of incorrect classifications as well:

Fraction o f False Positives = Number o f False Positive Classifications
Number o f Actual Negatives

Fraction o f False Negatives = Number o f False Negative Classifications
Number o f Actual Negatives

If we have only two classifications, positive or negative, then the total fraction of correct and 

incorrect decisions must be unity, thus:

Fraction o f True Positives + Fraction o f False Negatives = 1
Fraction o f True Negatives + Fraction o f False Positives = 1

Due to these inherent constraints, it is only necessary to express one of the fractions from 

each of the above equations in order to capture the necessary information for quantifying 

accuracy. The central point is that Accuracy may be achieved in different ways, and that it 

would be ideal to test how a given workflow performs before actually employing it. Given 

overlapping populations of true negatives and true positives, a classifier threshold value must 

be defined, which optimizes these benefits and drawbacks (Figure 6). Importantly, there is 

no absolute best classifier threshold; it is a subjective decision that depends on many factors 

that the researcher must weigh. The best way to make the key decision about what threshold 

value to employ is to vary its value and see how this affects the fraction of true positives and 

fraction of false negatives, respectively. ROC analysis is usually performed by changing the 

classifier threshold, and determining how the fraction of true positives and true negatives 

change (since determination of only these two values reports on all four classifier fractions).

An example of a typical ROC curve is shown in Figure 7, in which the fraction of true 

positives is plotted on the ordinate and the fraction of false positives is plotted on the 

abscissa; the range of values will always be from zero to one, since these are limits of the 

fractions. As we vary the classifier threshold, the form that the function takes in the ROC 

plot is, of course, dictated by the nature and the shape of the overlap of the two distributions 

(as in Figure 6). Importantly, we see that all possible permutations of the fraction of true 

positives and fraction of true negatives are represented on the ROC curve. This is the real 

power of the technique, in that it affords the researcher the opportunity see the performance 

of the workflow over the complete range of classifier values, and choose what value is most 

conducive to the current study. Figure 7 indicates that a very high classifier threshold yields 

the portion of the ROC curve in the lower left quadrant of the plot, and that very low 

classifier thresholds would be associated with the upper right quadrant. An ideal ROC curve 

would reach the upper left corner of the plot, while a classifier that did no better than 

random would cross the diagonal of the graph (Figure 7). In other words, the closer to the 

diagonal an ROC curve is, the worse is the protocol used to distinguish the actives from the 

decoys (i.e., DUDS in this case), and the closer to the ideal curve, the more the docking 

protocol gets to fully distinguishing actives from decoys.
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The nature of our particular in silico screening campaign is that we would like to focus on 

screening natural product compounds, since they have a long history of producing excellent 

lead compounds in challenging ligand discovery campaigns. However, these compounds are 

usually relatively precious, and significant labor may be expended in their preparation. Thus, 

in terms of our particular workflow, we were very interested in a high classifier threshold, 

which would come close to completely separating the populations, even if this means that 

we get a good deal of false negatives. In other words, we very much wanted to avoid false 

positives (the usual bane of in silico screening). Fortunately, our particular workflow, 

employing SEAM, provided a near perfect ROC curve, which allowed us to confidently 

employ the use of natural product library, as discussed below.

Docking scores were used for determining the ROC optimal classifier threshold values based 

on the cost-benefit analysis described above. The original HTS and its poses were 

determined to be the only “actual positives”, and the DUDS and their respective poses were 

treated as “actual negatives”; any poses above the classifier threshold value were True 

positives, and values below were designated as True negatives. The ROC curves were 

analyzed using the metric of the area under the curve (AUC) (DeLong et al., 1988). The 

AUC reports on the probability that, when we compare the scores for a randomly selected 

active compound and a randomly selected decoy, that the in silico screen will rank the active 

compound ahead of the decoy (DeLong et al., 1988).

The docking scores for the poses with the most active compounds exhibited bimodal 

frequency distribution (Figure 8A), and the docking protocols’ ability to distinguish between 

active compounds and decoys was quantified (Figure 8B). As mentioned above, our goal 

was to be able to employ a high classifier threshold, in order to reduce the cost of false 

positives. The ROC curve for ‘1’ illustrates how the optimized in silico classification process 

is nearly ideal in distinguishing false positives from true positives, since it assigns more 

negative docking scores (i.e., more favorable predicted binding energies) for active 

conformations than for those of the decoy compounds. Thus, up to this point we have used 

retrospective information gathered from HTS, and used molecular dynamics and docking to 

expand our understanding of the complexation of these hits with the ssDNA binding groove 

of RAD52. We now pivot our focus to a completely prospective study. This represents a 

much more significant, and risky challenge, since we are no longer retrospectively analyzing 

HTS results. Indeed, true prospective structure based discovery of specific low μM to high 

nM hits using strictly in silico screening, especially against challenging or novel targets, is 

quite rare (Head, 2010). Our philosophy for the campaign described in Hengel et al.(Hengel 

et al., 2016), was to use ROC curve analysis in such a way as to be able to focus on 

screening of interesting and relatively precious natural products. Natural products clearly 

have an unrivaled history in drug discovery, and often represent the primary hits against 

targets. We employed the AnalytiCon MEGx Natural Products Screen Library (AnalytiCon 

Discovery GmbH, Postsdam, Germany) - the in silico version of an actual library, consisting 

of highly purified plant, fungal and microbial derived compounds, which are available for 

purchase.

To summarize, the overall workflow is shown in Figure 3. A database composed of the 

natural products and a control selected from the HTS hits were created and preprocessed for 
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virtual screening, as described above. The Dock utility of MOE was used to generate a 

database of the top 30 scoring poses from each compound, followed by overall ranking of 

poses for the entire database. The top scoring compounds were then selected for further 

analysis. Poses with more negative scores than the best scoring of our control (i.e., an actual 

positive in the ROC curve context) were then subjected to the SEAM docking procedure 

detailed above. Following SEAM, all of the poses were ranked and evaluated. This resulted 

in nine compounds from the AnalytiCon database that had poses with scores better than 

those of the internal control. The best scoring structure was ordered from AnalytiCon 

Discovery GmbH (Postsdam, Germany) for in vitro inhibition studies. This compound, 

NP-004255, is a macrocyle ester, consisting of three trihydroxylated phenolic moieties; it is 

called corilagin, which belongs to a family of secondary plant metabolites called 

ellagitannins. Importantly, the hit was validated by both NMR WaterLOGSY and the FRET-

based method described above, as fully described in Hengel et al., 2016 (Hengel et al., 

2016), as shown in Figure 9. NP-004255 was shown to bind to RAD52, and compete for 

ssDNA binding. Two assays were performed to obtain IC50 values, competition with ssDNA 

only and competition in the presence of the ssDNA binding protein RPA, yielding values of 

1.5 Å± 0.2 uM and 0.5 ± 0.1 μM, respectively. The importance of multiple forms of 

orthogonal validation of any hit, whether from an in vitro or in silico HTS campaign, cannot 

be overemphasized. It is especially important to have at least one assay that establishes 

direct binding to the target (i.e., not a functional assay, but an assay that shows direct 

interaction between the proposed hit and the target). Methods for direct binding that are 

frequently employed include surface plamon resonance (SPR), NMR WaterLOGSY and 

crystallography. WaterLOGSY was an excellent approach in this case, since the method 

derives from the magnetization transfer from solvent to a bound ligand, which often 

proceeds through interstitial water contacts. Figure 10 illustrates the placement of 

NP-004255 within the RAD52-ssDNA binding groove, as a comparison to the HTS hits 

shown (Figure 5).

NP-004255 binds to RAD52 in an analogous way as ‘1’ and ‘6’, employing a buried 

interstitial water network, and adopts a helical-like conformation that fits nicely into the 

ssDNA binding groove (Figure 10). Its complexation produces hydrogen bonding patterns 

ideally located to prevent ssDNA access to residues that are important for 

complexation(Hengel et al., 2016, Lloyd et al., 2005).

4. Implications for employing ROC and MD-informed workflows in the 

discovery of novel PNI inhibitors

The workflow described in this chapter was highly successful in the challenging domain of 

prospectively discovering the pharmacophore of the PNI of RAD52. The data show that 

choice of workflow, employing experimental, docking, and MD simulations can be designed 

to almost perfectly separate hits from negatives. The use of ROC curves, allowed us to 

optimize the threshold to meet our very low risk tolerance (for false positives), such that we 

could focus on screening natural product libraries. We believe that this approach should 

work well for generally disrupting challenging macromolecular-protein targets, as long as 

the system under investigation is amenable to some of the biophysical validation methods 
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described above. However, our choice of a very strict cutoff threshold raises some potential 

caveats. Namely, we may have generated several false negatives in the natural product 

screen, which might have been excellent inhibitors. This could be alleviated by employing 

cheaper, standard synthetic diversity lead libraries, and using a moderate cutoff threshold. 

Nevertheless, it is our belief that natural product macrocycles, such as NP-004255 provide a 

unique opportunity to target PNIs and PPIs. Their stereochemical complexity and pre-

organized ring structures provides a functionality that is difficult to replicate in classical 

synthetic leads (Driggers et al., 2008). As evidenced by Hengel et al (Hengel et al., 2016), 

and the data provided in this chapter, the extended nature of the PNI binding site is 

complementary to the pre-organized macrocycle ligand. It is almost certainly the case that a 

significant contributing factor to its efficacy is reduction in the entropic penalty in protein 

binding, due to this pre-organization. While these features often provide excellent 

complementarity to protein targets, they are also associated with the, surprisingly, sufficient 

bioavailability of macrocycles. Interestingly, natural products, especially larger ones, are 

known to have complex conformational ensembles in solution, which may contribute to their 

unique properties. The nature of the workflow described in this chapter, and in Hengel et al., 
is not optimized to capture these natural product properties. This is largely because, although 

it employs MD simulations of the protein-ligand complex, it still relies in part on docking; 

for classic drug like compounds this should not be a problem, but for large macrocycles it 

would fail to capture true breadth their solution conformational ensembles. One possible 

solution to this is to use a free energy calculation that is amenable to medium throughput 

analysis, such as Extended Linear Response (ELR), which has been highly successful in 

explicitly capturing the contributions of interstitial waters to ligand binding (Whalen et al., 

2013).
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Figure 1. FRET-based high throughput screening of the MicroSource Spectrum library
(A) Control lanes from a 384-well plate. The positive control (blue) containing 

stoichiometric RAD52 with Cy3-dT30-Cy5 substrate challenged with an excess amount of 

unlabeled ssDNA (Poly dT100); while the negative control (red) consisted of unperturbed 

stoichiometric complex of RAD52 with Cy3-dT30-Cy5. Red and blue solid lines represent 

the average and the standard deviation is shown with error bars respectively. (B) 12 

identified hits (green) from cherry-picked rescreening of the initial screen of the 

MicroSource SPECTRUM collection, with several false positives shown in blue. Originally 

published as a part of Figure 1(DOI: 10.7554/eLife.14740) in Hengel et al, 2016 (Hengel et 

al., 2016); used under a CC-BY license.
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Figure 2. WaterLOGSY experiments indicate direct interactions between HTS hit compounds 
and RAD52
A. Aromatic region of the 1D 1H NMR spectrum of compound “1” (black) and the 

WaterLOGSY spectrum of 20 μM compound “1”in the presence of 3.3 μM RAD52 (red). 

The nonexchangeable proton peaks are labeled using atom names (blue) on the compound 

structure. B. Same as A, except representing the aromatic region of the 1D 1H NMR 

spectrum of compound “6” (black) and the WaterLOGSY spectrum of 40 μM compound 

“6” in the presence of 3.3 μM RAD52 (red). The nonexchangeable proton peaks are labeled 

using atom names (blue) as indicated on the compound structure. Originally published as a 

part of Figure 2a and 3a (DOI: 10.7554/eLife.14740) in Hengel et al, 2016 (Hengel et al., 

2016); used under a CC-BY license.
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Figure 3. Docking workflow for screening small-molecule drugs against RAD52
Originally published as a part of Figure 8a (DOI: 10.7554/eLife.14740) in Hengel et al, 2016 

(Hengel et al., 2016); used under a CC-BY license.
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Figure 4. Implementation of the ROC analysis in our docking studies against the RAD52 target
Originally published as a part of Figure 8a (DOI: 10.7554/eLife.14740) in Hengel et al, 2016 

(Hengel et al., 2016) ; used under a CC-BY license.
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Figure 5. Spatial arrangement of inhibitors ‘1’ and ‘6’ with RAD52-ssDNA binding groove
A. Binding positions of inhibitors ‘1’ and ‘6’ along the sub-pockets of three individual 

monomers (yellow, green and blue) of the RAD52 ring (PDB 1KN0). Dotted lines indicate 

the approximate boundaries of ssDNA-binding groove. B. Ligand interactive maps of 

inhibitors ‘1’ and ‘6’ inside the sub-pockets of RAD52. Originally published as Figure 4 

(DOI: 10.7554/eLife.14740) in Hengel et al, 2016 (Hengel et al., 2016) ; used under a CC-

BY license.
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Figure 6. Decision threshold selection is not absolute
Two simulated distribution (black and blue) of a quantity with one possible decision 

threshold (red) shown.
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Figure 7. 
A typical conventional ROC curve with decreasing threshold strictness.
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Figure 8. Application of ROC in combination with binding energy based docking scores for novel 
small molecule inhibitors for RAD52-ssDNA interaction
A. Calculated docking scores (kcal/mol) for the binding configurations of compound ‘1’ in 

comparison to decoys compounds. As the low docking scores indicate low binding energies, 

which correlate to favorable interactions, the histogram shows a clear distinction between 

true positives from compound ‘1’ and true negatives from ‘decoys’. B. Receiving-operating 

characteristics (Metz, 1978) curve used with the threshold shown yielding an AUC value of 

0.9973. Originally published as a part of Figure 8b and 8c (DOI: 10.7554/eLife.14740) in 

Hengel et al, 2016 (Hengel et al., 2016); used under a CC-BY license.
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Figure 9. Biochemical validation of NP-004255
A. Aromatic region of the 1D 1H NMR spectrum of compound NP-004255 alone (black) 

and the WaterLOGSY spectrum of 40 μM compound NP-004255 in the presence of 3.3 μM 

RAD52 (red). The nonexchangeable proton peaks (blue) using atom names are shown on the 

structure of compound NP-004255. (B) IC50 values for inhibition of ssDNA binding and 

wrapping were determined using FRET-based assays that follow the change in geometry of a 

Cy3-dT30-Cy5 substrate (black circles). The computed IC50 value is shown above the 

curve. Titration of the RAD52–dsDNA with NP-004255 (gray boxes) shows that this 

inhibitor does not perturb the RAD52–dsDNA interaction. (C) Aromatic region of the 1D 

1H NMR spectrum of compound NP-004255 alone (black) and the WaterLOGSY spectrum 

of 40 μM compound NP-004255 in the presence of 3.3 μM RPA (red). (D)Titration of the 

RAD52-RPA-Cy3-dT30-Cy5 complex with NP-004255 (black circles). The computed IC50 

value is shown below the curve. Green squares show titration of the RPA-Cy3-dT30-Cy5 

complex with NP-004255 indicating NP-004255 does not perturb the RPA-ssDNA. 

Originally published as Figure 9 (DOI: 10.7554/eLife.14740) in Hengel et al, 2016 (Hengel 

et al., 2016); used under a CC-BY license.

Li et al. Page 23

Methods Enzymol. Author manuscript; available in PMC 2018 June 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 10. Placement of RAD52 NP-004255 within the ssDNA binding groove
A. Electrostatic potential surface of three monomers of the RAD52-NTD (PDB 1KN0) 

positioning NP-004255 within the ssDNA binding groove. B. MOE ligand map of 

NP-004255 when binding RAD-52. Originally published as Figure 8d and 8e (DOI: 

10.7554/eLife.14740) in Hengel et al, 2016 (Hengel et al., 2016); used under a CC-BY 

license.
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