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Summary

Exhausted CD8 T cells (Tex) are immunotherapy targets in chronic infection and cancer, but a 

comprehensive assessment of Tex cell diversity in human disease is lacking. Here we developed a 

transcriptomic- and epigenetic-guided mass cytometry approach to define core exhaustion-specific 

genes and disease-induced changes in Tex cells in HIV and human cancer. Single-cell proteomic 

profiling identified 9 distinct Tex cell clusters using phenotypic, functional, transcription factor 

and inhibitory receptor co-expression patterns. An exhaustion severity metric was developed and 

integrated with high-dimensional phenotypes to define Tex cell clusters that were: present in 
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healthy subjects; common across chronic infection and cancer or enriched in either disease; linked 

to disease severity; and changed with HIV therapy. Combinatorial patterns of immunotherapy 

targets on different Tex cell clusters were also defined. This approach and associated datasets 

present a resource for investigating human Tex cell biology, with implications for immune-

monitoring and immunomodulation in chronic infections, autoimmunity and cancer.

ETOC BLURB

Exhausted T cells (Tex) have poor function in chronic infections and cancer but can be 

therapeutically re-invigorated. Bengsch et al. use genes modified epigenetically during exhaustion 

and high-dimensional CyTOF profiling to define Tex cell heterogeneity in humans with HIV or 

lung cancer, and link Tex cell features to disease progression and response to immunotherapy.
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Introduction

Exhausted CD8 T cells (Tex cells) often develop during chronic infections and cancer and 

prevent optimal control of disease. They have functional defects, co-express multiple 

inhibitory receptors (IRs) and develop an altered transcriptional, epigenetic, metabolic and 

differentiation program (Wherry and Kurachi, 2015). Novel immunotherapies target IRs 

expressed by Tex cells such as PD-1 or CTLA-4 and are having dramatic effects in cancer 

patients with potential applications in other settings (Callahan et al., 2016). Tex cells have 

been implicated in the response to checkpoint blockade, but the underlying immunological 

mechanisms of therapeutic response or failure in humans remain poorly understood. Recent 

epigenetic studies in mice and humans indicate that Tex cells represent a unique T cell 

lineage, compared to functional effector T cells (TEFF) and memory T cells (TMEM) 

(Pauken et al., 2016; Philip et al., 2017; Sen et al., 2016). The Tex cells S epigenetic 
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landscape changes relatively little after PD-1 pathway blockade mediated re-invigoration 

(Pauken et al., 2016), suggesting that Tex cells are a stable, distinct and disease relevant cell 

type.

Specific characteristics of Tex cells can vary in different disease settings (Wherry and 

Kurachi, 2015). It has been unclear whether the diverse descriptions of exhaustion represent 

technical differences (e.g. choice of IRs examined), conceptual differences (e.g., about the 

degree of dysfunction) or disease-related features of Tex cells. Identifying and monitoring 

changes of Tex cells in humans has been challenging since many molecules expressed by 

Tex cells are also identified in other T cell subsets or expressed by recently activated cells. 

Moreover, different subsets of Tex cells have been defined that include progenitor and more 

terminally exhausted populations. These Tex cell subsets can be identified by T-bet, Eomes, 

TCF-1 and PD-1 expression, and additional heterogeneity may exist based on follicular 

homing molecules such as CXCR5 (Blackburn et al., 2008; He et al., 2016; Im et al., 2016; 

Paley et al., 2012; Utzschneider et al., 2016; Wu et al., 2016). Tex cells have also been 

implicated in autoimmune diseases where transcriptional signatures of Tex cells are enriched 

in patients with less severe disease (McKinney et al., 2015). These observations suggest the 

possibility of a core program of exhaustion that is tuned differently to the precise disease 

setting. An approach that identifies and interrogates the heterogeneity of Tex cells and 

relates this information to disease status could provide new insights and opportunities for 

intervention based on manipulating Tex cells.

In this study, we developed a systems immunology approach to identify and deeply 

interrogate Tex cells in human disease. At the center of this approach is the development of a 

core exhaustion signature that integrates transcriptomic and epigenomic profiling of Tex 

cells in the chronic LCMV system and then distills this mouse epi-genomic signature into a 

robust and stable Tex cell gene expression signature that translates to human biology in HIV 

disease and human lung cancer. Deep mass cytometry profiling combined with bioinformatic 

analysis of the high-dimensional data allowed the identification of a set of multi-parametric 

exhaustion phenotypes. These data then distinguished 9-12 Tex cell clusters as well as 

subsets reflecting canonical T cell differentiation states, such as TN, TEFF, TMEM, and 

tissue resident memory T cells (TRM). Using this framework we defined an “exhaustion 

score” for each cluster based on functional features. Linking changes in these Tex cell 

clusters to disease parameters in HIV and lung cancer defined subtypes of Tex cells more 

prominently impacted by antigen (viral load) versus environment (i.e. low CD4/CD8 ratio, 

CD4 counts) and revealed a conserved Tex cell program, but also changes in the diversity of 

exhausted subpopulations in HIV compared to lung cancer. These data now provide a 

resource to identify Tex cell populations with distinct patterns of expression of IRs, 

cytotoxic molecules and transcription factors that may be relevant for designing checkpoint 

blockade therapies, but they also suggest possible relationships between Tex cell subtypes. 

These data provide a novel resource that should aid future studies and improve our 

understanding of exhaustion in chronic infection, autoimmunity and cancer.

Bengsch et al. Page 3

Immunity. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Identification of genes with unique expression patterns in Tex cells

Exhausted CD8 T cells (Tex cells) undergo major transcriptional changes that distinguish 

them from naïve (TN), effector (TEFF) and memory (TMEM) T cells (Figure 1A) (Wherry 

and Kurachi, 2015). Functional and transcriptional features of exhaustion arise after ~2 

weeks of chronic infection (Angelosanto et al., 2012; Doering et al., 2012). We hypothesized 

that a core signature of genes specifically regulated in Tex cells during chronic LCMV 

infection could be used to identify and monitor Tex cells in other settings. We aimed to 

identify a focused set of highly exhaustion-biased genes, validate it against data from other 

settings of exhaustion and then use epigenetic information for individual genes to further 

refine the signature. This signature could then enable the development of a comprehensive 

single-cell protein-based method for interrogating the biology of human Tex cells by mass 

cytometry. Thus, we first identified genes that specifically displayed increased- or decreased 

expression in virus-specific Tex cells during chronic LCMV infection compared to TN, 

TEFF, and TMEM in acute resolving LCMV Armstrong infection (Figures 1A, 1B). These 

criteria identified genes highly biased to Tex cells compared to activation-related genes 

found in TEFF, such as Cd38, but not Havcr1 encoding Tim-3. We validated the selection of 

genes by Gene Set Enrichment Analysis (GSEA) (Subramanian et al., 2005) comparing Tex 

cells isolated after 30d of clone 13 infection to TMEM, TEFF and TN (Figure 1C). We also 

investigated whether this signature would enrich in subsets of Tex cells (Blackburn et al., 

2008; Im et al., 2016; Paley et al., 2012). GSEA showed strong enrichment in signatures of 

the more terminally exhausted Tex cell subset expressing high levels of PD-1 or Tim-3 

compared to the progenitor subset of Tex cells expressing lower levels of PD-1 or CXCR5 

(Figure 1D) (Blackburn et al., 2008; Im et al., 2016). However, the genes selected also 

enriched in the less terminal subsets of Tex cells if these cells were compared to TEFF rather 

than terminal Tex cells (data not shown) suggesting high sensitivity of this signature. 

Moreover, this exhaustion signature strongly enriched in tumor infiltrating lymphocytes 

(TIL) from melanoma patients versus peripheral blood and in HIV-specific T cells from HIV 

progressor patients versus elite controllers (Figure 1E), in agreement with previous reports 

(Baitsch et al., 2011; Quigley et al., 2010). We also noted that a number of exhaustion genes 

were enriched in elite controllers indicating that the signature also included genes that might 

be useful for discriminating less dysfunctional exhaustion states (Figure 1E). Extending 

these analyses to other transcriptomic datasets also identified more exhausted human T cell 

populations in silico such as CD39+ HCV-specific CD8 T cells (Gupta et al., 2015) (Figure 

1F, Supplementary table 1). Leading edge analysis identified genes strongly contributing to 

the enrichment, including ENTPD1 (encoding CD39), CTLA4, PDCD1 and CD38 that were 

common to enrichment for TILs from melanoma and chronic HCV infection (Figures 1G, 

H). In sum, these analyses identified a transcriptomic signature of Tex cells in chronic 

LCMV infection that was shared across species and disease types. Moreover, the patterns of 

enrichment suggested that elements of this signature might be capable of distinguishing 

different features of exhaustion in distinct human diseases.
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Uniquely regulated Tex cell genes identified by epigenetic changes

Epigenetic patterns may be more faithful indicators of cell identity than gene expression. We 

hypothesized that genes uniquely regulated in Tex cells that also displayed specific 

epigenetic changes (i.e. at open chromatin regions (OCR: e.g. enhancers) would provide a 

more robust and stable signature of exhaustion. To test this hypothesis, we identified 

enhancers in Tex cells from chronic LCMV infection compared to TN, TEFF and TMEM 

using epigenomic profiling by Assay for Transposase-Accessible Chromatin with high 

throughput sequencing (ATAC-Seq) in published datasets (Pauken et al., 2016; Sen et al., 

2016).

Starting with the differentially expressed genes identified in Figure 1, 313 and 182 

exhaustion specific genes (with increased or decreased expression in Tex cells, respectively) 

also contained associated Tex cell -related epigenetic (e.g. enhancer) changes (Figures 2A, 

2B, Supplementary Table 2). These genes included those with more accessible OCR close to 

genes encoding IRs (e.g., Pdcd1, Tigit, Ctla4), ectoenzymes implicated in metabolic 

regulation (e.g. Cd38, Entpd1), chemokines and cytokines (e.g. Xcl1) and transcription 

factors (e.g. Eomes, Ikzf2, Tox) (Figure 2B and Supplementary Table 2). Genes with 

reduced accessibility of OCR linked to decreased expression in Tex cells (e.g., Ccr7, Il7r, 
Nt5e, Tcf7, Lef1) were also identified (Supplementary Table 2). Tex cell genes with 

associated OCR changes contributed significantly more frequently to the enrichments 

observed in the comparisons of Tex cell populations across diseases in Figure 1 compared to 

genes without a Tex cell-related epigenetic change (Figures 2C). This feature was manifest 

by significantly higher GSEA leading edge contributions (Figures 2C, Supplementary Table 

3), but different Tex cell genes often contributed to the leading edge depending on the 

comparison (Figures 2D, 2E). GO term analysis indicated that “epigenomically selected” 

exhaustion genes with increased expression and enhancer accessibility were enriched in 

immune activation and regulation of phosphorylation pathways, whereas genes with 

decreased expression and reduced enhancer accessibility enriched for metabolic processes, 

among others (Figure 2F). Thus, key genes distinguishing Tex cells from canonical T cell 

subsets are revealed by a combination of unique transcriptomic expression patterns and 

associated epigenetic changes. These uniquely regulated genes are strong candidates for 

biomarkers of exhaustion across diverse disease types.

CD8 T cells expressing exhaustion genes are biomarkers of HIV disease progression

Tex cells are a hallmark of chronic HIV infection. We hypothesized that converting the 

population-based epigenomic exhaustion signature defined above to a single-cell profiling 

approach could provide insights into the diversity of Tex cells LS in HIV disease. We thus 

constructed a mass cytometry panel that integrated 16+ epigenomically-selected exhaustion-

related gene products together with other T cell markers for defining lineage and other 

differentiation states (Supplementary Table 4). The genes selected for further analysis by 

CyTOF were chosen, in part, based on the availability of high quality antibodies for 

cytometry analysis. Other epigenomically-selected genes are also available for future 

analyses including ADAM19, BHLHE41, DUSP4, GLP1R, GPR65, GPR155, IFI27, IFI44, 
PRDM1, PTPN13, RGS16, and SLC22A15 (Supplementary Table 2 and 3). The exhaustion 

genes encoding proteins selected for this CyTOF panel had a high leading edge contribution 
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to the enrichment of the exhaustion signature in different diseases (Figures 3A, 3B). To 

interrogate the discriminatory potential in single-cell datasets and to test how the 16 

exhaustion markers selected for the CyTOF panel compared to the larger epigenomically 

selected list, we used Gene Set Variation Analysis (GSVA) of published CD8 T cell single-

cell transcriptomic dataset from human melanoma tumor-infiltrating lymphocytes (TIL) 

(Tirosh et al., 2016). Both the total epigenomically selected genes, and the subset selected 

for CyTOF discriminated considerable variation in the scRNA-seq data, with similar 

discriminating potential (Supplementary Figure 1), indicating that this subset of genes was 

emblematic of key features of exhaustion.

We next applied this CyTOF panel to analysis of PBMC from healthy control subjects (HC) 

and patients with active HIV infection as well as HIV patients on anti-retroviral therapy 

(ART) (Supplementary Table 5). In subsequent analyses, we also included samples from 

lung cancer patients including PBMC, macroscopically uninvolved lung tissue and TIL. We 

first examined classically defined TN, TEFF, effector memory (TEM), central memory 

(TCM) and terminally differentiated effector memory RA (TEMRA) as well as PD-1+ CD8 

T cells for the expression of epigenomically-selected exhaustion markers (Figures 3C, 3D). 

PD-1+ cells expressed more of these markers than any of the other phenotypically defined 

CD8 T cell populations, whereas TN and TCM expressed molecules linked to decreased 

expression by Tex cells (Figure 3C).

We next examined the correlation between expression of individual exhaustion molecules 

with the CD4/CD8 ratio, an established metric of severity of HIV disease (Figure 3D). 

Molecules predicted to be decreased in Tex cells correlated with health, mild disease, and a 

higher CD4/CD8 ratio (e.g. CCR7, CD73, CD127), whereas molecules predicted to be 

increased in Tex cells correlated with low CD4/CD8 ratios indicating advanced disease (e.g. 

2B4, CD38, CD39, Eomes, PD-1, TIGIT, TOX) (Figure 3D; Supplementary Figure 2). 

Correlation matrix analysis identified sets of highly co-regulated exhaustion-related 

molecules in HIV, such as PD-1, Eomes, 2B4, TIGIT and CD38 (Figure 3E, Supplementary 

Figure 3). Several of these molecules, (i.e. CD38 and PD-1) are known indicators of immune 

activation and exhaustion in progressive HIV infection, though others such as TOX are less 

well understood. Some markers predicted to be highly expressed in exhaustion did, however, 

only display trends towards enrichment in severe HIV (LAG-3, CTLA-4), or were even 

associated with less severe disease (CD7, Helios), suggesting more complex relationships 

captured poorly by the analysis of single markers. Indeed, for individual patients with HIV-

AIDS or lung cancer more extreme Tex cell phenotypes existed that were identified, for 

example, by co-expression of CD7 and PD-1 (Figure 3F). Moreover, other molecules that 

displayed no obvious, negative (CTLA-4, LAG-3, CD39) or a complex (Helios) co-

expression pattern with PD-1 in HC became positively associated with PD-1 in disease 

pointing towards the need for high-dimensional analysis of Tex cells.

A high-dimensional single-cell map of exhaustion reveals distinct locations of virus-
specific T cells and TILs in the Tex cell landscape

To visualize the complex Tex cell phenotypes defined by this CyTOF panel, we first used a 

tSNE-based dimensionality reduction approach integrating the information from exhaustion 
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markers expression of non-naïve CD8 T cells into an “exhaustion map” (Figure 4A). 

Samples from different batches were quality controlled and displayed similar results in the 

high-dimensional analysis (Supplementary Figure 4). Cells with closely related high-

dimensional phenotypes localized in neighboring areas of the map (Figure 4B). For example, 

PD-1 expression largely overlapped with Eomes, multiple other IRs and a paucity of CD127 

expression (Figure 4B). Other regions displayed expression of other Tex cell genes (e.g. 

CD38, CD39, Helios and TOX) and/or different patterns of PD-1 co-expression (Figure 4B). 

This exhaustion map was used to interrogate differences in exhaustion states across patients 

and diseases (Figure 4C). Tetramer+ virus-specific CD8 T cells targeting CMV- and 

influenza virus (FLU) epitopes localized to distinct areas of the exhaustion map compared to 

HIV-specific CD8 T cells, confirming the ability of this approach to distinguish known 

differentiation patterns of virus-specific CD8 T cells (Figure 4D). Moreover, the HIV-

specific CD8 T cells, but not FLU-specific and few CMV-specific populations overlapped 

with the PD-1+ part of the exhaustion map (Figures 4B, 4D). Thus, examination of virus-

specific CD8 T cells validated the exhaustion map in the ability distinguish HIV-, CMV- and 

FLU-specific populations.

We then examined all non-naïve CD8 T cells from HC and HIV patients on and off therapy. 

Concatenated data shown in Figure 4E revealed distinct distributions of T cell populations in 

these cohorts, pointing to the possibility of using such “exhaustion fingerprints” for 

dissecting disease states. Although Tex cells have been reported in viral infections as well as 

cancer, it remains unclear whether there are common versus distinct features of Tex cells in 

different diseases. To address this question we next examined TIL isolated from lung cancer 

patients and T cells isolated from macroscopically unaffected adjacent tissue (Figure 4F). 

TIL mapped to regions with some overlap with HIV-specific T cells, but also displayed 

distinct features (Figure 4F). However, the lung tissue microenvironment might contribute to 

the TIL signature. After removal of the phenotypic signature of cells from the uninvolved 

lung tissue, TIL-enriched features became apparent that included regions with partial 

overlap with HIV-specific CD8 T cells and co-expression of PD-1, other IRs and Eomes (top 

of exhaustion map) but also other regions of the exhaustion landscape highly enriched in 

TIL with PD-1 and CD39 co-expression (Figures 4B, 4F, 4G). In sum, high-dimensional 

profiling of Tex cells identified distinct features of the differentiation landscape for HIV-

specific CD8 T cells and TILs.

High-dimensional Tex cell cluster dynamics in HIV infection

We hypothesized that additional insights into these high-dimensional data and disease 

relevance could be achieved by a non-redundant high-dimensional analytical approach using 

phenograph (Figure 5A) (Levine et al., 2015) that enables high stability of cluster 

identification without downsampling or dimensionality-reduction (Melchiotti et al., 2017). 

Phenograph analysis identified 25 clusters based on expression of exhaustion markers (30 

clusters were computed, but clusters c14, c20, c22, c24, c30 contained few events and were 

excluded from further analyses; see STAR Methods). Some clusters were identified that 

phenotypically represented TN and TCM (clusters such as c13, c15 or c21) or populations 

with features of TEM (e.g. clusters c10 and c11) or TEMRA-like cells (e.g., clusters c10, c9, 

c23) (Figures 5B, 5C). In contrast, the cluster contribution to PD-1+ CD8 T cells showed 
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more diversity and no single cluster contributed to more than 15% of the population (Figure 

5B), suggesting a high resolution of this approach for Tex cell subset discrimination. 

Approximately 9-12 clusters contained putative Tex cells based on co-expression of 3 or 

more (up to 9) IRs (c1, c2, c3, c4, c9, c16, c18, c19, c27, c28, c29), whereas 9 clusters were 

associated with TN and/or TCM phenotypes and contained cells with <3 IRs. TEM and 

TEMRA phenotype cells were contained in 3-8 distinct clusters. Notably, 3 of these clusters 

contained cells with <3 IRs, but the other clusters containing classically defined TEM and 

TEMRA also contained clusters expressing IRs (Figure 5C). This observation likely reflects 

the fact that phenotypically exhausted cells are mostly CD27+CD45RA− (Bengsch et al., 

2010; Huang et al., 2017) and fall into the CD8 T cell subset defined by the classic definition 

of TEM (CCR7−CD45RA−). Thus, the high dimensional approach is necessary to parse 

these different CD8 T cell populations.

Applying this approach to virus-specific CD8 T cells revealed distinct cluster distribution 

patterns for HIV-, FLU-, and CMV-specific CD8 T cells (Figure 5D). Cluster c10 that 

contained cells with high expression of T-bet, Granzyme B, Perforin and CD57, a phenotype 

often associated with TEMRA and/or T cell senescence was strongly enriched in CMV-

specific CD8 T cells (Figure 5D). In contrast, cluster c15 with hallmarks of TCM was 

enriched in FLU-specific CD8 T cells from the blood (Figures 5B, 5C, 5D) whereas FLU-

specific CD8 T cells from lungs were enriched in clusters c18 and c28 that expressed 

CD103, a molecule often expressed by resident memory T cells (TRM) (Supplementary 

Figure 5) (Schenkel and Masopust, 2014). HIV-specific CD8 T cells enriched in clusters 

with high expression of exhaustion markers, and the distribution of these Tex cell clusters 

was altered in ART-treated HIV patients (Figures 5C, 5D). Notably, many cluster 

composition changes found in HIV-specific CD8+ T cells, such as the increase of c27 and 

decrease of c29 and c3 in ART-treated patients, were also observed on the global CD8 level 

(Figure 5E).

T cell exhaustion was originally defined by altered and often poor function (Zajac et al., 

1998). However, Tex cells are not functionally inert. Rather, they are characterized by 

reduced IFN-γ production and a poor ability to simultaneously produce IFN-γ and TNF, 

lack of IL-2 and reduced cytotoxicity but often retain the ability to make some IFN-γ and 

also robustly produce chemokines (Betts et al., 2006; Crawford et al., 2011; Fuller and 

Zajac, 2003; Wherry et al., 2003). Our transcriptomic and epigenomic profiling also 

indicated up-regulation of the chemokines CCL3/4, XCL1 and cytokines IL10, IL-21 and 

Amphiregulin in Tex cells (Supplementary Table 2). It remained unclear whether the high 

dimensional clusters identified by phenotype also reflected functional characteristics of 

exhaustion. We thus interrogated functional features of exhaustion and their relationship to 

the clusters determined above by stimulating CD8 T cells from viremic HIV patients and 

examined functionality (Figure 3A, Supplementary Table 2) using a panel built on the 

framework of 13 phenotypic exhaustion markers (Supplementary Table 6). Mapping 

chemokine and cytokine production to phenotypic clusters identified distinct cluster function 

(Figure 5F). Expression of CCL3/4, XCL1, and IL-21 was identified in clusters such as c2, 

c16 and c29 with other features of exhaustion. In contrast, Amphiregulin, stained primarily 

in clusters with naïve or memory phenotypes (e.g. c13, c15, c17, c21; Figure 5F) rather than 

Tex cell clusters, though the reasons for this disparity between the genomic and protein data 
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are currently unclear. Cells that retained IFN-γ production but lost TNF production (i.e. 

reduced polyfunctionality) were prominently associated with the clusters c3, c16, c29 that 

also co-expressed many IRs (Figures 5C, 5F) consistent with exhaustion. To enable 

comparisons, we developed a functional “exhaustion score” (FES) that increased for 

functional hallmarks of exhaustion (e.g. loss of TNF or IL-2 production, upregulation of 

chemokines) and decreased with the presence of effector or memory functionality (e.g. IL-2 

production or IFN-γ and TNF coproduction) (see STAR Methods). The highest FES was 

observed for cluster c29 that phenotypically resembled highly exhausted T cells based on the 

co-expression of 6-7 IRs and other features of Tex cells (Figures 5C, 5F). This analysis 

identified 9 clusters with high FES that also mapped to clusters with high IR co-expression, 

such as the two clusters with the highest FES (“top 2”, c3, c29). However, 3 clusters (c18, 

c19, c28) that co-expressed 3-4 IRs had intermediate to low FES. As expected, TCM, TEM 

and TEMRA enriched for clusters with low FES (Figure 5F). Notably, even HC had 

detectable frequencies of Tex cell clusters including especially those with lower FES such as 

c5, c9, c16 and c27 (Figures 5D, 5E).

We next asked how these clusters changed with HIV disease severity and after control of 

viral replication by ART. Tex cell clusters such as c2 and c29 were expanded in advanced 

HIV infection, but were decreased in ART therapy (Figure 5E). Clusters c1, c2, c4, c11, c18, 

c28 and c29 were positively associated with both high viral load and low CD4/CD8 ratio 

(Figure 5G), left upper panel). Other clusters including the Tex cell clusters c5, c9 and c27 

as well as TN/TCM clusters (e.g., c15 and c17) were associated with low viral load and 

higher CD4/CD8 ratio. In contrast, clusters such as c10, a cluster with characteristics of 

TEM and TEMRA and low FES and abundant in CMV-specific T cells (Figure 5D), were 

more strongly associated with low CD4/CD8 ratio than changes in viral load, and c10 in 

particular, was expanded in HIV infection suggesting a bystander effect (Figure 5G). Many 

Tex cell clusters were linked to severe HIV disease (e.g., c29, c2, c3, c4), displayed co-

expression of IRs (e.g. PD-1, 2B4, CD160, and TIGIT) and high Eomes, a phenotype 

consistent with severe exhaustion (Paley et al., 2012) (Figures 5C, 5G). Interestingly, some 

clusters were enriched in mild HIV, expressed molecules consistent with progenitor Tex cells 

(e.g., CD127, some TCF1: c16, c27) in addition to IRs and other exhaustion markers, and 

c16 included CXCR5+ cells (Figures 5C, 5G). A link to mild disease was also observed for 

a cluster with low PD-1, but high 2B4, CD160 and TIGIT and high expression of cytotoxic 

molecules (c9), suggesting preserved cytotoxicity potential and features of exhaustion in the 

absence of high PD-1. Together, these results point to multiple subtypes of Tex cells 

differentially linked to HIV disease progression or therapy and identified features of Tex 

cells and other T cell subsets that are preferentially associated with changes in viral load, 

immune dysregulation (captured by CD4/CD8 ratio) and response to ART.

Distinct functional, phenotypic and transcriptional features of Tex cell clusters

To test whether these analyses could distinguish Tex cells from TEFF, we generated TEFF in 
vitro starting with total PBMC or sorted TN, TCM, TEM, or TEMRA and then examined 

the functional and phenotypic profile of the resulting TEFF. TEFF had high 

polyfunctionality, IFN-γ and TNF coproduction, and a low FES score (Figure 6A). In this 

analysis, CD39, LAG-3, Helios and CTLA-4 were higher on activated TEFF, whereas Tex 

Bengsch et al. Page 9

Immunity. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cell clusters displayed higher expression of Eomes, TOX, 2B4 and TIGIT, among other 

molecules (Figure 6B). This high-dimensional approach clearly distinguished Tex cell from 

TEFF, a distinction that has been challenging using other approaches based on individual 

markers. As expected, Tex cell clusters did not represent typical TN, TCM, TEM, or 

TEMRA populations, instead, 7 of the top 9 clusters with highest FES showed high PD-1 

expression (Figure 6C). To test how the FES related to the high-dimensional phenotypes, we 

plotted the phenograph-derived clusters using tSNE (Supplementary Figure 6), and projected 

the FES onto this simplified cluster map (Figure 6D). Clusters with positive exhaustion 

scores fell in close proximity (Figure 6D). Analysis of the transcription factor expression 

patterns in Tex cell clusters revealed high Eomes and TOX in clusters with a high FES 

(Figure 6E). In contrast, high T-bet and Helios were present in Tex cell cluster c9 that 

expressed many cytotoxic molecules. Finally, TCF1 was expressed by a subset of Tex cells, 

including clusters c1 and c16, but this transcription factor was highest in non-Tex cells 

(Figure 6E) consistent with the major role for TCF1 in TN and TMEM. These results 

showed that high dimensional Tex cell clusters display distinct phenotypic, transcriptional 

and functional properties.

Use of Tex cell clusters to interrogate disease associations

We next asked whether the distribution of Tex cell clusters might inform about disease state. 

We thus identified the 9 Tex cell clusters with highest FES (c1, c2, c3, c4, c5, c9, c16, c27, 

c29; among which c3 and c29 were highest (“Top 2”)) and grouped them based on 

correlation with CD4/CD8 ratio and viral load in viremic untreated HIV patients into those 

linked to severe disease (“Disease Associated Tex cells”, (DAT) (c1, c2, c4, c29)) and those 

associated with mild disease (“Health Associated Tex cells”, (HAT) (c9, c16, c27)) (Figure 

6F). We then analyzed FLU-, CMV- or HIV-specific T cells for the sum of the frequency of 

the Top 2 or Top 9 Tex cell clusters and for the ratio of clusters linked to severe (disease) 

versus mild (health) HIV infection (Tex ratio: DAT/HAT). HIV-specific T cells had higher 

frequencies of exhausted clusters and also a higher TEX ratio compared to FLU- and CMV-

specific T cells (Figure 6G). The Tex ratio also revealed changes during ART therapy that 

was characterized by an increase in HAT (Figure 6G). These findings observed on HIV-

specific CD8+ T cells could be extended to total CD8 T cells that showed an enrichment of 

the Top 2 and Top 9 Tex cell clusters and a higher DAT/HAT Tex ratio in viremic HIV 

patients compared to HC and some reduction of this ratio upon therapy (Figure 6H). 

Although the correlations associating clusters with severe or mild HIV were derived from 

viremic untreated patients (Figure 5), the correlations of Tex cellclusters with the CD4/CD8 

ratio remained stable in ART-treated patients (Supplementary Figure 6). Thus, detailed 

analysis of Tex cell biology provided insight into changes in HIV disease and therapy and 

may serve as a framework to understand specific features of exhaustion involved in different 

stages of disease and guide novel therapeutic approaches.

Organ- and disease-specific changes in Tex cells in lung cancer

One unresolved question is whether key features of exhaustion are shared across different 

diseases and/or tissue sites. To interrogate this issue, we examined CD8 T cells from patients 

with newly diagnosed lung cancer using samples from peripheral blood, lung tumors and 

macroscopically unaffected lung tissue. Clusters with TN and TCM-like features (c13, c15, 
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c21) were reduced in lung cancer patient PBMC compared to HC (Figures 7A). Larger 

changes in cluster distribution were observed between the blood, the lung tissue and TIL 

including an enrichment in Tex cell clusters c2 and c29, as well as the TEM/TEMRA cluster 

c10 in TIL (Figure 7A). Clusters expressing CD103 were enriched in the uninvolved lung 

tissue and TIL samples (e.g., c11, c18, c28) suggesting a lung tissue imprint on both Tex 

cells and non-exhausted populations (Figure 7A). The TRM-like populations also included 

FLU-specific cells (Supplementary Figure 5). Thus, cells with general features of Tex cells 

in the respiratory tract of lung cancer patients overlap with those observed in blood, but this 

anatomical location was also associated with alterations in Tex cells and non-exhausted cell 

populations that may relate to tissue-specific programming.

Enrichment of Tex cell signatures in poorly functional lung cancer TIL populations

To interrogate how these TIL clusters related to function, IFN-γ production was examined 

after short-term in vitro stimulation (Figure 7B). Samples were then grouped into high and 

low IFN-γ producers. We plotted the changes in cluster distribution between CD8 T cells 

isolated from HC or lung cancer patients and also compared TIL with high versus low IFN-

γ functionality (Figure 7C). Blood from lung cancer patients had a notable loss of TN and 

TCM clusters (c13, c15) and enrichment of Tex cell clusters c4 and c9. Lung tissue was 

enriched for clusters such as c11, c18 and c28 that expressed CD103 (Figure 7C). In more 

functional TIL populations the non-Tex cell clusters c11 and c18 as well as cluster c28 were 

enriched whereas in TIL with low functionality Tex cell clusters c4, c27 and c29 were 

overrepresented (Figure 7C). We investigated whether the results from HIV could be used to 

inform exhaustion and disease in the tumor context. Compared to PBMC, CD8 T cells from 

lung and TIL enriched in the sum of the Top 2 or Top 9 Tex cell clusters identified above 

(Figure 7D). Moreover, the DAT/HAT Tex ratio strongly increased in the TIL samples 

compared to the adjacent lung (Figure 7D). Examining specific clusters, c3, c4, and c6 were 

enriched in TIL with low IFN-γ production, with similar trends for c8 and c29 (Figure 7E). 

These clusters co-expressed PD-1 and Eomes, and many also had high co-expression of 

multiple IRs (Figures 5C, 7F). In contrast, c28 was overrepresented in tumors with higher 

IFN-γ production (Figure 7C, 7E). This cluster expressed CD103 as well as some PD-1 and 

other exhaustion-associated molecules (e.g., CD39, CTLA4, TOX), but lacked expression of 

other features of severe exhaustion, such as Eomes and or high expression of other IRs (e.g., 

2B4, CD160, TIGIT) and also did not have high FES in the HIV data. Although high and 

low function TIL contained HAT clusters (as defined above), low function TIL were 

substantially enriched in “Disease Associated” Tex cells Figure 7G). These analyses 

revealed conserved Tex cell biology across HIV and cancer, with additional insights into 

disease specific enrichments. They demonstrate the ability to use an epigenomically-guided 

CyTOF approach to connect the differentiation landscape of Tex cells across tissues, disease 

type and disease severity. Moreover, this resource reveals common Tex cell biology and 

disease specific features.

Discussion

We developed a systems immunology pipeline to profile the heterogeneity of Tex cells in 

human disease. This pipeline integrated information from bulk transcriptomic and 
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epigenomic datasets to develop a novel, focused single-cell proteomic profiling approach. 

The ability to identify Tex cells at the single cell level by cytometric approaches has 

remained challenging due to the lack of a distinct marker of Tex cells. For example, many 

individual proteins implicated in exhaustion, such as PD-1, are also expressed by other 

activated cells. Here, we used an epigenomic-driven mass cytometry approach to identify 

Tex cell populations in humans with chronic infection and cancer. Tex cells identified using 

this approach displayed differential expression of exhaustion markers compared to TEFF, 

TMEM and TN, as predicted. Notably, Tex cells were even detected in HC blood suggesting 

that exhaustion is a normal aspect of T cell biology that is amplified in specific disease 

settings. In HIV infection, more dysfunctional Tex cell subpopulations were enriched in 

more severe disease and similar Tex cell clusters were found in more dysfunctional TIL in 

lung cancer. Applying such approaches to distinct diseases will facilitate identification of 

Tex cell features associated with specific types of diseases, anatomical locations and will 

guide understanding of changes in Tex cell populations with immunotherapeutic 

interventions in chronic infections, cancer and even autoimmunity.

We identified 12 putative Tex cell clusters with considerable heterogeneity in the precise 

pattern of IR and transcription factor co-expression. Eomes was a prominent feature of Tex 

cell clusters linked to disease severity in HIV and TIL. Notably, however, c18, c19 and c28 

expressed 4-5 IRs, but they lacked Eomes and had low FES. Among these, c19 and c28 (but 

not c18) expressed TOX. Thus, based on transcription factors and IRs, not only was it 

possible to identify phenotypically exhausted cells in human chronic infections and cancer 

(as predicted from previous work), but it was also possible to identify discrete types of Tex 

cells present in different diseases. Interrogating T cell function helped validate the nature of 

putative Tex cell clusters and also provided a framework to link changes in cluster 

distribution to disease. Often, changes in polyfunctionality, rather than production of IFN-γ 
alone, more accurately reflect T cell exhaustion (Betts et al., 2006; Fuller and Zajac, 2003; 

Wherry et al., 2003). The residual functions of Tex cells may be important in establishing a 

host-pathogen or host-tumor equilibrium. For example, in chronic SIV infection, virus-

specific CD8 T cells become exhausted (Velu et al., 2009), but CD8 T cell depletion causes 

increases in viral load and progression to AIDS (Schmitz et al., 1999). Here, using high-

dimensional cytometry, we developed a functional exhaustion score, FES, that was linked to 

high-dimensional T cell phenotypes. The FES validated the phenotypically defined Tex cell 

clusters since clusters with a high FES had high co-expression of many exhaustion markers, 

such as IRs (e.g., c1, c29) and high expression of Eomes in combination with PD-1 (e.g., c3, 

c29). In contrast, a lower FES identified Tex cells with lower IR expression and higher levels 

of CD127, TCF1 and/or CXCR5 expression (e.g. c16, c27), phenotypes previously 

associated with more functional Tex cells (Blackburn et al., 2008; Im et al., 2016; Paley et 

al., 2012; Utzschneider et al., 2016; Wieland et al., 2017). Thus, the combined high-

dimensional epigenomically-guided phenotypic and functional analysis accurately identified 

Tex cells and provides a resource to interrogate how changes in the Tex cell landscape are 

associated with disease.

Overall, this approach revealed several novel concepts about the biology of Tex cells in 

humans. First, Tex cells exist in HC, albeit at low frequency, and are enriched in clusters 

with lower FES. Second, both HIV and lung cancer were enriched for Tex cell subtypes that 
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appeared severely exhausted by phenotype and FES (e.g. c3, c29). These observations point 

to a common core biology of Tex cells present across diseases. Third, distinct clusters were 

overrepresented in HIV (e.g. c2) or lung cancer (e.g. c27 or c28), perhaps representing 

features of tissue location (e.g. CD103 in c28) or other disease specific effects. Fourth, Tex 

cells were identified that were associated with better health in chronic disease. Clusters c9, 

c16, c27 were associated with higher CD4/CD8 ratio and lower viral load in HIV infection 

and were preserved in HIV+ ART patients suggesting a potential benefit to the host or 

enhanced durability based on cytotoxic molecule expression (c9), CD127 and TCF1 

expression (c16, c27) and/or CXCR5 coexpression with PD-1 (c16). Finally, many of the 

Tex cell clusters defined in HIV that associated with severe disease were also linked to poor 

TIL function (e.g. c3, c4, c29). In lung cancer a separate cluster with high CD103 

expression, c28, was associated with more functional TIL consistent with a low FES for this 

cluster in the HIV setting.

Heterogeneity in Tex cells has been identified in animal models that relate to either terminal 

exhaustion or, conversely, persistence and the ability to be reinvigorated by PD-1 pathway 

blockade (Blackburn et al., 2008; Im et al., 2016; Paley et al., 2012; Utzschneider et al., 

2016; Wu et al., 2016), but the role in human disease has remained unclear. Our approach 

resolved this heterogeneity in human Tex cell clusters. For example, c16 expressed Eomes 

and PD-1 but also moderate TCF-1 and high CXCR5, suggesting a similarity to the 

described TCF-1+ CXCR5+ subset (He et al., 2016; Im et al., 2016; Utzschneider et al., 

2016; Wieland et al., 2017; Wu et al., 2016). Some CXCR5 and TCF1 expression was also 

observed in c1, and moderate CXCR5 expression was observed in c29, both clusters with 

higher FES than c16, suggesting different degrees of exhaustion and potential precursor-

progeny relationships among CXCR5+ and TCF1+ Tex cells. An additional implication of 

this heterogeneity is the differential expression of immunoregulatory targets. Identifying IR 

co-expression patterns on subsets of Tex cells with suspected progenitor capacity or on Tex 

cells with disease specific enrichment might allow more effective immunotherapies. For 

example, clusters enriched in lung cancer TIL (e.g. c28) had prominent expression of 

CTLA-4 unlike those in the blood of HIV patients suggesting potentially more benefit of 

targeting this molecule in cancer. Better understanding of Tex cell heterogeneity should 

provide insights into disease progression, and can be used to identify target populations 

responding to therapy.

Recent epigenetic work indicates that Tex cells constitute a distinct T cell lineage and their 

fate appears largely epigenetically stable even after PD-1 pathway blockade (Pauken et al., 

2016; Philip et al., 2017; Sen et al., 2016). The epigenetic information about Tex cells used 

to construct our CyTOF panel allowed this high dimensional single cell approach to be 

anchored on genes/proteins that were “fate-specific” for T cell exhaustion. Using that 

backbone, heterogeneity in combinatorial expression of these fate-selected activation and 

differentiation molecules allowed us to resolve patterns of Tex cell differentiation in human 

disease. Together, these observations suggest a model where within a T cell lineage or fate, 

cells can exist in multiple states of differentiation and/or activation. Comparing the patterns 

of Tex cell clusters across disease severity in HIV and between HIV and lung cancer allows 

speculation about possible relationships between Tex cell subpopulations in a model of T 

cell exhaustion in humans (Supplementary Figure 7). Notably, this analysis also clearly 
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identified distinct populations with TN, TMEM, TEMRA, TRM and senescent phenotypes. 

Thorough understanding of T cell exhaustion is becoming increasingly relevant for 

improving immunotherapies. The deep phenotyping presented here implicates differential 

expression of checkpoint blockade targets on different exhaustion subsets and suggests 

approaches for high-dimensional profiling of Tex cells in checkpoint blockade and other 

therapeutic interventions. Moreover, this resource should provide an opportunity to further 

interrogate Tex cell biology in human disease. Thus, these results have implications for our 

understanding, diagnostics, immune-monitoring and immunomodulatory approaches in 

chronic infection, autoimmunity and cancer.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, E. John Wherry (wherry@pennmedicine.upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Blood was acquired with the written informed consent of all study participants and with the 

approval of the University of Pennsylvania Institutional Review Board. For HIV cohorts, 

blood samples were obtained (Penn Center for AIDS Research (CFAR) (IRB# 815056)), for 

lung cancer, blood and tissue samples were obtained (IRB# 813004) and for HC blood was 

obtained (IRB# 820151). PBMC and TIL were extracted as described (Huang et al., 2017). 

Cohort information is provided in Supplementary Table 5. Detailed information on which 

samples were used in which figures is provided in Supplementary Table 7.

METHOD DETAILS

Mass Cytometry—Mass cytometry reagents were obtained or generated by custom 

conjugation to isotope-loaded polymers using MAXPAR kit (Fluidigm). Mass cytometry 

antibodies used are shown in Supplementary Table 4. Exhaustion-specific markers were 

chosen for mass cytometry based on: 1) presence in the transcriptional signature of Tex 

cells; 2) the presence of unique, Tex cell-specific epigenetic changes in the gene locus 

(either gained or lost); and 3) the availability of suitable antibodies for CyTOF, either pre-

conjugated or after in-house conjugation and validation. Staining was performed as 

described (Bengsch et al., 2017). Briefly, single-cell suspensions were pelleted, incubated 

with 20 μM Lanthanum-139 (Trace Sciences)-loaded maleimido-mono-amine-DOTA 

(Macrocyclics) in PBS for 10min at RT for live/dead discrimination (LD). Cells were 

washed in staining buffer and resuspended in surface antibody cocktail, incubated for 30min 

at RT, washed twice in staining buffer, fixed and permeabilized using FoxP3 staining buffer 

set (eBioscience), and stained intracellularly for 60min at RT. Cells were further washed 

twice before fixation in 1.6% PFA (Electron Microscopy Sciences) solution containing 

125nM Iridium overnight at 4C. Prior to data acquisition on CyTOF2 (Fluidigm), and in a 

repeat cohort experiment on a CyTOF Helios (Fluidigm), cells were washed twice in PBS 

and once in dH2O. Mass cytometry data on samples from 57 patients were acquired in 

different batches. In particular, samples analyzed in Figures 4–7 were obtained in three 

batches detailed in Supplementary Table 7 using the same core antibodies, with similar 
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CyTOF instrument performance. For batch control, we also used bead-based normalization 

and analyzed PBMC from a single control donor in every batch, displaying similar results in 

the high-dimensional analysis (Supplementary Figure 4). Later, repeat cohort analyses were 

performed by reanalysis of patient samples from the same original bleed date stained at a 

later time point and acquired on a different mass cytometer and resulted in similar 

conclusions as the original analysis (Figure 3, Supplementary Figure 2). For cytokine 

analysis, samples were split for phenotyping or stimulation with PMA/Ionomycin in 

complete media for 5h at 37C in the presence of Monensin and Brefeldin A and stained for 

mass cytometry analysis using the panel outlined in Supplementary Table 6.

Cell sorting and in vitro culture for TEFF activation—PBMC or sorted T cell 

populations were stimulated with anti-CD3/CD28 beads (Miltenyi Biotec) in the presence of 

20 U/ml IL-2 (Stemcell) for 72 hours in supplemented culture media (RPMI 1640 (Gibco) 

supplemented with L-glutamine, 10% FCS and Penicillin/Streptomycin). Sorting was 

performed on a FACS Aria II (BD Biosciences) after staining for TN (CCR7+CD45RA

+CD27+), TCM (CD27+CD45RA−CCR7+), TEM (CD27−CCR7−CD45RA−), TEMRA 

(CD27−CCR7−CD45RA+) and PD-1+ populations using anti-CD27-BV785 (clone O323), 

anti-CD45RA-BV605 (clone HI100), anti-PD-1-BV421 (clone E12.2.H7), anti-CD8 APC-

Fire (clone RPA-T8) (Biolegend), anti-CCR7-FITC (clone 150503) (BD Biosciences), and 

after staining with life/dead reagent Ghost Violet (Tonbo).

QUANTIFICATION AND STATISTICAL ANALYSIS

High dimensional data analysis—Bead-based normalization of CyTOF data was 

performed using the Nolan lab normalizer available through https://github.com/nolanlab/

bead-normalization/releases. FCS files were further analyzed by commercial software 

FlowJo v10 (TreeStar), FCSExpress 6 (DeNovo Software) and ViSNE (Cytobank). R based 

tSNE analysis was performed using Rtsne package. Phenograph was performed using 

RPhenograph package implemented via cytofkit package, described in (Chen et al., 2016; 

Levine et al., 2015). Analysis of exhaustion data space using ViSNE or Phenograph was 

performed on mass channels corresponding to exhaustion-specific molecules as defined 

through Figures 1 and 2 and detailed in Supplementary Table 4. Phenograph analysis of 

exhaustion data space on Iridium intercalator positive, singlet LD negative 

CD45+CD3+CD8 T cells identified 30 high-dimensional clusters, of which 5 (c14, c20, c22, 

c24, c30) represented cell frequencies <0.01% of CD8 T cells after quality control gating 

and were excluded from downstream analyses. After Phenograph and Visne analysis, data 

was integrated into fcs files and further processed by FlowJo or FCSExpress.

Transcriptomic and epigenomic data analysis—Transcriptional profiling of LCMV-

specific T cells available through the Gene Expression Omnibus (GEO) database (http://

www.ncbi.nlm.nih.gov/gds) under the accession number GSE41867 was described in 

(Doering et al., 2012). ATAC-Seq data was described in (Pauken et al., 2016; Sen et al., 

2016) (GSE97646, GSE86881). Transcriptional profiling data was downloaded from GEO 

and annotated using R 3.3.1 and GEOquery package. ATAC-Seq open chromatin region 

(OCR) analysis was done as in (Pauken et al., 2016; Sen et al., 2016) (GSE97646, 

GSE86881). Identification of exhaustion-specific transcriptomic and epigenomic expression 
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patterns was performed using moderated Bayesian statistics calculated by the limma 

package. Specifically, genes with increased or decreased expression in virus-specific Tex 

cells were selected if their moderated T statistic was (>=2.9) compared to TN, TEFF and 

TMEM.

Gene set enrichment and variation analysis—Gene set enrichment analysis (GSEA) 

using Broad Institute software (http://www.broadinstitute.org/gsea/index.jsp) was performed 

on microarray data from GEO (indicated in Supplementary Table 1). Exhaustion-specific 

gene signatures were tested by GSEA. Normalized Enrichment scores (NES) and leading 

edge (LE) genes obtained by GSEA were used for comparison across different datasets in 

Figures 1, 2 and 3. In Supplementary Figure 1, Gene set variation analysis (GSVA) using 

GSVA R package (Hanzelmann et al., 2013) was performed to interrogate single cell 

transcriptomic data from (Tirosh et al., 2016) and assess different exhaustion gene sets in the 

tumor microenvironment. Briefly, CD8 T cell single-cell data was obtained from NIH GEO 

(GSE72056), and GSVA of single-cell data was performed using the full epigenomically-and 

transcriptomically defined exhaustion gene list or a subset of genes later analyzed by 

CyTOF. The results of the GSVA analysis using the exhaustion gene sets were used to 

calculate a GSVA exhaustion score (GSVA_score_UP – GSVA_score DN).

Exhaustion function mapping—Exhaustion-specific markers shared between the 

phenotyping and stimulation panel (“scaffold”, outlined in Supplementary Table 6) were 

used to map post-stimulation samples to pre-stimulation clusters by the “classify” mode of 

Phenograph (Levine et al., 2015). The training data was constructed by sampling equal 

amounts of cells (50000) from each of the samples with a stimulus. The exhaustion markers 

common to both the unstimulated and post stimulation data, CTLA4, CD7, CD127, Helios, 

PD-1, CCR7, Eomes, CD39, TOX, TIGIT, CXCR5, 2B4, LAG3 were used for these 

analyses. For each stimulated sample, a nearest neighbor graph using the Jaccard metric was 

constructed using the training data and cells from the stimulated sample. Random walk 

probabilities through the graph were used to assign clusters to each of the stimulated cells. 

See (Levine et al., 2015) for a more detailed description. The concordance between the 

mapped and pre-stim data is shown in Supplementary Figure 4. A functional exhaustion 

score (FES) was then calculated using the production of IL-2 and CCL3/4, as well as IFN-γ 
and TNF coproduction (2*(%IFN+TNF−)-(%IFN−TNF+)-(%IL-2+))*(%CCL3/4+).

Heatmap display—Heatmaps were generated using the Pheatmap R package (v. 1.0.8). 

Color is based on the z-score and indicated by a color palette in the figures next to the 

heatmaps.

Statistical analysis and data visualization—Statistical analysis was performed using 

JMP 12.2.0 (SAS), GraphPad Prism 7.02 and R 3.3.1 limma package. Group comparisons in 

Figures 5–7 were performed using unpaired t test with Welch’s correction. In Figure 5 and 6, 

simple regression analysis of phenograph cluster frequencies in viremic HIV patient samples 

was performed versus viral load and the CD4/CD8 ratio. The respective Pearson correlation 

was plotted using R ggplot2 package. The cluster dot size displayed in Figure 5G and 7C 

was scaled proportionally to the abundance of individual clusters (% of CD8). In Figure 6 
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and 7, sum of the percentage of phenograph clusters per sample was calculated for the top2 

and top9 clusters with highest FES shown in Figure 5 and 6, the Disease- or Health 

Associated Tex cell clusters in HIV (DAT/HAT) indicated in Figure 6. In addition a TEX 

ratio was calculated using the sum of the frequency of DAT divided by the sum of the 

frequency of HAT to assess a skewing of the composition of different qualities of Tex cells 

across diseases.

DATA AND SOFTWARE AVAILABILITY

The high-dimensional mass cytometry phenotyping data is available through Cytobank. A 

summary of the transcriptomic and epigenomic datasets and relevant links to data 

repositories are provided in the Key Resource table.

KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-2B4, clone C1.7 Biolegend RRID:AB_1279194 Cat#329502

Anti-Amphiregulin, polyclonal AB-1 Thermo RRID:AB_59522 Cat#RB-257-PABX

Anti-CCL3/4, clone 93342 R&D RRID:AB_2259652 Cat#MAB2701

Anti-CCR7, clone G043H7, 159Tb Fluidigm RRID:AB_2714155 Cat#3159003A

Anti-CCR7-FITC (clone 150503) BD Biosciences RRID:AB_10561679 Cat# 561271

Anti-CD103, clone Ber-ACT8 Biolegend RRID:AB_535945 Cat#121402

Anti-CD127, clone HIL-7R-M21 BD Biosciences RRID:AB_394494 Cat#552853

Anti-CD16, clone 3G8, 209Bi Fluidigm RRID:AB_2661791 Cat#3209002B

Anti-CD160, clone BY55 Biolegend RRID:AB_2074411 Cat#341202

Anti-CD19, clone HIB19 Biolegend RRID:AB_314232 Cat#302202

Anti-CD200R2, clone OX-108 Biolegend RRID:AB_1027731 Cat#329302

Anti-CD26, clone BA5b Biolegend RRID:AB_314286 Cat#302702

Anti-CD27, clone L128, 155Gd Fluidigm RRID:AB_2687645 Cat#3155001B

Anti-CD27-BV785 (clone O323) Biolegend RRID:AB_2562674 Cat#302832

Anti-CD28, clone CD28.2 Biolegend RRID:AB_314304 Cat#302902

Anti-CD3, clone UCHT1 Biolegend RRID: AB_314056 Cat#300402

Anti-CD36, clone 5-271 Biolegend RRID:AB_1279228 Cat#336202

Anti-CD38, clone HIT2, 167Er Fluidigm RRID:AB_2687640 Cat#3167001B

Anti-CD39, clone A1 Biolegend RRID:AB_940438 Cat#328202

Anti-CD4, clone RPA-T4 Biolegend RRID:AB_314070 Cat#300502

Anti-CD45, clone HI30, 89Y Fluidigm RRID: AB_2661851 Cat#3089003B

Anti-CD45RA, clone H100 BD Biosciences RRID:AB_395877 Cat#555486

Anti-CD45RA-BV605 (clone HI100) Biolegend RRID:AB_2563814 Cat#304134

Anti-CD45RO, clone UCHL1 BD Biosciences RRID: AB_395882 Cat#555491

Anti-CD57, clone TB01 Ebioscience RRID: AB_1311193 Cat #16-0577-85

Anti-CD7, clone eBio124-1 Ebioscience RRID:AB_823132 Cat#14-0079-82

Anti-CD73, clone AD2 Biolegend RRID:AB_2154067 Cat#344002

Anti-CD8, clone RPA-T8 Biolegend RRID:AB_314120 Cat#301002

Anti-CD8-APC-Fire750 (clone RPA-T8) Biolegend RRID:AB_2572113 Cat#100766

Anti-CTLA-4, clone BNI3 BD Biosciences RRID:AB_396173 Cat#555850

Anti-CXCL10, clone J034D6 Biolegend RRID:AB_2563206 Cat#519502

Anti-CXCR5, clone RF8B2 BD Biosciences RRID:AB_394324 Cat#552032

Anti-Eomes, clone WD1928 Ebioscience RRID:AB_2572882 Cat#14-4877-82
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REAGENT or RESOURCE SOURCE IDENTIFIER

Anti-FoxP3, clone PCH101, 162Dy Fluidigm RRID:AB_2687650 Cat#3162011A

Anti-Granzyme B, clone CLB-GB11 Novus RRID:AB_10012261 Cat#NBP1-50071

Anti-Granzyme K, clone GM6C3 Santa Cruz RRID:AB_2263772 Cat#sc-56125

Anti-Granzyme M, clone 4B2G4 Bovenschen lab n/a

Anti-Helios, clone 22F6 Biolegend RRID:AB_10900638 Cat#137202

Anti-HLA-DR, clone L243 Biolegend RRID:AB_314680 Cat#307602

Anti-ICOS clone C398.4A Biolegend RRID:AB_416326 Cat#313502

Anti-IFN-gamma, clone B27 Biolegend RRID:AB_315435 Cat#506502

Anti-IL-10, clone JES3-9D7 Biolegend RRID:AB_315168 Cat#501402

Anti-IL-2, clone MQ1-17H12 Ebioscience RRID:AB_468408 Cat#14-7029-85

Anti-IL-21, clone 3A3-N2 Biolegend RRID:AB_1027621 Cat#513002

Anti-Ki-67, clone B56 BD Biosciences RRID:AB_396287 Cat#556003

Anti-KLRG1, clone 13F12F2 Pircher lab n/a

Anti-LAG-3, clone 17B4 Enzo RRID:AB_2133353 Cat#ALX-804-806

Anti-PD-1, clone EH12.2H7 Biolegend RRID:AB_940488 Cat#329902

Anti-PD-1-BV421 (clone E12.2.H7) Biolegend RRID:AB_10960742 Cat#329920

Anti-Perforin, clone B-D48 Abcam RRID:AB_2169084 Cat#ab47225

Anti-Ptger2, polyclonal AB9472 Merck Millipore RRID:AB_2174912 Cat#AB9472

Anti-T-bet, clone 4B10, 160Gd Fluidigm RRID:AB_763634 Cat#3160010B

Anti-TCF1, clone 7F11A10 Biolegend RRID:AB_2562103 Cat#655202

Anti-TIGIT, clone MBSA43 Ebioscience RRID:AB_10718831 Cat#16-9500-82

Anti-Tim-3, clone F38-2E2, 153Eu Fluidigm RRID:AB_2687644 Cat#3153008B

Anti-TNF, clone MAb11 Ebioscience RRID:AB_468489 Cat#14-7349-85

Anti-Tox, clone Rea473 Miltenyi n/a

Anti-XCL1, clone 109001 R&D RRID:AB_2217055 Cat#MAB6951

Biological Samples

PBMC from HIV patients Penn Center for 
AIDS Research 
(CFAR), 
University of 
Philadelphia

http://www.med.upenn.edu/cfar/

PBMC from healthy individuals University of 
Pennsylvania, 
Human 
Immunology 
Core and Institute 
for Immunology

https://pathbio.med.upenn.edu/hic/site/

PBMC and lung, tumor tissue from lung 
cancer patients

Lung Cancer 
Immunobiology 
Translational 
Center of 
Excellence of the 
Abramson 
Cancer, 
University of 
Pennsylvania

https://www.pennmedicine.org/cancer/cancer-research/translating-research-to-practice/lung-cancer-tce

Chemicals, Peptides, and Recombinant Proteins

Antibody Stabilizer Candor Cat#131050

Gadolinium-157 Trace Sciences n/a

Ghost Violet 510 Tonbo Cat#13-0870

GolgiPlug BD Biosciences Cat#555029

GolgiStop BD Biosciences Cat#5554724

Indium-113 Trace Sciences n/a

Indium-115 Trace Sciences n/a

Ionomycin Sigma-Aldrich Cat #I0634

Iridium (Cell-ID Intercalator-Ir 500 μM) Fluidigm Cat #201192B

Lanthanum-139 Trace Sciences n/a

Maleimido-mono-amine-DOTA Macrocyclics Cat#B-272
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REAGENT or RESOURCE SOURCE IDENTIFIER

Paraformaldehyde 16% FisherScientific Cat#50-980-487

pMHC Monomers NIH tetramer core n/a

Peptide CMV pp65 495-503 
NLVPMVATV

Eunoia Biotech n/a

Peptide HIV-1 gag 77-85 SLYNTVATL Eunoia Biotech n/a

Peptide HIV-1 pol 476-484 
ILKEPVHGV

Eunoia Biotech n/a

Peptide Influenza A M1 58-66 
GILGFVFTL

Eunoia Biotech n/a

Phorbol 12-myristate 13-acetate (PMA) Sigma-Aldrich Cat#P8139

Streptavidin Newell lab n/a

TCEP ThermoFisher Cat#PI77720

Critical Commercial Assays

EQ Four Element Calibration Beads Fluidigm Cat#201078

FoxP3 Transcription factor staining kit ThermoFisher Cat#A25866A

Maxpar DN3 Multimetal Labeling Kit Fluidigm n/a

Maxpar X8 Multimetal Labeling Kit Fluidigm Cat#201300

Deposited Data

ATAC-Seq TEX LCMV data Pauken et 
al.

PMID: 27789795 GEO: GSE86797

ATAC-Seq TEX LCMV data Sen et al. PMID: 27789799 GEO: GSE87646

CyTOF fcs file repository Cytobank This paper https://premium.cytobank.org/cytobank/experiments/154556/ and https://premium.cytobank.org/cytobank/experiments/154563/

GEO datasets analyzed by GSEA (see 
table S1)

This paper table S1

Microarray TEX LCMV data Doering et 
al.

PMID: 23159438 GEO: GSE41867

Sc RNA-Seq MM data Tirosh et al. PMID: 27124452 GEO: GSE72056

Software and Algorithms

Cytobank Cytobank, Inc https://www.cytobank.org/

Cytofkit PMID:27662185 https://github.com/JinmiaoChenLab/cytofkit

FCS Express 6 De Novo Software https://www.denovosoftware.com/

FlowJo v10 Tree Star https://www.flowjo.com/solutions/flowjo/downloads

GSEA PMID:17644558 https://software.broadinstitute.org/gsea/

GSVA PMID:23323831 https://bioconductor.org/packages/release/bioc/html/GSVA.html

JMP 12.2.0 SAS https://www.jmp.com

Limma PMID:25605792 https://bioconductor.org/packages/release/bioc/html/limma.html

Mass cytometry bead based normalizer PMID:23512433 https://github.com/nolanlab/bead-normalization/releases

Pheatmap PMID:23685480 https://CRAN.R-project.org/package=pheatmap

Phenograph PMID:26095251 https://www.c2b2.columbia.edu/danapeerlab/html/phenograph.html

Prism 7.02 Graph Pad Software https://www.graphpad.com/scientific-software/prism/

R The R foundation https://www.r-project.org/

ViSNE PMID:23685480 https://www.c2b2.columbia.edu/danapeerlab/html/cyt.html

Other

Amicon 30kDa Ultrafiltraition spin 
columns

Merck Millipore Cat #UFC503096

Amicon 3kDa Ultrafiltraition spin 
columns

Merck Millipore Cat #UFC500396

EasySep™ Human CD8+ T Cell 
Isolation Kit

StemCell Cat#17953

T Cell Activation/Expansion Kit Miltenyi Cat#130-091-441

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Unbiased identification of unique Tex genes using transcriptomics and 

epigenomics

• High-dimensional CyTOF profiling of human Tex gene products reveals 

heterogeneity

• Identification of key disease-relevant Tex cell populations in HIV and lung 

cancer

• Development of exhaustion metrics applicable to human immune monitoring
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Figure 1. Mouse-derived transcriptomic exhaustion signature translates to human exhaustion
(A) Genes transcriptionally increased or decreased in virus-specific CD8 T cells from d15 

and d30 of LCMV clone 13 infection (Tex cells) were compared to TN, TEFF, TMEM from 

LCMV Arm infection (GSE41867) and exhaustion-specific genes defined based on 

moderated Bayesian statistics. (B) Heatmap of transcriptomic data (see also Supplementary 

Table 2). (C) Exhaustion genesets validated for enrichment in Tex cells versus TN, TEFF, or 

TMEM in LCMV infection via GSEA. (D) Enrichment of gene signature was analyzed in 

transcriptomic data from Tex cell subpopulations (PD-1Hi versus PD-1Int, Tim-3+ versus 
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CXCR5+) from LCMV clone 13 infection (GSE41869; GSE84105) or (E) human HIV-

specific CD8 T cells from HIV elite controller versus progressor patients (GSE24081) or 

PBMC versus TIL from melanoma patients (GSE 24536). FDR and normalized enrichment 

score (NES) are indicated. Dashed lines in D and E indicate leading edge genes driving the 

NES. (F) The exhaustion gene signature was analyzed in multiple mouse and human datasets 

of Tex cell populations (detailed in Supplementary Table 1) and NES plotted for each 

comparison. *** FDR<0.001, ** <0.01, * <0.05. (G and H) Heatmap for leading edge genes 

driving enrichment for genes with increased expression in exhaustion in melanoma (PBMC 

versus TIL) (GSE 24536), and HCV (CD39+ versus CD39− cells) (GSE 72752).
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Figure 2. Uniquely regulated genes in exhaustion identified by epigenetic accessibility
Genes specifically regulated in Tex cells from Figure 1, were analyzed for epigenetic 

changes in ATAC-seq datasets from LCMV infection (GSE86797, GSE87646). Genes are 

detailed in Supplementary Table 2. (A) The fraction of transcriptionally identified genes 

with associated epigenetic changes (increased accessibility of open chromatin regions 

(OCR) near exhaustion genes for UP-, decreased accessibility of OCRs in the vicinity of 

DOWN-exhaustion genes) is shown. (B) Exemplary ATAC-seq tracks indicating increased 

OCR (highlighted by grey bars) near exhaustion genes from GSE86797. (C) Exhaustion 
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genes were analyzed for associated OCR changes and the role in driving the enrichment 

(“leading edge”) in the comparisons of Tex cells versus other T cell datasets, as detailed in 

Supplementary Tables 1 and 3. Genes with an associated OCR change displayed higher 

leading edge involvement. *** p<0.001. The leading edge contribution of exhaustion 

signature genes with an associated OCR change is shown as a binary heatmap for genes up- 

(D) and down-regulated in exhaustion (E) (rows indicate genes, columns individual GSEA 

comparisons, red denoting leading edge contribution (for details, see Supplementary Table 

3). (F) GO Term analysis of the exhaustion-specific genesets with associated OCR changes. 

The 20 GO terms with the lowest p values are shown.

Bengsch et al. Page 27

Immunity. Author manuscript; available in PMC 2019 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Mass cytometry analysis of exhaustion molecule expression
(A) Exhaustion genesets defined in Figure 1 and 2 were used to design an exhaustion-

focused mass cytometry panel. The leading edge contribution of genes chosen for CyTOF is 

shown; rows indicate genes, columns individual GSEA comparisons. See also 

Supplementary Table 4. Cytokines and chemokines were analyzed using a dedicated panel 

(see Supplementary Table 6) (B) Genes selected for CyTOF had significantly higher leading 

edge contribution in the GSEA analyses of Tex cells compared to the remaining exhaustion 

genes (*** p <0.001) and showed similar ability to discriminate Tex cells in single-cell 
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transcriptomic data (see Supplementary Figure 1). (C) Exhaustion markers were analyzed on 

canonical CD8 T cell populations (TN, TCM, TEM, TEMRA) and total PD-1+ CD8 T cells 

in HC and patients with HIV and lung cancer. Heatmap depicts exhaustion marker 

expression by median metal intensity (MMI) on concatenated CD8 T cell data from PBMC 

(n=35; see Supplementary Table 7). (D) Linear regression analysis versus CD4/CD8 ratio 

was performed for marker expression in patients with HIV infection and HC using percent 

positive or MMI as indicated. Each dot represents an individual patient CD8 T cells. (n=75 

samples from 48 HIV patients and HC were analyzed, higher sample number indicates 

longitudinal samples when available, for details see Supplementary Table 7). Green - 

positive correlation; red - negative correlation. Similar results were obtained in a repeat 

analysis on a different mass cytometer (Supplementary Figure 2). (E) These data were 

further analyzed for cross-correlation of exhaustion marker expression estimated by pairwise 

method (see also Supplementary Figure 3). (F) The expression of indicated exhaustion 

markers on CD8 T cells is plotted versus PD-1 in a representative HC, an untreated HIV 

patient with a CD4/CD8 ratio of 0.06 typical of AIDS, and tumor-infiltrating lymphocytes 

isolated from a lung cancer patient.
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Figure 4. An exhaustion map allows comparison of Tex cells across HIV and lung cancer
(A) An exhaustion map was generated by tSNE-based dimensionality reduction on 48 

samples (see Supplementary Table 7) using information about expression of 16 exhaustion 

markers (see Supplementary Table 4) on nonnaive (CD45RA−CCR7−) CD8 T cells. (B) 

Expression of individual molecules (upper left corner of each panel) on the exhaustion map 

is visualized (color based on percentile of marker expression). (C) Schematic: The 

exhaustion map was generated for HIV patients with varying severity of untreated disease 

based on CD4/CD8 ratio and ART-treated patients and compared to HC and patients with 
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lung cancer. (D) HIV-, FLU-, and CMV-specific CD8 T cells identified by tetramer staining 

were visualized on the exhaustion map. (E) Total CD8 T cells from HC and viremic and 

ART-treated HIV+ patients and from (F) lung cancer patient samples were mapped to the 

exhaustion landscape: PBMC (left), macroscopically uninvolved lung tissue (middle) or 

tumor-infiltrating lymphocytes (right). (G) Differential overlay of TILs compared to CD8 T 

cells from uninvolved lung on the exhaustion map. A TIL>LU cluster was gated (gate 

indicated by the arrow) and validated on a per-sample basis (right).
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Figure 5. High-dimensional clustering identifies Tex cell phenotypes linked to HIV disease 
progression
(A) Schematic of the pipeline for high-dimensional CD8 Tex cellcluster identification by 

phenograph and assessment in disease (B) Phenograph analysis of Tex cell markers was 

performed on live singlet CD45+CD3+CD8+ T cells (n=48; see Supplementary Table 7). 

Canonical CD8 T cell populations and total PD-1+ T cells were analyzed for their 

composition based on the phenograph analysis. The top 5 phenograph clusters within TN, 

TCM, TEM, TEMRA and PD-1+ CD8 T cells are shown. (C) Phenograph clusters were 

tested for expression of T cell markers using manual gating. Heatmap indicates expression 
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of markers or marker combinations (using (+) or (−), as in PD-1+CD39+) or MMI (e.g., 

TOX). Row- and column-based clustering was performed using Pearson’s correlation. The 

heatmap coloring reflects z scores after row normalization, as indicated. (D) The 

contribution of phenograph clusters to virus-specific T cell responses from HIV patients and 

HC detected via tetramer staining was analyzed, the top 5 clusters are shown (n=24 tetramer 

responses; CMV n=4, FLU n=5, HIV n=15). Changes in phenograph cluster composition of 

HIV-specific T cells on or off antiretroviral therapy (ART) are displayed. (E) The 

distribution of phenograph clusters in HC and HIV patients (total n= 25) with differing 

disease states (CD4/CD8 ratio for viremic “Severe”: <0.2, “Intermediate”: 0.2-0.5, “Mild”: 

>0.5) is shown. The coloring reflects cluster assignment. The mean frequency of each cluster 

for each patient population is depicted by the size of the corresponding bar. (F) Viremic HIV 

and control samples were stimulated with PMA/Ionomycin and analyzed for cytokine 

expression by cluster mapping using phenograph classify function and the scaffold 

parameters detailed in Supplementary Table 6. Heatmap indicates gated expression of 

markers or marker combinations and the functional exhaustion score (FES) (see STAR 

Methods). Column-based clustering using Pearson’s correlation metric was performed. 

Rows are arranged by FES. Values displayed are column normalized. (G) The correlation of 

each phenograph cluster frequency with key parameters of HIV disease progression in 

viremic HIV patients (i.e. CD4/CD8 ratio and viral load) was plotted (upper left panel). This 

coordinate system displays the relative frequency of each cluster in HC, HIV patients with 

untreated disease and patients on ART therapy (remaining panels). The dot size corresponds 

linearly to cluster relative abundance, the color corresponds to the FES.
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Figure 6. Distinct exhausted high dimensional clusters are enriched in HIV patients and 
differentially linked to HIV progression
(A) The FES was calculated for in vitro differentiated TEFF (TEFF generated from total 

PBMC, or sorted TN, TCM, TEM, or TEMRA see STAR Methods) and compared to 

phenograph clusters. TCM and TEMRA-enriched clusters c7 and c10 are displayed for 

comparison in addition to phenograph clusters with high FES. (B) Comparison of in vitro 
differentiated TEFF (as in A) to the 9 Tex cell subsets with highest FES. Median frequencies 

of populations positive for given marker are displayed. Heatmap is clustered by row and 

column using Pearson’s correlation. (C) Tex cell clusters with high FES were analyzed for 
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classical differentiation subsets. Depicted is the frequency of the indicated Tex cell clusters 

that fell into the classically gated TN, TCM, TEM, or TEMRA phenotypes or was PD-1+ 

(D) Phenograph clusters were plotted based on a tSNE analysis using exhaustion marker 

expression as outlined in Supplemental Figure 3 and colored by the FES. (E) Clusters were 

analyzed for transcription factor expression and arranged based on FES. Heatmap is 

clustered by rows using Pearson’s correlation. (F) Tex cell clusters with high FES were 

plotted versus correlation of cluster frequency with CD4/CD8 and viral load. (G) Virus-

specific T cells identified in PBMCs from HC and HIV patients were analyzed for the 

prevalence of the Top 2 (upper graph) and Top 9 (middle graph) clusters with highest FES 

(sum of percentages for Top 2 and Top 9 clusters is displayed). The TEX ratio (lower graph) 

is shown as the sum of clusters defined to be disease associated (DAT; i.e. linked to severe 

HIV) divided by the sum of clusters defined to be health associated (HAT; i.e., linked to mild 

HIV), as in Figure 6F. (H) As in (G), Top 2, Top 9 and TEX ratio was determined for CD8+ 

T cells from PBMC of HC and HIV patients and displayed by HIV disease stage. Heatmap 

coloring in (A), (B), (E) reflects z scores after column normalization.
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Figure 7. TIL dysfunction in lung cancer is linked to Tex cell phenotypes shared with severe HIV 
and tissue-associated features
(A) Distribution of phenograph clusters in the blood, uninvolved lung tissue and tumor from 

7 lung cancer patients and HC. The mean frequency of each cluster in each patient 

population is indicated by the size of the corresponding bar. (B) Tumors were evaluated 

based on CD8 TIL IFN-γ production following overnight anti-CD3 stimulation, and 

stratified into high and low TIL functionality. (C) The relative frequency of each cluster is 

shown on the same exhaustion coordinate system as in Figure 6D and Supplementary Figure 

6. (D) Sum of the frequencies for the Top 2 and Top 9 Tex cell clusters and TEX ratio were 
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determined as defined in Figure 6. (E) Clusters overrepresented in low or high functionality 

TIL are shown (for stacked bar analysis see Supplementary Figure 5). * indicates p <0.05. 

c8: p=0.07; c29: p=0.08. (F) Bivariate plots indicate expression of markers of exhaustion, 

activation, tissue residency and transcriptional programming for clusters differentially linked 

to tumor functionality. Plots display concatenated CD8 T cell data from lung cancer patients 

and HC as assigned by phenograph clustering. (G) The sum of the frequencies of HAT or 

DAT clusters linked to mild or severe HIV was determined in the lung cancer cohort. TIL 

data was analyzed both as total aggregate data and separating the high and low functionality 

samples as shown in (B). DAT clusters enrich in the dysfunctional tumor microenvironment 

in lung cancer.
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