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Abstract

Objective—We characterized associations between central nervous system (CNS) adverse events 

and brain neurotransmitter transporter/receptor genomics among participants randomized to 

efavirenz-containing regimens in AIDS Clinical Trials Group studies in the United States.

Methods—Four clinical trials randomly assigned treatment-naïve participants to efavirenz-

containing regimens. Genome-wide genotype and PrediXcan were used to infer gene expression 
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levels in tissues including 10 brain regions. Multivariable regression models stratified by race/

ethnicity were adjusted for CYP2B6/CYP2A6 genotypes that predict plasma efavirenz exposure, 

age and sex. Combined analyses also adjusted for genetic ancestry.

Results—Analyses included 167 cases with grade 2 or greater efavirenz-consistent CNS adverse 

events within 48 weeks of study entry, and 653 efavirenz-tolerant controls. CYP2B6/CYP2A6 
genotype level was independently associated with CNS adverse events (O.R.: 1.07; p = 0.044). 

Predicted expression of 6 genes postulated to mediate efavirenz CNS side effects (SLC6A2, 

SLC6A3, PGR, HTR2A, HTR2B, HTR6) were not associated with CNS adverse events after 

correcting for multiple testing, the lowest P-value being for PGR in hippocampus (p=0.012), nor 

were polymorphisms in these genes or AR and HTR2C, the lowest P-value being for rs12393326 

in HTR2C (p=6.7×10−4). As a positive control, baseline plasma bilirubin concentration was 

associated with predicted liver UGT1A1 expression level (p = 1.9×10−27).

Conclusions—Efavirenz-related CNS adverse events were not associated with predicted 

neurotransmitter transporter/receptor gene expression levels in brain or with polymorphisms in 

these genes. Variable susceptibility to efavirenz-related CNS adverse events may not be explained 

by brain neurotransmitter transporter/receptor genomics.
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Introduction

Efavirenz is a frequently prescribed antiretroviral, with its efficacy demonstrated in multiple 

clinical trials [1–6]. However, central nervous system symptoms (CNS) are common with 

efavirenz [7–9]. Several CYP2B6 polymorphisms predict increased plasma efavirenz 

exposure, including CYP2B6 516G→T (rs3745274) [10–15], 983T→C (rs28399499) [15–

18], and 15582C→T (rs4803419) [15]. A CYP2A6 polymorphism, -48T→G (rs28399433), 

also affects efavirenz pharmacokinetics [19–22] when present with CYP2B6 slow 

metabolizer genotypes [19, 22]. These polymorphisms explain approximately 35% of 

interindividual variability in plasma efavirenz exposure [15]. A possible association with 

efavirenz pharmacokinetics has also been reported with UGT2B7 genotype [21] but with 

small effect size [22].

Increased likelihood of efavirenz CNS symptoms has been attributed to CYP2B6 slow 

metabolizer genotypes [18, 23, 24]. In an initial analysis of AIDS Clinical Trials Group 

(ACTG) data [18], CYP2B6 slow metabolizer genotypes were associated with adverse 

events in 276 white participants (p=0.04) but not in 217 black participants (p=0.58). 

Similarly, among 563 patients who initiated efavirenz-containing regimens at a clinic in the 

Southeastern United States, slow metabolizer CYP2B6 genotypes were associated with 

efavirenz discontinuation for CNS symptoms in 335 white patients (p = 0.001) but not in 

198 black patients (p = 0.27) [23]. Among 1833 ACTG study participants in the United 

States, an association between CYP2B6 genotype and suicidality was strongest among white 

participants but nearly null among black participants [24]. The reason for this apparent 

difference by race is not known.
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Brain neurotransmitter transporters/receptors are postulated to mediate efavirenz CNS 

symptoms, including the norepinephrine transporter (encoded by SLC6A2), dopamine 

transporter (SLC6A3), progesterone PR-B (PGR), serotonin receptors 5-HT2A (HTR2A), 5-

HT2B (HTR2B), 5-HT2C (HTR2C), and 5-HT6 (HTR6), and androgen receptor (AR) 

(Daria Hazuda, personal communication). Lower expression levels of neurotransmitter 

transporter/receptor genes in brain tissue could possibly confer increased susceptibility to 

efavirenz side effects. This hypothesis may be addressed indirectly using, PrediXcan, a 

novel computational algorithm that uses genome-wide genotype data to infer RNA 

expression levels for individual genes in various human organs and tissues [25].

We examined whether predicted expression levels of selected neurotransmitter transporter/

receptor genes in brain were associated with risk for CNS adverse events in participants 

randomized to receive efavirenz-containing regimens in ACTG studies. We also examined 

whether individual polymorphisms in these genes were associated with CNS adverse events 

with efavirenz.

Methods

Study Design and Participants

Data were pooled from antiretroviral-naïve individuals who had been randomly assigned to 

initiate efavirenz-containing regimens in four studies: ACTG 384 (ClinicalTrials.gov: 

NCT00000919) [26, 27], A5095 (ClinicalTrials.gov: NCT00013520) [2, 28], A5142 

(NCT00050895) [3], and A5202 (NCT00118898) [6]. Drug class components of the 

regimens were randomly assigned (efavirenz-based regimen vs. comparator regimen) except 

for nucleoside analogue choice in A5142. Genetic association testing was limited to 

participants who consented to genetic testing under ACTG protocol A5128 [29]. Participants 

self-reported race/ethnicity.

Each protocol required reporting of signs, symptoms, or diagnoses at each visit, severe and 

life-threatening graded signs or symptoms [30], and signs or symptoms that led to change in 

study regimen. Diagnoses were not graded. Further, study A5142 required report of all 

moderate signs or symptoms, study ACTG 384 required entry of all signs and symptoms 

grade 3 or greater, all signs and symptoms which resulted in dose modification regardless of 

grade, and all grade 2 or greater CNS symptoms, and A5095 and A5202 required report of 

moderate CNS symptoms. Site institutional review boards approved each study, and 

participants provided written informed consent.

Outcomes

The outcome of interest was new onset grade 2 or greater CNS signs or symptoms that were 

consistent with possible efavirenz effect. These included agitation, behavior changes, 

abnormal cognition, confusion, depression, difficulty concentrating, dizziness, abnormal 

dreams, excessive anger, hyperactivity, inappropriate behavior, insomnia, lethargy, change in 

level of consciousness, lightheadedness, memory loss, psychiatric mental status change, 

rage, or sleeping problems. Adverse event data were based on self-report, and did not 
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involve questionnaires specifically targeting CNS events. Death by suicide was also 

considered a possible efavirenz effect.

Cases were participants with grade 2 or greater efavirenz-consistent CNS signs or 

symptoms, or with death due to suicide, documented within 48 weeks after study entry while 

still being prescribed efavirenz, or within 2 weeks after efavirenz was discontinued. Controls 

were participants with no documented efavirenz-consistent CNS signs or symptoms 

regardless of any grade after study entry while being prescribed efavirenz for at least 96 

weeks. Cases and controls were excluded for any neuropsychological signs or symptoms of 

any grade documented at study entry.

Covariates

Baseline covariates included in multivariable models included age, sex and CYP2B6/

CYP2A6 genotype. The first two principal components generated from genome-wide 

genotype data were also included to minimize confounding by unrecognized population 

stratification. Analyses performed separately among self-identified white, black, and 

Hispanic participants also adjusted for age, sex and CYP2B6/CYP2A6 genotype, but not 

principal components.

Genetic assays and data

Genotypes for CYP2B6 516G→T, 983T→C, 15582C→T and CYP2A6 -48T→G were 

largely available from a MassARRAY® iPLEX Gold (Sequenom, Inc.) assay, generated by 

Vanderbilt Technologies for Advanced Genomics (VANTAGE) [15]. Genome-wide 

genotype data largely available from a previous immunogenomics project [31] were 

generated by Illumina HumanHap 650Y array for A5095 and by Illumina 1M duo array for 

A5142 and A5202. Quality control and imputation of genome-wide data was performed as 

described elsewhere [32]. The PLINK program and R statistical programming language 

were used for QC procedures [33, 34]. Polymorphisms were censored for call rates <99%. 

We excluded 18 samples where genetically inferred sex differed from clinical data, or 

missing sex status that could not be inferred, 105 samples with overall genotyping call rates 

<99%, and 17 samples with cryptic relatedness based on identity by descent (IBD) estimates 

>0.3 from approximately 100,000 pruned SNPs.

Post QC data were imputed to 1000 Genomes [35] after converting to genome build 37 using 

liftOver [36] and stratifying by chromosome to parallelize imputation processing. ShapeIt2 

[37] was used to check strand alignment and to phase data. The IMPUTE2 algorithm [38] 

was used to impute additional genotypes that were available in the 1000 Genomes reference 

panel, but not directly genotyped. Each chromosome was segmented into 6 MB regions with 

at least 3500 reference variants in each region. Imputed genotypes were included if posterior 

probabilities exceeded 0.9.

Quality of imputed data was assessed following the Electronic Medical Records and 

Genomics (eMERGE) protocol [39]. Each chromosome from each phase was checked for 

100% concordance with genotyped data. We dropped imputed SNPs with imputation scores 

<0.7, genotyping call rates <99% and minor allele frequencies (MAF) <0.01.
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Twelve composite CYP2B6/CYP2A6 genotype levels that predict progressively greater 

plasma efavirenz exposure were defined by combinations of three CYP2B6 and one 

CYP2A6 polymorphisms [15, 22] as described elsewhere [22]. Each CYP2B6/CYP2A6 
polymorphism (rs3745274, rs28399499, rs4803419, and rs28399433) was in Hardy-

Weinberg equilibrium in white, black, and Hispanic participants analyzed separately except 

rs4803419 in white participants (multiple testing-corrected P = 0.045). Consent for genetic 

analysis was obtained under ACTG protocol A5128 [29], and the ACTG approved this use 

of DNA.

PrediXcan

PrediXcan was used to infer, from genome-wide genotype data, the heritable component of 

RNA expression levels in 43 available reference tissues [25], using the 2015 PrediXcan 

models. PrediXcan was able to infer expression of approximately 10,000 genes in each 

tissue. The 10 reference brain tissues analyzed included anterior cingulate cortex, caudate, 

cerebellar hemisphere, cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, 

nucleus accumbens, and putamen. The additional 33 reference tissues included adipose 

subcutaneous, adrenal gland, aorta, coronary artery, tibial artery, breast, EBV-transformed 

lymphocytes, transformed fibroblasts, sigmoid colon, transverse colon, gastroesophageal 

junction, esophagus mucosa, esophagus muscularis, heart atrial appendage, heart left 

ventricle, liver, lung, skeletal muscle, tibial nerve, ovary, pancreas, pituitary gland, skin 

suprapubic not sun exposed, skin lower leg sun exposed, terminal ileum, terminal ileum 

(Elastic Net), spleen, stomach, testis, thyroid, whole blood unscaled, whole blood, and cross 

tissue.

Statistical analysis

We characterized associations between predicted expression of six autosomal brain 

neurotransmitter transporter/receptor genes (SLC6A2, SLC6A3, PGR, HTR2A, HTR2B, 

HTR6) and efavirenz CNS adverse events. We also characterized associations between 

polymorphisms in these six genes as well as AR and HTR2C and efavirenz CNS adverse 

events. Because AR and HTR2C are on the X chromosome, PrediXcan cannot infer their 

expression. Analyses controlled for CYP2B6/CYP2A6 genotype level as a linear covariate, 

age, and sex. The first two principal components, calculated using EIGENSOFT [40] were 

used to adjust for global ancestry in analyses that pooled all race/ethnicity groups. 

Associations with CNS adverse events were evaluated using logistic regression models, 

stratified by race/ethnicity. As a positive control, associations between baseline total plasma 

bilirubin concentration and hepatic UGT1A1 expression were similarly evaluated, 

controlling for CYP2B6/CYP2A6 genotype level, age, sex, and the first two principal 

components. The Bonferroni method was used to adjust for multiple testing.

Results

Study participants

Of 4,742 participants from ACTG studies ACTG 384, A5095, A5142, and A5202, a total of 

2,171 who had been randomly assigned to initiate efavirenz-containing regimens consented 

to genetic testing at research sites in the United States. Of these participants, 1,425 were 
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successfully genotyped for CYP2B6/CYP2A6 and had imputed genome-wide genotype and 

principal component data. Of these participants, 820 met definitions as either cases with 

documented grade 2 or greater efavirenz-consistent CNS adverse events by week 48 (n = 

167) or efavirenz-tolerant controls that continued efavirenz for at least 96 weeks without 

documented CNS adverse events (n = 653). Participant disposition is presented in Figure 1. 

Baseline characteristics of study participants are shown in Table 1. Females were 

underrepresented among cases versus controls.

CYP2B6/CYP2A6 genotype and CNS adverse events

In logistical regression analyses, among the 820 participants who were evaluable as either 

cases who developed grade 2 or greater CNS adverse events by week 48 (n = 167), or 

efavirenz-tolerant controls (n = 653), and controlling for age, sex, and the first 2 principal 

components, CYP2B6/CYP2A6 genotype level was associated with grade 2 or greater CNS 

adverse events within 48 weeks (O.R.: 1.07; 95% C.I.: 1.00 to 1.15; p = 0.044). In analyses 

performed separately among 335 white, 264 black, and 184 Hispanic participants, and 

adjusted for age and sex but not principal components, odds ratios for association between 

CYP2B6/CYP2A6 genotype level and grade 2 or greater CNS event by week 48 were 

similar to the total group (1.10 for white, 1.07 for black, and 1.08 for Hispanic participants), 

but none were statically significant (P>0.10 for each). In the above multivariable models, 

female sex was associated with fewer grade 2 or greater CNS adverse events within 48 

weeks among all participants (O.R.: 0.33; 95% C.I.: 0.17 to 0.63; p = 0.001), and among 

white participants (O.R.: 0.14; 95% C.I.: 0.18 to 1.04; p = 0.055) and black participants 

(O.R.: 0.43; 95% C.I.: 0.19 to 0.96; p = 0.040) analyzed separately.

Predicted expression levels of neurotransmitter transporter/receptor genes and CNS 
adverse events

For each participant, genome-wide genotype data was used to predict the heritable 

component of gene expression for 43 tissues, including multiple reference regions of the 

brain. Primary analyses characterized associations between 6 neurotransmitter transporter/

receptor genes postulated to mediate efavirenz effects in brain (SLC6A2, SLC6A3, PGR, 

HTR2A, HTR2B, HTR6), and grade 2 or greater CNS adverse events within 48 weeks. 

Among all subjects, and controlling for CYP2B6/CYP2A6 genotype level, age, sex, and 2 

principal components, the lowest nominal P-value was for PGR in hippocampus (p=0.012). 

The two lowest nominal P-value results for each gene and associated brain regions are 

presented in Table 2. None were significant after correcting for multiple testing. In analyses 

performed separately among white, black, and Hispanic participants, and adjusted for age 

and sex but not principal components, there were no significant associations. The lowest P-

value in white participants was for HTR2A in cerebellar hemisphere (p=0.12), in black 

participants was for SLC6A2 in caudate (p=0.17), and in Hispanics participants was for 

HTR2A in cortex (p=0.082). The two lowest nominal P-value results for each gene within 

race /ethnicity group, and associated brain regions are presented in Supplemental Table 1, 

supplemental Digital Content 1, http://links.lww.com/NMC/A133.

Following the approach of Li et al [41], we were able to assess correlations between 

predicted and observed gene expression in reference datasets in brain tissue for SLC6A3, 
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HTR2B, and HTR6. Among Caucasians, the strongest correlations were with SLC6A3 (r2 = 

0.038) and HTR2B in hypothalamus (r2 = 0.028). Among Africans the strongest correlations 

were with SLC6A3 in hypothalamus (r2 = 0.040) and HTR6 in cortex (r2 = 0.029). These 

would not be considered well-predicted genes.

Predicted expression levels for all evaluable genes in brain and CNS adverse events

In secondary analyses we explored associations with expression across all evaluable 

autosomal genes in the brain. Among all subjects, and controlling for CYP2B6/CYP2A6 
genotype level, age, sex, and 2 principal components, the lowest nominal p-value was for 

RCE1 (a metalloproteinase) in cerebellar hemisphere (p = 5.3×10−8). The two lowest 

nominal P-value results for each brain region are presented in Table 3. In analyses performed 

separately among white, black, and Hispanic participants, and adjusted for age and sex but 

not principal components, there were no significant associations after adjusting for multiple 

comparisons. The lowest P-value in white participants was for ACSF3 in anterior cingulate 

cortex (p=9.5×10−6), in black participants was for TRPC3 in cerebellar hemisphere 

(p=1.9×10−5), and in Hispanics participants was for KLK5 in cerebellar hemisphere 

(p=3.0×10−5). The two lowest nominal P-value genes for each brain region each gene within 

race /ethnicity group are in Supplemental Table 2, Supplemental Digital Content 1, http://

links.lww.com/NMC/A133.

Predicted UGT1A1 expression in all tissues and baseline plasma bilirubin concentration

As a positive control we considered total plasma bilirubin concentration at baseline, which 

should correlate inversely with UGT1A1 expression, especially in liver. By linear regression 

analysis involving 1354 participants evaluable for baseline plasma bilirubin, and controlling 

for CYP2B6/CYP2A6 genotype, age, sex, and 2 principal components, hepatic UGT1A1 
expression was associated with bilirubin concentration (p = 3.4×10−27). This association was 

also present among white participants (p = 4.3×10−15), black participants (p = 4.2×10−12), 

and Hispanic participants (p = 1.5×10−6) analyzed separately without adjusting for principal 

components (Table 4). In contrast, for 17 non-liver tissues for which PrediXcan could 

predict UGT1A1 expression levels, only three had nominal p-values less than 0.05 for 

association of UGT1A1 expression with baseline total bilirubin - skeletal muscle (p = 

0.002), non-sun-exposed skin (p = 0.005), and putamen (p = 0.046). P-values exceeded 0.10 

for the other 14 tissues. This established that PrediXcan could identify a true gene 

expression-phenotype association in our dataset, and could do so in a tissue-specific manner.

Neurotransmitter transporter/receptor gene polymorphisms and CNS adverse events

Primary analyses characterized associations between polymorphisms in the eight 

neurotransmitter transporter/receptor genes (± 100 kB) noted above (SLC6A2, SLC6A3, 

NR3C3, HTR2A, HTR2B, HTR2C, HTR6, NR3C4) and grade 2 or greater CNS adverse 

events within 48 weeks. Analysis among all participants, and controlling for CYP2B6/

CYP2A6 genotype level, age, sex, and 2 principal components, the lowest nominal P-value 

was for rs12393326 in HTR2C (p=6.7×10−4). The two lowest nominal P-value 

polymorphisms among all participants and among white, black, and Hispanic participants 

analyzed separately are presented in Table 5. None were significant after correcting for 

multiple testing.
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Genome-wide polymorphisms and CNS adverse events

To complement the above analyses focused on eight neurotransmitter transporter/receptor 

gene polymorphisms, secondary analyses explored polymorphism associations genome-

wide. Analysis among all participants, and controlling for CYP2B6/CYP2A6 genotype 

level, age, sex, and 2 principal components, the lowest nominal P-value was for rs7143465 

in SLC8A3, which encodes solute carrier family 8 member A3 (p=2.2×10−9). The two 

lowest nominal P-value polymorphisms among all participants and among white, black, and 

Hispanic participants analyzed separately are presented in Table 6.

For the four genes in Table 6, we attempted to examine whether predicted expression in 

brain was associated with CNS events. Of these, CFAP36 was not represented in PrediXcan. 

Among white participants, but not among black or Hispanic participants, predicted ACSF3 
expression in brain tissues tended to be associated with grade 2 or greater CNS adverse 

events within 48 weeks, including in anterior cingulate cortex (P = 9.46×10−6), frontal 

cortex P = 1.08×10−5), cortex (1.24 ×10−5), and caudate (P = 8.53×10−5). Of note, ACSF3 
rs144103499 (Table 6) is not a known expression quantitative trait locus (eQTL) for ACSF3 
in any tissue [42]. There were not associations with BBS12 or SLC8A3. The lowest P-value 

for BBS12 was in cerebellum among black participants (P = 0.092), and for SLC8A3 was in 

hypothalamus among all participants (P = 0.014).

Discussion

Among individuals who were randomly assigned to initial treatment with efavirenz-

containing regimens in four ACTG studies, and with correction for multiple comparisons, 

we found no significant association between predicted expression of 6 neurotransmitter 

transporter and receptor genes postulated to mediate efavirenz effects in brain (SLC6A2, 

SLC6A3, PGR, HTR2A, HTR2B, HTR6) and grade 2 or greater CNS adverse events, both 

among all participants, and in analyses performed separately among white, black, and 

Hispanic participants. The lowest nominal P-value among all participants was for PGR in 

hippocampus (p=0.012). Similarly, after correction for multiple comparisons we found no 

significant association between individuals SNPs in these genes or AR and HTR2C and 

grade 2 or greater CNS adverse events, both among all participants, and in analyses 

performed separately among white, black, and Hispanic participants. The lowest nominal P-

value was for rs12393326 in HTR2C (p=6.7×10−4).

Analyses were controlled for CYP2B6/CYP2A6 genotype, age, and sex, and in analyses that 

pooled all race/ethnicity groups, also the first 2 principal components. We demonstrated 

significant, though weak, associations between CYP2B6/CYP2A6 genotype level and grade 

2 or greater CNS adverse events, which is generally consistent with several previous reports 

[18, 23, 24]. It was therefore important that we adjust for CYP2B6/CYP2A6 genotype level 

in analyses for associations with predicted neurotransmitter transporter/receptor gene 

expression and polymorphisms. In addition, controlling for principal components in analyses 

involving all participants reduced the likelihood for false associations due to unrecognized 

population stratification.
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PrediXcan is a relatively new computational algorithm that allows the heritable component 

of RNA expression levels for individual genes in different tissues to be inferred from 

genome-wide genotype data [25]. It was developed to exploit genotype-tissue expression 

(GTEx) data, and evaluates aggregate effects of cis-regulatory variants (within 1MB 

upstream or downstream) on gene expression by an elastic net regression method, and 

generates potential eQTLs and their weights for each gene in each GTEx tissue type. By 

considering genes rather than individual polymorphisms, PrediXcan should have a greatly 

reduced multiple testing burden versus single-variant-single-trait association tests. 

PrediXcan may therefore identify loci with modest to weak effect sizes that are not 

significant in genome-wide association studies. To assess the performance of PrediXcan we 

tested for associations with baseline plasma total bilirubin concentration. It is reassuring that 

we found significant associations between predicted UGT1A1 expression in liver and 

bilirubin concentrations among all participants, and separately among white, black, and 

Hispanic participants. Thus PrediXcan detected a known association in a tissue-specific 

manner in our dataset.

By analyzing all participants pooled, as well as racial/ethnic groups of white, black, and 

Hispanic participants separately, we had the potential to identify consistent genetic 

associations across groups. While true genetic associations need not be present in all 

populations, finding the same association in all participants and in each race/ethnicity group 

increases the likelihood that the association is not by chance. For example, associations 

between CYP2B6 genotype level and plasma efavirenz concentrations were previously 

demonstrated in pooled analyses and among white, black, and Hispanic participants 

analyzed separately [15]. In the present analyses, neither predicted gene expression levels or 

polymorphisms with the lowest P-values were consistent across populations.

We cannot explain the apparent association between female sex and fewer grade 2 or greater 

CNS adverse events among all participants, and among white participants and black 

participants analyzed separately. Previous reports have been inconsistent in this regard, with 

studies showing no difference by sex [43, 44], increased efavirenz CNS adverse events in 

males [45], and increased CNS adverse events in females [46].

This study had limitations. Because providers may not have referred patients perceived to be 

at increased risk for CNS adverse events to studies of efavirenz, risk may be underestimated. 

Analyses largely involved white, black, and Hispanic participants in the United States, so 

findings may not translate to other countries or race/ethnicity groups. The open-label design 

of 3 of the 4 studies might have biased investigators into reporting CNS adverse events in 

patients randomized to efavirenz. While PrediXcan readily identified an association between 

predicted UGT1A1 expression in liver and bilirubin concentrations, this does not prove that 

we could detect associations of efavirenz CNS adverse events with predicted gene 

expression levels in brain. To our knowledge, there is no brain gene-phenotype pair in our 

dataset that could serve as a positive control. A larger sample size would increase power to 

identify associations. The present study was not designed to address rare polymorphisms, 

epigenetics, inducibility of gene expression, and trans regulatory elements. In addition, 

factors not evaluated in this study such as nicotine and alcohol use may affect expression of 

CYP2B6, CYP2A6, and other genes, and could conceivably differ by ancestry.
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In summary, it is important to identify genetic factors that affect susceptibility to 

antiretroviral toxicities. The present study suggests that interindividual differences in brain 

neurotransmitter transporter/receptor genomics may not explain variable susceptibility to 

efavirenz CNS adverse events.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Derivation of the study sample
Derivation cases who developed grade 2 or greater efavirenz-consistent CNS adverse events 

by week 48, and efavirenz-tolerant controls who continued efavirenz for at least 96 weeks 

without efavirenz-consistent CNS adverse events, during participation in ACTG 384, A5095, 

A5142 or A5202 is shown. Abbreviation: PC, principal components.
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Table 1

Baseline characteristics of participants included in analyses of grade 2 or greater CNS adverse events after 

being randomly assigned to efavirenz-containing regimens.

Cases
(n=167)

Controls
(n=653)

Total
(N=820)

Parent study, n (%) ACTG384 28 (13.9) 173 (86.1) 201

A5095 63 (34.4) 120 (65.6) 183

A5142 15 (10.1) 133 (89.9) 148

A5202 61 (21.2) 227 (78.8) 288

Sex, n (%) Male 156 (16.4) 539 (77.6) 695

Female 11 (8.8) 114 (91.2) 125

Race or ethnic group, n (%) White Non-Hispanic 81 (22.8) 274 (77.2) 355

Black Non-Hispanic 53 (20.1) 211 (79.9) 264

Hispanic 26 (14.1) 158 (85.9) 184

Asian 2 (25.0) 6 (75.0) 8

Native American 3 (42.9) 4 (57.1) 7

Multiracial 1 (100) 0 (0) 1

Unknown 1 (100) 0 (0) 1

Age, Median (IQR) 38 (31, 45) 37 (31, 45) 37 (31, 45)
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Table 2

Associations between predicted expression levels of six autosomal neurotransmitter receptor/transporter genes 

and grade 2 or greater CNS adverse events within 48 weeks of starting efavirenz-containing regimens.

Gene Chromosome Brain Region Beta P value

HTR2A 13 Cerebellar hemisphere −0.61 0.086

Frontal cortex −1.24 0.677

HTR2B 2 Frontal cortex −0.77 0.331

Hippocampus −0.31 0.601

HTR6 1 Nucleus accumbens 0.45 0.258

Caudate 0.53 0.587

PGR 11 Hippocampus −0.91 0.012

Cortex −1.00 0.204

SLC6A2 16 Cortex 1.85 0.405

Caudate 0.69 0.454

SLC6A3 5 Nucleus accumbens 1.59 0.116

Hypothalamus 0.65 0.192

Logistic regression analysis involved 820 total participants, which included 167 grade 2 or greater CNS event cases and 653 efavirenz-tolerant 
controls. The analysis controlled for CYP2B6/CYP2A6 genotype level, age, sex, and the first 2 principal components. The analyses included all 
evaluable participants without stratification for race/ancestry. The two lowest P-value results are shown for six genes postulated to mediate 
efavirenz CNS side effects. The positive or negative beta indicates directionality of the relationship.
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Table 3

Associations between predicted expression levels of all genes in brain and grade 2 or greater CNS adverse 

events within 48 weeks of starting efavirenz-containing regimens.

Brain region Gene Chromosome Beta P value

Anterior cingulate cortex PAXBP1 21 −6.73 1.7×10−6

SEMA3G 3 2.80 2.8×10−6

Caudate EMC10 19 2.79 1.0×10−5

SIRPB1 20 1.52 1.9×10−5

Cerebellar hemisphere RCE1 11 −2.64 5.3×10−8

RABEPK 9 −1.21 4.6×10−6

Cerebellum CDK10 16 −0.73 1.8×10−5

C4orf48 4 −4.90 4.9×10−5

Cortex TFAP2D 6 −6.61 1.2×10−6

EHMT1 9 −1.44 1.1×10−4

Frontal cortex ZNF76 6 −59.49 2.2×10−6

HLA-G 6 0.59 1.5×10−4

Hippocampus C11orf68 11 −2.45 5.3×10−8

ZNF555 19 42.89 7.6×10−6

Hypothalamus IKBKE 1 0.10 2.7×10−7

ADRBK1 11 4.63 2.4×10−6

Nucleus accumbens SHANK3 22 4.80 2.9×10−7

MSX2 5 −4.92 1.2×10−4

Putamen UBL4B 1 5.62 1.0×10−5

SMIM6 17 −1.49 1.0×10−5

Logistic regression analysis involved 820 total participants, which included 167 grade 2 or greater CNS event cases and 653 efavirenz-tolerant 
controls. The analysis controlled for CYP2B6/CYP2A6 genotype level, age, sex, and the first 2 principal components. The analyses included all 
evaluable participants without stratification for race/ancestry. The two lowest P-value results are shown for each brain region.
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