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Abstract

The role of the gut microbiome in animal health has become increasingly evident. Unlike most 

other insects, honey bees possess a highly conserved and specialized core gut microbiome, which 

consists of nine bacterial species and is acquired mostly through social transmission. Five of these 

species are ubiquitous in honey bees and are also present in bumble bees. Recent studies have 

shown that the bee gut microbiome plays a role in metabolism, immune function, growth and 

development, and protection against pathogens. Disruption of the gut microbiome has also been 

shown to have detrimental effects on bee health. Overall, evidence suggests that the gut 

microbiome plays an important role in bee health and disease.

Introduction

Pathogens make up a small part of the communities of microorganisms associated with 

animal hosts. The roles of non-pathogenic microbial associates are increasingly appreciated. 

For example, the human gut microbiome plays a critical role in host physiology, nutrition, 

development, immune function, behavior, and also protection against pathogenic 

microorganisms [1]. Honey bees har-bor a specialized gut community, consisting of 

organisms largely restricted to this niche [2•• ]. The honey bee gut microbiome has some 

similarities to that of mammals: it is mostly socially transmitted, is largely restricted to guts 

of its hosts, helps to metabolize dietary carbohydrates, and contributes protection against 

pathogens. The basic biology of the bee gut microbiome was summarized in a recent review 

paper [2 ]. This article will focus on recent findings regarding possible roles of the honey 

bee gut microbiome in protection against disease.

The gut microbiome of corbiculate bees

The guts of honey bee (Apis mellifera) adult workers are dominated by a distinctive set of 

nine bacterial species (or ‘phylotypes’), largely restricted to the hindgut [2••]. Five of these, 
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Snodgrassella alvi, Gilliamella apicola, two species of Lactobacillus, and a Bifidobacterium 
species, are ubiquitous and can be found in essentially every adult worker worldwide; these 

species can be considered as the core gut microbiome. Others (Bartonella apis, Apibacter 
adven-toris, Frischella perrara, and Acetobacteraceae) are present in guts of many honey bee 

workers, but sometimes absent. Smaller numbers of bacteria, often representing 

environmental species, occur in the foregut and midgut [3]. The core species are relatively 

infrequent in larvae and in adult queens, which contain highly variable communities 

dominated by environmental bacteria [4, 5]. The mature worker hindgut microbiome is 

substantial, totaling 108–109 bacterial cells [6] and is established in workers within four days 

following eclosure, before leaving the hive. Transmission is through a fecal route and 

facilitated by social interactions and contact with hive surfaces [6]. Each core bacterial 

species shows a characteristic distribution within the hindgut (Figure 1). S. alvi and G. 
apicola dominate the ileum region of the hindgut, where S. alvi forms a continuous layer on 

the lining of the longitudinal folds, and G. apicola occurs on top. F. perrara forms a 

melanized scab at the pylorus, near the beginning of the ileum. The others, which are Gram 

positive species, are most abundant in the rectum region of the hindgut.

Each of these species exists as multiple strains, even within the gut of a single worker adult 

[7]. Extensive strain diversity of A. mellifera core gut bacteria, corresponding to different 

gene repertoires and metabolic capabilities, has been shown for G. apicola [8•], and for the 

two Lactobacillus clades and Bifidobacterium [9]. Accessory genes (genes present in some 

strains but not others within a species) include many involved in carbohydrate utilization, as 

well as genes encoding toxins likely targeted to competing bacteria. Strain level variation is 

even greater when comparing strains present in Apis versus Bombus, the latter having far 

fewer genes for using diverse carbohydrates [8•,10].

Other social corbiculate bees, including other honey bees (genus Apis), bumble bees 

(Bombus), and stingless bees (tribe Meliponini), contain distinct strains of the five core 

species found in A. mellifera [11••,12]. Phylogenetic analyses of strains from diverse 

corbiculate bee species suggest that these five bacterial species colonized a common 

ancestor of the corbiculate clade, about 80 million years ago, and that strains subsequently 

diversified, with some host lineages acquiring a few additional bacterial types. Based on 

phylogenetic analyses for S. alvi, G. apicola, and Lactobacillus ‘Firm-5’, related bacterial 

strains tend to occur within related hosts, with Apis and Bombus strains forming separate 

clades. All of these bees are social and live in colonies consisting of a queen and workers, 

enabling transmission of a consistent gut microbiome across generations.

The gut microbiome can be studied experimentally, since core species can be grown in 

culture and inoculated into bees [13]. If bees are manually removed from the comb at an 

early pupal stage (before the mouthparts harden) using sterile methods, guts of emerging 

adults will contain few or no bacteria and lack all core species, enabling experiments in 

which the gut community is inoculated in a controlled manner (e.g. [10,11••,14••,15••,16•]). 

Experiments comparing microbiotia-free and inoculated bees have revealed some of the 

functions of the gut microbiome and its members (Table 1). Controlled inoculations have 

also shown that strains of S. alvi from Apis cannot inoculate Bombus hosts, and vice versa 

[11••] but that there is some ability of S. alvi strains to inoculate other host species within 
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Apis [11••] and within Bombus [10]. Strains appear largely host-specific in natural 

collections, with distinct micro-biomes for each host species, and no evident geographic 

convergence when bee species co-occur [11••,17].

Non-core species in the bee microbiome: potential pathogens?

Guts of virtually all honey bee adult workers are dominated by five bacterial species (the 

core gut microbiome). Worker guts typically also contain low frequencies of other bacteria, 

which may play important biological roles, through their interactions with other organisms 

in the gut or through their direct, potentially pathogenic, effects on hosts. Some appear 

specific to honey bee guts, but are not ubiquitous. For example, Frischella perrara, a relative 

of G. apicola within the family Orbaceae, is widespread [18]. It colonizes in a distinctive 

manner in the pylorus region near the junction of the midgut and the hindgut; experiments 

involving inoculations of microbiota-free bees show that it causes a characteristic brown 

‘scab’ [16•], which has been shown to result from stimulation of immune pathways 

including the melanization response [14••]. This species also causes disordered cell division 

in gut epithelial cells and produces a complex polyketide molecule that affects cellular 

replication in human cell lines [19].

Another common non-core bee gut species is, Bartonella apis, a member of a group 

containing animal pathogens [20•]; B. apis is widespread in honey bee workers, but impacts 

on hosts are unknown. In a study of associations of microbes with colony collapse 

symptoms, B. apis was relatively abundant in healthy bees relative to bees from collapsing 

colonies [21], suggesting the possibility of a positive effect on disease resistance. Likewise, 

effects on hosts are unknown for Apibacter adventoris, a Bacteroi-detes species sampled 

repeatedly from bee guts and not elsewhere, but never abundant [22].

Many of the rarer bacterial species in honey bee guts likely represent opportunistic 

organisms able to invade as pathogens. Commonly sampled groups include species of 

Enterobacteriaceae, including Hafnia alvi, and species of Enterobacter, Klebsiella, and 

Serratia. Serratia marcescens strains can be pathogenic, causing sepsis and death [23•]. 

Strains isolated from hives can cause mortality when administered orally to workers in the 

laboratory [24••]. Potentially, these Enterobacteriaceae pathogens are under-recognized as 

causes of bee mortality, since infected bees usually leave the hive to die; they are more likely 

to accumulate in wintering hives [23•].

Environmental and developmental factors that can alter the bee gut 

microbiom

In animals generally, gut microbiome composition is influenced by many factors, including 

diet, stress, immune responses, stress, aging, and exposure to antibiotics. All of these factors 

appear to affect the bee microbiome (Figure 2). Some evidence suggests that, as workers age 

and transition to foraging, the microbiome composition shifts slightly [25,26]. Microbiome 

composition, particularly the relative numbers of S. alvi and G. apicola, can also shift 

through the season, possibly reflecting changes in diet [27•]. Indeed, poor nutrition has been 

shown to disrupt the normal gut microbiome, resulting in higher mortality and disease 
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susceptibility [28•]. Disruption of the microbiome (dysbiosis) has many consequences for 

worker development: such disruption during early adult life affects expression of important 

developmental genes, including vitellogenin [29•] and is expected to affect immune system 

function, since the honey bee microbiome stimulates immune pathways [14••,29•,30•]. In 

turn, honey bee innate immune function has been shown to be compromised by stimulation 

of cellular stress responses [31•]. Together these findings suggest that dysbiosis may have 

cascading effects for the ability of bees to respond to environmental stressors such as poor 

nutrition or temperature stress, and that, conversely, these stressors may impact the 

microbiome (Figure 2).

Honey bees in some regions are routinely exposed to antibiotics used in beekeeping for 

preventing outbreaks of American or European Foulbrood caused by Paeniba-cillus larvae or 

Melissococcus plutonius, respectively. Oxy-tetracycline has been used for decades in 

beekeeping in the USA, and strains of bee gut bacterial species have acquired several 

tetracycline resistance loci, with frequencies highest in colonies exposed more recently [32]. 

Tetracycline exposure results in severe gut dysbiosis, with drastic and persistent effects on 

microbiome size and composition [24••]. The treatment also increases mortality in the hive, 

potentially due to greater susceptibility to opportunistic pathogens, as observed in the lab 

[24••]. Certain pesticides have also been shown to impact the honey bee microbiome [33].

While a largely consistent microbiome persists throughout the lifespans of honey bee adult 

workers, adult queens have a strikingly different microbiome composition, with greater 

variation among individuals, and consisting of bacteria that are also found in the hive 

environment [4•,5]. The size of the queen microbiome is highly variable but often smaller 

than that of workers. The causes of the striking differences in microbiome between queens 

and workers are not yet known, but may reflect caste-specific differences in immune 

activities or in physiological conditions within the gut.

A study of microbiome shifts with worker age in the Asian A honey bee, Apis cerana, 

showed that the core gut bacteria peak in young workers and decline in numbers as workers 

age [34]; such dramatic shifts have not been reported for A. mellifera, suggesting that 

microbiome stability over the lifespan differs between species. In bumble bees, shifts with 

age, stress and exposure to environmental bacteria are even more pronounced, and many 

individuals exhibit increased frequencies of Enterobacteriaceae and other non-core, and 

potentially pathogenic, bacterial species, which sometimes dominate in individual bee guts 

[35–37].

Roles of the bee gut microbiome in nutrition and metabolism

Genomic and metabolic studies on bee gut core species, G. apicola, Lactobacillus species, 

and Bifidobacterium, indicate capabilities to digest and metabolize a diverse array of plant-

produced carbohydrates. In experiments comparing microbiota-free bees and bees 

possessing a conventional gut microbiome, many physiological effects of the gut 

microbiome were evident, including a major positive effect on gut size, weight gain 

following eclosure, insulin and vitellogenin signaling, and sucrose sensitivity [15••]. All of 

these physiological variables are expected to impact bee health, immune responsiveness, and 
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susceptibility to stress. The gut microbiome has major effects on the profile of short chain 

fatty acids in the gut and in the hemolymph; for example, butyrate dominates in 

conventional bees but is entirely absent in microbiota-free bees [15••]. Genomic studies 

reveal that some core gut bacteria harbor many genes for carbohydrate metabolism [8•,

10,38], and different strain compositions possess different abilities to metabolize 

carbohydrates [8•,9,39••].

Roles of the bee gut microbiome in protection against pathogens

In both honey bees and bumble bees, the gut microbiome has been shown to play some role 

in protection against pathogen infection (Table 2). In two separate studies, microbiota-free 

B. terrestis inoculated with the fecal matter of wild-type workers were more resistant to the 

trypanosomatid gut parasite Crithidia bombi than bees that were not inoculated [40,41]. The 

protective ability of the microbiome transplant was more strongly influenced by the colony 

source rather than the bees’ colony of origin, suggesting that different gut microbiome 

compositions can be more or less protective [41]. These studies did not identify the strains 

underlying the protection; thus, the specific community members conferring pathogen 

protection in bumble bees warrants further investigation.

A few other studies have indirectly assessed the role the bumble bee microbiome plays in 

pathogen infection, by correlating the presence of pathogens with the abundance of gut 

community members (Table 2). For example, B. terrestris infected with Crithidia was shown 

to possess lower numbers of G. apicola and S. alvi than uninfected individuals [42]. 

However, in B. impatiens, B. bimaculatus, and B. griseocollis, only the abundance of G. 
apicola was negatively correlated with the presence of Crithidia, and Parasaccharibacter 
apium (Alpha 2.2) was positively correlated with Crithidia infection [36]. Correlations 

between the microbiome composition and Nosema infection have been less consistent, with 

one study showing a positive correlation with the abundance of S. alvi [36], and other 

studies finding no differences in microbiome composition between bees infected or not 

infected with Nosema [40,42]. Although these correlations are interesting, it is not clear if 

they are the cause or the effect of pathogen infection.

In A. mellifera, several studies provide evidence for a role of the adult gut microbiome in 

protection against bee pathogens (Table 2). Few studies have examined the protective role of 

individual members of the core gut microbiome. One study investigated whether 

colonization with S. alvi, G. apicola, or the whole community could protect against 

hemolymph infection by E. coli. Bees possessing the entire gut community and, to a smaller 

extent, bees mono-inoculated with S. alvi or with G. apicola cleared more bacteria from the 

hemolymph after E. coli injection, and contained more antimicrobial peptide than did 

microbiome-free bees, suggesting immune priming by these core gut community members 

[30•]. Immune priming has also been shown for F. perrara, which colonizes locally in the 

ileum region of the hindgut and stimulates a dramatic increase in production of the 

antimicrobial peptide apidaecin [14••]. Although our focus is on adult workers, some studies 

have also examined potential interactions of gut microbiomes with larval pathogens. When 

larvae are given a sterile sugar diet or a sugar diet spiked with different lactic acid bacteria 

(LAB) and then exposed to P. larvae or M. plutonius, the LAB cocktails reduced infection by 
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these larval pathogens [43,44]. However, the LAB strains used in these studies were isolated 

from adult workers crops [45,46], which mostly contain species that inhabit nectar and hive 

materials and are not part of the core gut microbiome [26].

Dysbiosis of the A. mellifera core gut microbiome can increase susceptibility to pathogens. 

Treatment with the antibiotic tetracycline, which severely alters the core gut community 

composition and size, leads to increased infection by the opportunistic pathogen S. 
marcescens within hives [24••]. Likewise, in laboratory experiments, bees treated with 

tetracycline were more susceptible to S. marcescens infection than control bees [24••]. 

Dysbiosis-induced susceptibility to parasite infection also was found for bees pre-inoculated 

with S. alvi prior to being released into hives [29•]; pre-inoculation perturbs the core micro-

biome and increases susceptibility to the protozoan parasite Lotmaria passim [29•].

The presence of various honey bee pathogens of both adult and larval stages sometimes 

correlates with the presence or abundance of different members of the adult core gut 

community [28•,34,47,48]. Some of these studies show negative correlations between the 

presence of pathogens and the relative abundances of core members of the adult gut 

community (Table 2). However, it is not clear that lower abundance of core gut species is a 

cause of increased susceptibility to pathogens. In some cases, increased pathogen loads 

could be due to general perturbation of metabolism or immune responses, with this 

perturbation also impacting the gut community. Alternatively, dysbiosis may result from 

pathogen infection. Some experimental studies do support a causative role of core gut 

species in protection (Table 2), but more experiments are needed to determine the extent to 

which specific core gut community members may protect against particular pathogens.

Conclusions

Substantial evidence now points to a role of the bee gut microbiome in honey bee and 

bumble bee health. Most experimental work is based on laboratory studies, while most 

studies under field conditions are based on correlational analyses only. Thus, experimental 

studies in apiaries under realistic field conditions are needed. Many infectious diseases of 

adult bees are caused by organisms that are widespread or ubiquitous in colonies but that 

occasionally undergo outbreaks causing disease. Potentially these outbreaks are triggered by 

disruption of the normal microbiome. Active management of the worker gut microbiome 

could be a tool for improving bee health [49].
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Figure 1. 
Schematic showing distribution of bacterial communities in the honey bee worker gut. The 

ileum and rectum are two regions of the hindgut. For detailed overview see Kwong and 

Moran [2••].
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Figure 2. 
Overview of roles of the gut microbiome in honey bee health.
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Table 1

Experiments comparing microbiota-free bees with inoculated bees

Bee species Inoculation Trait compared Citation

A. mellifera S. alvi, G. apicola, and whole 
community

Immune gene expression, survival rate following E. coli 
injection

Kwong et al. [30•]

A. mellifera S. alvi Susceptibility to Lotmaria infection, immune gene 
expression, vitellogenin expression

Schwarz et al. [29•]

A. mellifera F. perrara Pylorus scab formation Engel et al. [16•]

A. mellifera F. perrara Immune gene expression, melanization response, overall 
gene expression

Emery et al. [14••]

A. mellifera Whole community Metabolism, insulin pathway expression, vitellogenin 
expression, growth

Zheng et al. [15••]

A. mellifera S. alvi Host specificity Kwong et al. [10]

A. mellifera S. alvi Host specificity Kwong et al. [11•]

A. mellifera Whole community Routes of colonization Powell et al. [6]

B. terrestris Whole community Susceptibility to Crithidia infection Koch and Schmid-Hempel [39••]

B. terrestris Whole community Susceptibility to Crithidia infection Koch and Schmid-Hempel [40]

A. mellifera Whole community Survival following antibiotic exposure Raymann et al. [24••]
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Table 2

Experiments demonstrating a role of the microbiome in protection against pathogens

Pathogen Host Mode of infection Protector(s) Citation

Paenibacillus larvae A. mellifera Ingested LAB* mixture Forsgren et al. [42]

Crithidia bombi B. terrestris Ingested Entire community Koch and Schmid-Hempel 
[39••]

Crithidia bombi B. terrestris Ingested Entire community Koch and Schmid-Hempel 
[40]

Melissococcus plutonius A. mellifera Ingested LAB* mixture Vasquez et al. [43]

Lotmaria passim A. mellifera Ingested Snodgrassella Schwarz et al. [29•]

Serratia marcescens A. mellifera Ingested Entire community Raymann et al. [24••]

Escherichia coli A. mellifera Injected S. alvi and G. apicola Kwong et al. [30•]

Pathogen Host (+) Correlations (−) Correlations Citation

Crithidia bombi B. terrestris None reported S. alvi, G. apicola Koch et al. [41]

Crithidia B. impatiens, B. 
bimaculatus, B. 
griseocollis

Alpha 2.2 G. apicola Cariveau et al. [36]

Nosema B. impatiens, B. 
bimaculatus, B. 
griseocollis

S. alvi None reported Cariveau et al. [36]

Sacbrood virus A. cerana None reported S. alvi, Lactobacillus Guo et al. [34]

Melissococcus plutonius A. cerana None reported S. alvi, Bifidobacterium Guo et al. [34]

Nosema spp. A. mellifera F. perrara None reported Maes et al. [28•]

Paenibacillus larvae A. mellifera None reported Bifidobacterium, Lactobacillus Erban et al. [46]

Melissococcus plutonius A. mellifera G. apicola, F. perrara 
Bifidobacterium

S. alvi and Lactobacillus Erban et al. [47]
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