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Abstract

Circulating adiponectin levels are lower in individuals with increased BMI and central adipos-

ity. However, they are paradoxically higher in those with peripheral adiposity. We hypothe-

sized that adiponectin secretion from central and peripheral adipose tissue depots may be

associated with adiposity levels and its distribution. A total of 55 subjects (69% women)

undergoing elective abdominal surgery (mean age: 53 ± 13 years) were recruited. Health

history, anthropometrics, and cardiovascular disease risk factor measurements were

obtained. Subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) samples

were obtained and cultured. Media was collected after 24hr and adiponectin released into

the medium was measured using ELISA. We found that mean adiponectin levels from SAT

and VAT in all subjects were 17.14±15.27 vs. 15.21±14.28 pg/ml/mg of tissue respectively

(p = ns). However, adiponectin secretion from VAT correlated negatively with BMI (r = -0.31,

p = 0.01), whereas there was no relationship with SAT (r = 0.08 p = 0.61). Similarly, waist cir-

cumference and estimated VAT percentage were both negatively correlated with VAT

secretion of adiponectin (r = -0.35, p = 0.01 and r = -0.36, p = 0.02 respectively). These neg-

ative correlations were significant only in women on gender-stratified analyses. Adiponectin

secretion from VAT decreases with increases in adiposity, while SAT secretion remains

unchanged, especially in women. This observation may explain lower circulating adiponec-

tin levels in individuals with central obesity. Further studies are needed to explore the mech-

anism behind this discrepant adiponectin secretion from SAT and VAT with increases in

BMI, particularly among women.

Introduction

Central adiposity with visceral adipose tissue (VAT) accumulation is a risk factor for the devel-

opment of type 2 diabetes and cardiovascular diseases [1]. In contrast, excessive adipose tissue

(AT) accumulation in peripheral subcutaneous adipose tissue (SAT) depots does not carry the
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same metabolic disease risk and, in fact, may afford some degree of protection against the

same [2, 3]. In addition to AT’s function as an energy storage and insulating organ, it is also a

known source of large number of secretions (adipokines) that include hormones, pro- and

anti-inflammatory markers, and other bioactive substances [4]. These secretions differ

between various AT depots and may explain the differential metabolic effects of each depot’s

abundance [5].

Adiponectin is one such adipokine, with insulin-sensitizing, anti-inflammatory, and anti-

apoptotic properties, that is primarily secreted by AT in adult humans [6]. Lower adiponectin

levels are associated with type 2 diabetes and cardiovascular disease risk and higher levels of

the same are associated with protection from cardiometabolic diseases [7, 8]. Even though AT

is the major source of adiponectin and adiponectin is the most abundant adipose-specific pro-

tein secreted in the human body [9], its levels decrease with increases in adiposity, especially

central adiposity [10].

Adding to the intrigue, certain obese individuals who are metabolically healthy were noted

to have paradoxical hyperadiponectinemia [11]. We and others have recently shown that these

obese individuals with paradoxical hyperadiponectinemia have greater lower body adiposity

(i.e. higher peripheral adiposity rather than central or visceral adiposity) compared to obese

individuals with lower adiponectin levels [12]. We also showed that higher abdominal SAT-to-

VAT ratios are associated with increased circulating adiponectin levels, suggesting differential

secretion of adiponectin from different AT depots [13]. We, therefore, hypothesized that adi-

ponectin secretion from VAT and SAT depots may be associated with adiposity levels and its

distribution.

Methods

Subjects

Fifty-five subjects undergoing elective abdominal surgeries were recruited from Froedtert

Hospital and the Medical College of Wisconsin, Milwaukee, WI. All subjects underwent pre-

operative phenotyping during the time-period between initial consultation and their actual

surgery date (typically 4 weeks). Forty percent of the subjects underwent bariatric surgery.

None of the subjects who underwent bariatric surgery were placed on a pre-operative high-

protein liquid diet, however, were advised to follow a 1200 kilocalorie diet for at least two-

weeks prior to surgery. Remaining surgeries included hernia repair (50%), cholecystectomy

(2%), laparoscopic fundoplication (4%), and ovarian cystectomy (4%). This study was

approved by the Froedtert Hospital and the Medical College of Wisconsin’s Institutional

Review Board. All participants provided a written informed consent. All methods were per-

formed in accordance to the IRB protocol and relevant guidelines and regulations.

Phenotyping

Standardized anthropometric measurements were performed by a registered dietitian follow-

ing the Center for Disease Control and Prevention’s National Health and Nutrition Examina-

tion Survey (NHANES) Anthropometry Procedures Manual [14]. Height and weight were

obtained to calculate body mass index (BMI). Waist, hip, and thigh circumference measure-

ments were taken directly on the skin with a Gulick II Tape Measure (Country Technology,

Inc., Gay Mills, WI). Waist circumference was measured at the level of the umbilicus. Hip cir-

cumference was measured over the maximum extension of the buttock with participant’s feet

placed together. Whole-body composition including total fat mass, lean body mass, and vis-

ceral fat percentage were measured using a dual-energy X-ray absorptiometry (DXA) using an

iDXA scanner (GE Lunar Medical Systems, Madison, Wisconsin).

Effect of adiposity on tissue-specific adiponectin secretion

PLOS ONE | https://doi.org/10.1371/journal.pone.0198889 June 20, 2018 2 / 12

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0198889


Laboratory measurements

C-reactive protein was measured using an enzyme-linked immunosorbent assay (ELISA)

(MP Biomedicals, Santa Ana, CA) with sensitivity and coefficient of variation (CV) at 2.81

ng/ml and <9.2% respectively. Total and high molecular weight adiponectin were analyzed

using ELISAs (R&D systems, Inc. Minneapolis, MN) with sensitivity and CV at 0.79 ng/ml

and <6.9% and 0.195 ng/ml and <8.6% respectively. Free fatty acids were measured using

enzyme-based methods and quantified by colorimetric assays (Wako Diagnostics, Richmond,

VA) with sensitivity of 0.0014 mEq/L and CV <2.7%. Sandwich ELISA kits (R&D Systems,

Inc. Minneapolis, MN) were used to measure interleukin -6, interleukin-10, and tumor

necrosis factor -alpha (TNF-α) with sensitivity and CV of 0.70 pg/ml and <6.4%, 3.9 pg/ml

and <7.5% and 1.6 pg/ml and <5.2% respectively. Leptin, was also analyzed using ELISA

(R&D Systems, Inc. Minneapolis, MN) with sensitivity and CV at 7.8 pg/ml and <5.4%

respectively.

AT sampling

Paired VAT and SAT samples were collected at the time of surgery and were immediately

transported to the laboratory in Hank’s medium. Samples were taken from the omental fat

depot adjacent to the greater curvature of the stomach during laparoscopic surgery using

endoscopic scissors. No cautery was used and samples were placed in Hank’s medium and

transported to the laboratory within 30–45 minutes of collection.

AT culture

Once the tissue was received by the laboratory, it was weighed after removing as much liquid

as possible. All steps were performed in the culture hood with sterile equipment by the same

technician. Tissue was minced into smaller fragments to prevent hypoxia and improve adipo-

kine secretion. Tissue was then placed into 10 cm culture dishes containing 10 mL Dulbecco’s

Modified Eagle’s Medium with GlutaMax and high glucose (ThermoFisher Scientific, Wal-

tham, MA) supplemented with 10% fetal bovine serum. Tissue was incubated at 37˚C with 5%

CO2. Media was changed at 2 hours to remove lipid droplets. Media was collected after 24

hours, centrifuged at 1000 g for 15 minutes and stored in -80˚C until ready for measurements.

Medium was also collected after 4 hours in 15 subjects (27%). Adiponectin levels released into

the medium were initially measured using Bioplex methods, and further confirmed by an adi-

ponectin ELISA. All fifty-five subjects had at least one tissue-specific adiponectin secretion

level. Of which, 50 subjects had VAT adiponectin secretion values and 46 subjects had SAT

secretion levels. Both values were present on 41 subjects.

Immunoblot analyses

Presence of adiponectin protein in AT was confirmed by immunoblot analyses. Whole tissue,

in the presence of protease inhibitors, was sonicated 5 times (3 second bursts each), with

cooling periods on ice between sonications. Tissue was placed at -80 ˚C for 20 minutes, centri-

fuged at 12,000 rpm for 15 min at 4 ˚C. Lysate from the lower layer was collected and protein

levels were determined by the Lowry method. Lysates (50 μg protein) were separated by 15%

SDS-PAGE. Proteins were transferred to nitrocellulose membranes, and adiponectin was

detected using a primary adiponectin monoclonal antibody (Thermo 19F1). Beta-actin was

detected as a loading control.
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Statistical analysis

All the subjects were consecutively recruited. Descriptive statistics (mean, standard deviation,

sample proportions etc.) were used to describe the distribution of disease states, measures of

adiposity, tissue adiponectin levels, circulating adipokines, and other demographic/clinical/

laboratory characteristics within the study sample. All data are presented as the mean ± stan-

dard deviation. Correlation coefficients and linear regression analyses were used to describe

the relationship of tissue adiponectin with adiposity measures. Two-sample t-tests were used

to test for differences across groups.

Results

A total of 55 subjects were recruited of which 69% were women. Demographics, anthropo-

metrics, and metabolic parameters of all subjects are shown in Table 1. The range of BMIs

included in this group was 19–62.4 kg/m2. Nine subjects (16%) were non-obese (BMI <30 kg/

m2). Twenty-one subjects (39%) had BMI over 40 kg/m2. Women had higher total body fat

percentages and leptin levels compared to men; however, the percentage of VAT was similar

to men. In the overall sample, BMI correlated negatively with total and high molecular weight

adiponectin levels (r = -0.29, p = 0.03 and r = -0.26, p = 0.07 respectively) and positively with

C-reactive protein (r = 0.52, p = 0.0001), interleukin-6 (r = 0.39, p = 0.005), and leptin

Table 1. Baseline demographic, anthropometric, and metabolic characteristics (mean ± SD).

Characteristics All subjects (n = 55) Women (n = 38) Men (n = 17)

Age (years) 53 ± 13 53 ± 12 53 ± 14

BMI (kg/m2) 41 ± 11 42 ± 11 38 ± 9

Waist circumference (cm) 123 ± 20 122 ± 21 123 ± 19

Hip circumference (cm) 132 ± 22 134 ± 22 123 ± 25

Thigh circumference (cm) 64 ± 9 65 ± 9 63 ± 10

Waist-to-Hip Ratio 0.96 ± 0.16 0.92 ± 0.09 1.04 ± 0.25 �

Total body fat mass (%) 39 ± 8 42 ± 6 33 ± 8 ���

Total fat mass (kg) 54 ± 21 57 ± 20 48 ± 21

TFM adjusted for BMI 1.27± 0.25 1.28 ± 0.22 1.23 ± 0.32

Lean body mass (kg) 58 ± 13 53 ± 10 69 ± 11���

LBM adjusted for BMI 1.45 ± 0.36 1.26 ± 0.21 1.87 ± 0.24���

Estimated visceral fat mass (%) 39 ± 11 38 ± 10 42 ± 11

Type 2 diabetes (%) 40 45 29

Hypertension (%) 53 58 41

Bariatric surgery (%) 40 45 29

Total adiponectin (mcg/ml) 6.91 ± 4.22 7.30 ± 3.97 6.04 ± 4.77

HMW adiponectin (mcg/ml) 4.05 ± 3.79 4.19 ± 3.47 3.47 ± 4.52

Free fatty acids (mmol/l) 0.60 ± 0.28 0.64 ± 0.28 0.49 ± 0.27

C-reactive protein (nmol/l) 67.5 ± 63.9 72.5 ± 69.0 56.7 ± 51.3

IL-6 (pg/ml) 4.27 ± 3.38 4.71 ± 3.82 3.26 ± 1.75

IL-10 (pg/ml) 7.47 ± 9.23 5.94 ± 6.90 7.56 ± 12.30

TNF-alpha (pg/ml) 7.78 ± 5.99 7.16 ± 5.75 9.11 ± 6.39

Leptin (ng/ml) 45.51 ± 35.43 55.12 ± 38.32 23.89 ± 11.07��

SD: Standard deviation BMI: Body mass index TFM: Total fat mass LBM: Lean body mass

HMW: High molecular weight IL: Interleukin TNF: Tumor necrosis factor

p-values: � <0.05 �� <0.01 ��� <0.001

https://doi.org/10.1371/journal.pone.0198889.t001
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(r = 0.49, p = 0.0002). When men and women were analyzed separately, the negative relation-

ship between BMI and circulating adiponectin level was stronger among men compared to

women (r = -0.61, p<0.05 vs. r = -0.15, p = ns). Additional correlations are shown in Table 2.

Depot-specific adiponectin secretion levels into the media were initially measured by Bio-

plex and further confirmed by ELISA. All results presented are from ELISAs which were

deemed more reliable between the two assays. However, depot-specific adiponectin levels

detected using both methods were highly correlated (p<0.0001). We further evaluated depot-

specific secretion adiponectin into the media at both 4 hours and 24 hours (n = 15 subjects).

We found that secretion levels at 24 hours were significantly higher than secretion levels at 4

hours in both SAT (mean ± SD: 15.39 ± 13.67 vs. 7.38 ± 5.79 pg/mL/mg of tissue, p = 0.04) and

VAT (13.43 ± 13.71 vs. 4.63 ± 4.02 pg/mL/mg of tissue, p = 0.03), hence we chose to limit our

measurements to 24-hour time points in subsequent subjects. However, there were significant

correlations between levels measured at 4 hours and 24 hours from both SAT (r = 0.92,

p< 0.0001) and VAT (r = 0.85, p = 0.0001) (Fig 1). We also measured secretion levels at 48

and 72 hours in 10 initial subjects, and these levels were significantly lower than 24-hour levels

(almost negligible in some cases). We, therefore, do not present 48 and 72-hour results. We

further confirmed the presence of adiponectin protein in paired SAT and VAT samples by

immunoblot analysis (Fig 2).

In the overall sample, mean secretion levels from SAT and VAT were 17.14 ± 15.27 (inter-

quartile range: 23.68) vs. 15.21 ± 14.28 (interquartile range: 20.20) pg/mL/mg of tissue

(mean ± SD) at 24 hours. These levels were not significantly different from each other in the

overall sample (p = 0.52). In subjects with BMI� 40 kg/m2, SAT and VAT secretion of adipo-

nectin levels were 16.40 ± 13.13 vs. 19.07 ± 16.65 pg/mL/mg of tissue respectively (p = 0.54).

However, in subjects with BMI over 40 kg/m2, VAT secretion of adiponectin trended lower

compared to SAT (17.85 ± 17.33 vs. 12.52 ± 11.00 pg/mL/mg of tissue, p = 0.07).

In the overall sample, SAT secretion of adiponectin was not correlated with BMI (r = 0.08,

p = 0.61), while VAT secretion of adiponectin was negatively correlated (r = -0.31, p = 0.03)

(Fig 3). In addition, total fat mass adjusted for BMI was negatively correlated with VAT secre-

tion of adiponectin (r = -0.45, p = 0.001). Similarly, waist circumference and estimated VAT

percentage were both negatively correlated with VAT secretion of adiponectin (r = -0.35,

p = 0.01 and r = -0.36, p = 0.02 respectively). SAT secretion of adiponectin was not signifi-

cantly associated with any of these adiposity measures.

Gender-specific associations of various adiposity measures with depot-specific adiponectin

secretion are shown in Table 3. The association between BMI and VAT secretion of adiponec-

tin differed between men (r = 0.06, p = ns) and women (r = -0.40, p = 0.02). In addition, no

Table 2. Correlations of BMI with metabolic characteristics.

Metabolic parameters Overall Females Males

HMW Adiponectin -0.26 -0.15 -0.61�

Free fatty acids 0.18 0.25 -0.13

C-reactive protein 0.52��� 0.54��� 0.37

IL-6 0.39�� 0.42� 0.10

IL-10 0.20 0.12 0.42

TNF-alpha 0.06 -0.03 0.44

Leptin 0.49��� 0.50��� 0.59�

HMW: High molecular weight IL: Interleukin TNF: Tumor necrosis factor

P-values: � <0.05 �� <0.01 ��� <0.001

https://doi.org/10.1371/journal.pone.0198889.t002
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statistically significant correlation was noted between BMI and SAT secretion of adiponectin

among both men (r = 0.27, p = ns) and women (r = 0.03, p = ns). All ‘r’ values in women

showed moderate association (0.4–0.55), and the association of adiponectin with waist circum-

ference and total body adiposity reached statistical significance even after adjusting for multi-

ple comparisons (p<0.006), while the same associations in men were not significant (Table 3).

Discussion

In this study, we found that the secretion of adiponectin from VAT decreased with increases

in BMI, total body fat, and VAT. We also found that the ability to secrete adiponectin from

SAT is preserved with increases in these adiposity measures. In addition, these relationships

were stronger in women compared to men. This observation may explain lower circulating

adiponectin levels in individuals with central obesity. Relatively preserved secretion of adipo-

nectin from SAT may also be responsible for the paradoxical hyperadiponectinemia noted in

some metabolically healthy obese (MHO) individuals. These findings are in line with previous

observations that AT secretory characteristics differ based on its location [15].

Adiponectin, secreted exclusively by mature adipocytes, is one of the largest products of AT

[9]. Despite AT being a predominant source for adiponectin, numerous studies have shown

Fig 1. Secretion levels of adiponectin from both visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) at 4 hours and 24 hours were

highly correlated with each other (p< 0.001).

https://doi.org/10.1371/journal.pone.0198889.g001
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Fig 2. Visceral adipose tissue (VAT) (A) and subcutaneous adipose tissue (SAT) (B) tissue homogenates (50 μg protein) were separated by 15% SDS-PAGE

and transferred to nitrocellulose membranes for immunoblot analyses. Adiponectin (ADPN) levels from paired SAT and VAT samples are shown for 7

different subjects. Beta-actin loading control and monomeric recombinant adiponectin (~30 kDa) are shown).

https://doi.org/10.1371/journal.pone.0198889.g002

Fig 3. A: Secretion levels of adiponectin from visceral adipose tissue (VAT) is negatively associated with BMI while there was no association with

subcutaneous adipose tissue (SAT) (p< 0.05) B: Secretion levels of adiponectin from VAT is negatively associated with total fat mass while there was no

association with SAT (p< 0.001) C: Secretion levels of adiponectin from VAT is negatively associated with visceral fat percentage while there was no

association with SAT (p< 0.05).

https://doi.org/10.1371/journal.pone.0198889.g003
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that adiponectin levels are lower in individuals with obesity [16]. While it is not entirely under-

stood why circulating adiponectin levels decrease with increased adiposity, it is hypothesized

to be down-regulated at the level of gene expression in dysfunctional adipocytes present in

obesity [17]. Adiponectin secretion has been shown to be inhibited by pro-inflammatory cyto-

kines and oxidative stress frequently present in individuals with obesity [16, 18]. Circulating

high molecular weight adiponectin levels showed negative trends with BMI in the current

study as well.

Recent observations of higher than expected adiponectin levels in a sub-group of healthy

obese subjects (paradoxical hyperadiponectinemia) have turned the discussion towards the

role of adiposity distribution in determining adiponectin levels [12, 19]. We have previously

shown that individuals with higher SAT have higher circulating adiponectin levels despite obe-

sity [13]. These findings led us to hypothesize that AT depots differ in their ability to secrete

adiponectin with increases in adiposity which we found to be accurate in this study. These

findings are consistent with previous studies that evaluated differential secretion of adiponec-

tin between AT depots [20]. In a 2004 study of 16 women, Fain et al. showed that VAT secre-

tion of adiponectin was higher in women with an average BMI of 32 Kg/m2 in comparison to

women with an average BMI of 42 Kg/m2 [21]. In another study of 52 women undergoing

abdominal hysterectomies, adiponectin release by omental and subcutaneous adipocytes was

similar in lean women while adiponectin release by omental adipocytes was significantly

reduced in obese women [15]. At the same time, adiponectin release from subcutaneous cells

was not associated with any measure of adiposity in obese women [15]. Similarly, a strong neg-

ative correlation was noted between BMI and adiponectin secretion from omental cells in a

small study of 9 subjects, while secretion from subcutaneous adipocytes was unrelated to BMI

[20]. In another study of 25 women undergoing elective gynecological surgeries, adiponectin

expression was higher in SAT compared to omental AT in both lean and overweight women

[22]. Furthermore, Chen and colleagues found that omental expression of adiponectin was

much higher after weight loss with gastric bypass surgery when compared to age-matched

obese controls undergoing the same surgery and matched non-obese controls [23]. Our study

evaluated AT (in contrast to adipocytes) secretion of adiponectin in a relatively large sample

size of both men and women (in contrast to studies limited to women). Due to the influence of

surrounding stromal and inflammatory cells on adipocyte secretions, AT instead of isolated

adipocytes was investigated in this study. In addition, we measured total and visceral adiposity

by DXA scan along with BMI and BMI is not always a good representative of body composi-

tion [24]. We must acknowledge that there are important differences in the various methodol-

ogies used in these studies including the use of RT-PCR or Northern Blot techniques to

Table 3. Associations of adiposity measures with tissue specific adiponectin secretion.

SAT adiponectin secretion VAT adiponectin secretion

Overall Women Men Overall Women Men

BMI 0.08 0.03 0.27 -0.31� -0.40� -0.06

Waist circumference 0.11 -0.09 0.43 -0.35� -0.55���¶ 0.24

Total fat mass/BMI -0.03 -0.10 0.05 -0.45��� -0.57���¶ -0.28

Visceral fat percentage 0.01 -0.06 0.09 -0.36� -0.41� -0.27

BMI: Body mass index SAT: Subcutaneous adipose tissue VAT: Visceral adipose tissue

p-values: � � 0.05 �� � 0.01 ��� � 0.001

Corrected p-value for multiple comparisons for correlations among men and women: ¶ <0.006

https://doi.org/10.1371/journal.pone.0198889.t003
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measure mRNA levels or measurement of adiponectin release into the medium, a method we

chose to use in our studies [20, 25, 26].

Even though the exact mechanisms behind decreased adiponectin secretion from VAT

with increases in BMI have not been elucidated, we can postulate that differences in adipo-

genic potential, hormonal influences, and perhaps gut microbiota may play a role [26–31].

Further exploration of these factors may lead to understanding why VAT secretion of adipo-

nectin decreases with obesity. Understanding these mechanisms will help us understand path-

ogenicity of central adiposity and potential to develop novel treatment options.

Significant gender differences have been noted in total plasma adiponectin levels in previ-

ous studies [32]. Adiponectin concentration is consistently lower in men than in women when

adjusted for BMI and is considered to be due to sex hormones and adiposity distribution [33].

Circulating testosterone levels and testosterone supplementation have been associated with

lower circulating adiponectin levels in in vivo studies of both men and rodents, though direct

influence of sex hormones on adipocytes is less clear [34, 35]. Women have much higher quan-

tities of SAT (gynoid obesity) compared to men and may also explain higher adiponectin levels

especially in women with higher BMI [36, 37]. This sexual dimorphism seems to be not associ-

ated with differing concentrations of estrogens as studies did not show significant differences

in adiponectin levels among pre- and post-menopausal women and women on hormone

replacement therapy [38]. In addition, novel mechanisms involving secreted frizzled-related

proteins (SFRPs) and VAT-derived serine protease inhibitor, serpinA12 (Vaspin) have been

proposed [39]. Although it is unclear why increases in adiposity affect adiponectin secretion

from VAT in women more adversely than men, it may explain greater detrimental conse-

quences of central adiposity and metabolic syndrome in women [40, 41].

There are several strengths to our study including detailed phenotyping of subjects prior to

obtaining AT and the fact that none of the bariatric surgery patients were on 2- week liquid

diet prior to obtaining AT which may affect cellular processes due to acute weight loss prior to

surgery. However, all bariatric surgery patients were asked to follow a low-calorie diet (though

calories were not specified) and that may have affected the results as well. One other weakness

of this study is the limited number of subjects which precluded stratified analyses by comor-

bidities and medication use. Approximately 70% of patients with type 2 diabetes were on treat-

ment (50% on insulin and 50% on either sulphonylureas or metformin or a combination),

however, we were unable to stratify them. We had fewer men compared to women. The popu-

lation in our study had highly diverse BMI, and many of the subjects were obese with only a

small group in the normal BMI category and it is quite possible that the gender differences we

observed were simply due to limited sample size. We also acknowledge that since 40% of our

study population has BMI > 40 Kg/m2, these results may not be applicable to an entirely nor-

mal weight or an overweight population. In addition, this is a cross-sectional study so we are

unable to show any temporal association between adiponectin secretion changes and increases

in BMI. We used DXA scan to measure adiposity and which is not as accurate as magnetic res-

onance imaging (MRI) for measuring fat depots. However, DXA scan was feasible in our pop-

ulation due to some subjects being too large to fit into an MR scanner. We also acknowledge

that we did not assess the effect of clock gene expression on adiponectin secretion from these

samples.

In summary, our results demonstrate differential secretion of adiponectin by VAT and SAT

depots and may explain why circulating adiponectin levels are lower among those with central

adiposity. Conversely, relatively preserved secretion of adiponectin from SAT may explain par-

adoxically higher adiponectin levels in MHO individuals. Since adiponectin is considered car-

dioprotective, elucidating the mechanisms behind these secretory patterns may help develop
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therapeutic strategies aimed at reversing molecular changes that lead to lower adiponectin

secretion from VAT in centrally obese individuals.
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