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ECOLOGY

Eavesdropping on the Arctic: Automated bioacoustics
reveal dynamics in songbird breeding phenology

Ruth Y. Oliver'?*, Daniel P. W. Ellis?, Helen E. Chmura®*'¥, Jesse S. Krause*!, Jonathan H. Pérez?*,
Shannan K. Sweet®, Laura Gough®, John C. Wingfield®, Natalie T. Boelman'>

Bioacoustic networks could vastly expand the coverage of wildlife monitoring to complement satellite observa-
tions of climate and vegetation. This approach would enable global-scale understanding of how climate change
influences phenomena such as migratory timing of avian species. The enormous data sets that autonomous record-
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ers typically generate demand automated analyses that remain largely undeveloped. We devised automated signal
processing and machine learning approaches to estimate dates on which songbird communities arrived at arctic
breeding grounds. Acoustically estimated dates agreed well with those determined via traditional surveys and were
strongly related to the landscape’s snow-free dates. We found that environmental conditions heavily influenced
daily variation in songbird vocal activity, especially before egg laying. Our novel approaches demonstrate that
variation in avian migratory arrival can be detected autonomously. Large-scale deployment of this innovation
in wildlife monitoring would enable the coverage necessary to assess and forecast changes in bird migration in

the face of climate change.

INTRODUCTION

Shifts in phenology across floral and faunal taxa are among the mostly
widely documented biotic responses to global climate change (1).
Migratory birds show strong phenological responses to changing
climate (2), with many populations arriving to their breeding grounds
earlier in association with rising spring temperatures (3). These shifts
can influence their reproductive success (4) and may lead to adapta-
tions to climate change (5). These population-specific and often
local responses, although important for monitoring biotic climate
change impacts, are limited in their ability to provide global-scale
assessments of phenological responses of avian communities to climate
change. Large-scale spatial and temporal heterogeneity in climate
change and taxonomic variability among avian species requires a
global approach (6). The absence of this long-term, global-scale in-
formation hampers understanding of the relative influences of meteo-
rological conditions, extreme events, and modes of climate variability
(for example, El Nifo Southern Oscillation), which is necessary to
identify the avian species, populations, communities, and ecosystems
most vulnerable to projected shifts in climate (7, 8).

To date, wildlife responses to climate change have been measured
using in situ censuses and Global Positioning System (GPS) tracking,
both of which function poorly in monitoring whole avian communities.
In situ censuses provide only point-based information, are conducted
at infrequent snapshots in time and space, primarily due to their
labor-intensive nature, and are subject to large sampling bias be-
cause of limited access to remote areas and observer differences (9).
Although GPS tracking provides dynamic data, tagging remains
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costly, and current tracking units are too large to place on most avian
species (10). Automated bioacoustic recorders offer a more cost-
effective alternative to sample at larger spatial, temporal, and taxonomic
scales (9) but have yet to be widely deployed because bioacoustic data
are complex and, despite significant advances in automated analytical
methods, comprehensive toolsets remain largely undeveloped. Single
recorders provide highly localized information, but recording arrays
are being deployed across landscapes, recording sounds at the land-
scape level, or recording what constitutes a soundscape (11).
Soundscapes are rich in information relating to wildlife abun-
dance, community assemblage, behavior, and communication [for
example, (12-15)]. As such, the use of bioacoustics to answer ecological
questions has been increasing steadily (9). Many methodological
papers have focused on comparing tallies of species presence/absence
determined by experts listening to acoustic recordings versus tradi-
tional field surveys [for example, (16)]. Other studies use acoustic
data to test ecological hypotheses, relying on listener input from trained
experts to identify species from recordings [for example, (17)]. Al-
though listening to recorded data has proven a valuable technique
(9), recorders typically generate enormous data sets too large to listen
to. Considerable effort has gone into automating the extraction of
bioacoustic information from large volumes of recorded data for use
in ecological studies. For example, researchers developed automated
signal processing and machine learning techniques to identify species-
specific vocalizations with great success in the study of marine mam-
mals [for example, (18)], elephants [for example, (19)], and nocturnal
avian migration [for example, (20)]. Although valuable, these tech-
niques are fine-tuned to individual species of interest (20), which nar-
rows their broad application. Further, these approaches often rely on
recordings with limited background noise—a condition atypical of
soundscape-level recordings (20, 21). Other studies sidestep the direct
identification of vocalizations and examine community-level dynamics
through various “acoustic indices” [for example, (22-25)]. This ap-
proach has proven powerful because acoustic indices are relatively
straightforward to calculate and rapidly synthesize complex soundscapes.
We took a novel approach to analyzing bioacoustic data by lever-
aging signal processing and machine learning techniques—borrowed
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Fig. 1. Outline of bioacoustic methodology. We present two analytical approaches, supervised and unsupervised classifications. Both approaches rely on the same initial
statistical characterization of the acoustic data set to identify songbird vocalizations, regardless of species. The supervised approach used a linear classifier to classify every 4-s
segment of the data set for the presence/absence of songbird vocalizations, trained on a subset of listener-determined scores (<1% of data set). We used the proportion of
segments per day containing songbird vocalizations as a relative score, referred to as the VAI. We estimated the arrival dates as the first date that exceeded 50% of the maximum
value of the VAI. The unsupervised approach used a series of signal processing and machine learning techniques to cluster the acoustic data into potential physical sources (for
example, vocalizations, wind, and trucks) without training from listener input. Because the number of physical sources is not known a priori, we initially clustered the data into
100 clusters. We then performed principal components analysis on the histograms of cluster assignments to reduce data to 20 dimensions. We estimated the arrival dates as
the optimal segmentation boundary in principal components, as measured by the fit of Gaussian distributions on either side of the boundary (see the Supplementary Materials).
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from human speech recognition applications—to develop automated
monitoring of migratory songbird communities breeding in arctic
Alaska. Specifically, we quantified spatiotemporal dynamics in vocal
activity and estimated the date on which songbird communities ar-
rived to their breeding grounds in each of five consecutive springs.

RESULTS AND DISCUSSION

Quantifying songbird community vocal activity

We programmed autonomous acoustic recorders to collect 1200 hours
of soundscape-level data on a subdaily basis, over 30 consecutive
days during the springs of 2010 through 2014, at four sites in the
vicinity of Toolik Field Station (TLFS), Alaska (fig. S1) (see the Sup-
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plementary Materials). We explored both supervised (includes listener
input) and unsupervised (no listener input) classification approaches
(Fig. 1) to build seasonal time series of daily avian vocal activity
(Fig. 2). The supervised classification yielded a score of the relative
proportion of segments containing songbird vocalizations each day—
the Vocal Activity Index (VAI)—which agreed well with our listener-
generated scores [R? = 0.65, root mean square error (RMSE) = 0.19]
(fig. S2). The unsupervised classification yielded a weighted sum of
principal components that were strongly related to results from the
supervised approach (R*>=0.7, RMSE = 0.11) (fig. S2). Time series
generated by both approaches showed substantial variation in the
songbird community vocal activity levels among days, weeks, years,
and recording sites (Fig. 2 and figs. S3 to S5).
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Fig. 2. Songbird community vocal activity estimated by supervised and unsupervised approaches. (A to E) Songbird daily VAI, snow cover (blue), and air temperature
(red) near TLFS between 2010 and 2014. (F to J) Weighted sums of the first five principal components at the same site and time. Gray boxes identify the available recording
period for acoustic data. Daily VAl and weighted sums for the entire data set at all field sites can be found in the Supplementary Materials (figs. S3 to S5).
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Influence of environmental conditions and breeding
phenology on vocal activity

We found that daily fluctuations in snow cover, air temperature,
wind speed, atmospheric pressure, and precipitation had a significant
impact on the VAT and explained a large proportion of variance (R* =
0.52 £ 0.06) (Fig. 3 and fig. S6). Our acoustically derived findings
agree with previous in situ work showing that breeding songbirds
require snow-free patches of tundra to supply critical food and shelter
(26-28), while cold conditions exacerbate the high energetic costs
associated with singing (29, 30), suggesting that songbirds are either
absent or silent during unfavorable conditions.

We found that the VAI was more strongly influenced by environ-
mental conditions before egg laying dates, rather than by conditions
after egg laying, for two of the most abundant songbird species in the
region—Lapland longspurs (Calcarius lapponicus) and Gambel’s white-
crowned sparrows (Zonotrichia leucophrys gambelii) (R* = 0.62 + 0.07
versus 0.21 + 0.08, respectively; P < 0.1). We attribute this pattern to the
fact that vocal activity changes with male pairing status and breed-
ing phenology, with singing decreasing markedly after egg laying (31).
Our findings demonstrate that the correct interpretation of avian vocal
activity to estimate relative songbird abundance requires pairing of
acoustic data collection with meteorological data, as well as consider-
ation of the study communities’ breeding phenology. This analytical
need could be partially realized by leveraging existing environmental
monitoring networks [for example, National Science Foundation’s
Arctic Observing Network (AON), National Ecological Observing

Network, and Long Term Ecological Research network], which could
be expanded to include and power microphone and recording arrays.

Songbird community arrival dates

Across our five study years, acoustically derived estimates of arrival
dates were strongly related to those determined via traditional avian
surveys of two of the most locally abundant species (supervised: RMSE,
3.02 days; unsupervised: RMSE, 1.88 days) (Fig. 4 and fig. S7). This
success derives from the fact that migratory songbirds vocalize in-
tensely soon after they arrive to suitable breeding territories because
of the immense pressure to initiate breeding in the Arctic (26). To
assess the accuracy of our acoustically derived arrival date estimates,
we compared them to an alternative method to estimate arrival timing
based on traditional avian surveys. Differences in arrival estimates
between these two methods may be due, in part, to the fact that acoustic
sensors were able to sample more frequently than human observers.
However, the inability of bioacoustic methods to distinguish absence
from silence limits their accuracy. Using multiple techniques in tandem
could help quantify uncertainty in available methods in the short
term and inform interpretation of results. This approach is particularly
important for assessing variability and trends in songbird phenology
in light of global climate change.

Further, in each study year, acoustically derived arrival dates dif-
fered among our four recording sites, which were spread along a
70-km transect, with the earliest arrivals occurring at the southernmost
site in almost all cases. Relative to other study years, in 2013 [a spring
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Fig. 3. Influence of environmental conditions and breeding phenology on a songbird community vocal activity. Proportion of variance in the VAl explained by
environmental covariates, as determined by linear models. To identify environmental covariates that were significantly predictive (P < 0.1) of the VAI, we used stepwise
regression with backward variable selection based on a F test to build linear models for each recording period independently. We also built single-variable linear models
with each environmental covariate in isolation. We built the same suite of linear models for the period before and after egg laying dates for the two most abundant
songbird species. Points represent mean R? (across sites and years) + SE. Black circles indicate linear models built with data over the entire 30-day study period. Red triangles
and blue squares indicate linear models built considering the period before and after the mean egg laying dates, respectively.
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Fig. 4. Acoustically derived estimates of songbird arrival to breeding grounds
and relationship to snow-free dates. (A) Songbird community mean arrival dates to
their breeding grounds near TLFS, Alaska over a 5-year period (2010-2014) using
supervised and unsupervised bioacoustic approaches compared to traditional avian
surveys. SE bars reflect averages across four recording sites for acoustically derived
estimates. (B) Songbird community arrival dates for at each site over a 5-year period
(2010-2014) estimated from supervised and unsupervised bioacoustics approaches
compared to the date on which the landscape surrounding the recording unit fell
below 10% snow coverage.

characterized by persistent snow cover and cold temperatures (28, 30)],
our bioacoustic approaches identified a 1- to 9-day delay in the ar-
rival of songbird communities to their breeding grounds (Fig. 4). In
addition, using our supervised approach (R* = 0.59, P < 0.01) inter-
annual and spatial differences in arrival dates were strongly related
to the date on which the landscape surrounding each microphone
became snow-free (that is, snow cover of <10%) (Fig. 4). The relation-
ship between snow-free and arrival dates for the unsupervised approach
was relatively weak (R> = 0.13, P = 0.15), suggesting that the unsuper-
vised approach is less sensitive to small variations in snow-free dates
than the supervised approach. This disparity is most likely due to meth-
odological differences in estimating arrival dates between the super-
vised and unsupervised approaches. Arrival date estimates from the
supervised approach are based solely on the VAL, whereas the unsuper-
vised approach estimates arrival by incorporating information from
other acoustic sources, which may dampen the seasonal transition in
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songbird vocal activity (for more information, see Materials and
Methods). Our results suggest that, while both bioacoustic methods
successfully estimated large differences in arrival dates, the super-
vised approach may be superior to the unsupervised approach in
estimating arrival timing in response to small spatiotemporal differ-
ences or changes in snow melt timing resulting from climate change.
Again, quantifying error associated with arrival estimates by com-
paring alternate methods could improve our ability to assess trends
related to global change.

Millions of songbirds migrate each spring to breed in the Arctic
(32). Although the onset of spring migration is cued by photoperiod
(33), arrival and settlement are influenced by environmental condi-
tions en route and on breeding grounds (28, 30, 34). Shifts in the
arrival of spring due to climate change may be spatially heteroge-
neous along migratory routes (35). While traditional avian surveys
as far back as the 19th century [for example, (36)] have used timing
of the onset of singing to estimate dates of migratory species’ arrival
to breeding grounds, efforts to extract arrival timing from digital
acoustic data sets have been rare [for example, (37)]. We contend that
arctic ecosystems in particular merit autonomous methods of data
collection because they are changing rapidly and are vast, remote re-
gions that are difficult to survey (38). Climate impacts on arrival timing,
which may influence breeding success, could reverberate globally,
as Arctic-breeding songbirds perform important ecosystem services
worldwide (39).

CONCLUSIONS

The direct application of our automated analytical approaches to
monitoring avian phenology may be possible in other ecosystems and
for the study of other vocal taxa (for example, insect or amphibian
species). Our unsupervised approach is likely to work best in eco-
systems with similar high seasonality in vocal activity, such as along
migratory stopovers or in other ecosystems with strong seasonality
in environmental conditions. Our supervised approach can be easily
calibrated for other ecosystems and species via some initial listener
input and training. Automated bioacoustic networks present an ad-
vantage over traditional surveys because they can be deployed to
sample more economically over longer periods and in more remote
areas and they preserve a long-term observational data set that can
be reanalyzed and thus reduce observer biases (9). Our success demon-
strates that automated bioacoustic networks are well poised to integrate
with ground-based and remotely sensed observations of environmen-
tal conditions and vegetation to enhance understanding of how climate
influences phenological responses of wildlife that uses vocal forms of
signaling and communication such as birds, amphibians, social mam-
mals, insects, and many other species.

MATERIALS AND METHODS
Study design
This study was focused on four research sites in the foothills of the
Brooks Range, Alaska (68°38'N, 149°34'W; elevation, 760 m) in a
35-km radius of TLFS (fig. S1). Data were collected over a 5-year
period (2010-2014) at Roche Moutonee Creek (ROMO), Imnavait
Creek (IMVT), TLFS, and Sagavanirktok Department of Transporta-
tion (SDOT). For a full description of sites, see (40).

Although the acoustic analyses presented in this study did not
discriminate between species, we did compare our results to traditional

50f9



SCIENCE ADVANCES | RESEARCH ARTICLE

avian surveys of the two most abundant species in our study region.
Lapland longspurs (C. lapponicus) and Gambel’s white-crowned
sparrows (Z. leucophrys gambelii) are both long-distance migratory
passerines, which winter in the contiguous United States (33, 41)
and migrate to breed in northern Alaska (32, 40) where they capitalize
on the brief but large pulse of food resources and the relatively low pred-
atory risk that Arctic summers offer as compared to more southern
ecosystems (32, 41, 42). Typically, arrival occurs in early to mid-May
(26, 28). Arrival timing is of critical importance to Arctic-breeding
birds who must quickly initiate clutches and complete their breeding
cycles before winter’s onset (~90 days) and ensure that their young
hatch at the peak of nutritious arthropod biomass (3, 43).

Automated collection of landscape-level acoustic data
Acoustic recordings were taken over five breeding seasons (2010-
2014) between early May and mid/late June of each study year, thereby
including the arrival, territory establishment, and clutch initiation
of our two focal species (28). Thirty-minute recordings were made
four times daily (2:00, 6:00, 9:00, and 21:00) to capture diurnal varia-
tion in vocal activity. Recordings were made using a digital audio
recorder (722, Sound Devices LLC) and two microphones (MKH-30
and MKH-40, Sennheiser Electronic GmbH and Co. KG) at a 48-kHz
sample rate. The acoustic data set contained 1200 hours of recordings
capturing sounds from a range of typical local sources including rain,
wind, truck traffic along the nearby Dalton Highway, mosquitoes,
and a variety of bird species.

Traditional avian surveys

The dates of mean arrival of Lapland longspurs and Gambel’s white-
crowned sparrows to the study region were determined by the mean
date on which individuals were captured in mist nests at the four
sites in 2011-2014. No Lapland longspurs were captured in 2010, so
the mean arrival date was determined from road surveys in that year.
The date of mean arrival of the songbird community to the region
was determined by calculating the mean between species and sites.
The mean dates of egg laying for all located nests of each species
were determined on the basis of observations of egg laying, hatching,
and fledging in 2011-2014. The mean date of egg laying of the song-
bird community was determined by calculating the mean dates be-
tween species for each year. For full details, see (28).

Environmental data collection

Air temperature, precipitation, atmospheric pressure, and wind speed
data at ROMO and SDOT were collected. Environmental data for
TLES and IMVT were downloaded from the Environmental Data
Center (2014) at TLFS and Imnavait AON Tussock Site, respectively.
Snow cover was determined as the percentage of ground covered by
snow in automated photographs. Snow cover data were only collected
at two study sites (ROMO and TLEFS) in 2010. For full details, see (28).

Acoustic analysis overview

Our primary objectives were to (i) estimate the arrival date of the
songbird community to their arctic breeding grounds in each of our
five study years and (ii) determine the influence of both environ-
mental conditions and songbird phenology on estimates of song-
bird vocalizations through the breeding season. We presented two
analytical approaches, supervised (includes listener input) and un-
supervised classifications (no listener input), using a data set col-
lected at subdaily intervals over five consecutive breeding seasons
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(Fig. 1). Both approaches relied on the same initial statistical char-
acterization of the acoustic data set to identify the presence of song-
bird vocalization, regardless of species.

The supervised classification approach used a linear classifier, trained
on a subset of listener-determined presence/absence of songbird
vocalizations, to classify every 4-s segment of the data set for the
presence/absence of songbird vocalizations. The proportion of seg-
ments per day containing songbird vocalizations was then used as a
relative measure of daily songbird vocal activity, referred to as the
VAL The performance of the classifier was assessed by the relation-
ship between the VAI and the training data set (fig. S2). Daily time
series of VAI was created for each recording site and study year
(Fig. 2 and figs. S3 to S5). To understand and interpret daily varia-
tion the VAI, we used linear models to quantify relationships be-
tween the VAI and local environmental conditions and how these
relationships change based on songbird breeding phenology (Fig. 3
and fig. S6). Finally, we used the VAI to estimate the arrival date of
songbirds to their breeding grounds in each study year and com-
pared these estimates to avian surveys conducted concurrently with
acoustic recordings (Fig. 4).

In contrast, the unsupervised classification approach used a se-
ries of signal processing techniques and machine learning algorithms
to cluster the acoustic data into potential physical sources (for ex-
ample, bird vocalizations, wind, and trucks on the nearby Dalton
Highway) without any training from listener input. Because the
number of physical sources, and thus clusters, was not known a priori,
we initially clustered the data into 100 clusters and calculated the
proportion of recording segments that fell into each cluster. We
then performed principal components analysis on the cluster as-
signment histograms to reduce the cluster assignment histograms
to 20 dimensions. To identify the principal components that con-
tained information about songbird vocalizations, we quantified the
relationship between the principal components, added in succession,
and the VAI (fig. S2). This approach resulted in a time series of song-
bird vocalizations, as determined by a weighted sum of the first five
principal components (Fig. 2 and figs. S3 to S5). Independent of this
procedure, we used the transition in acoustic sources, as measured
by the first 20 principal components, over time to estimate arrival
date of songbirds in each study year by finding the optimal bound-
ary and compared these estimates to avian surveys (Fig. 4).

Statistical characterization to determine the presence/
absence of songbird vocalizations

To identify the presence of songbird vocalizations, regardless of species,
we segmented the acoustic data set into 4-s segments (the typical du-
ration of a songbird vocalization phrase) with 2 s between consecutive
clips. Each 30-min recording contributed 898 4-s segments, and thus a
30-day period at a single recording site amounted to more than 100,000
segments. Each 4-s segment was described by a set of 54 statistical
texture features known to be important for human auditory recog-
nition: mean, variance, and sub-band entropy within auditory-
scaled frequency bands (44). The lowest five frequency bands (0 to
630 Hz) were excluded from the analysis because songbird vocaliza-
tions are not produced at these frequencies.

Identifying songbird vocalizations

Supervised classification

We used linear discriminant analysis to develop a linear classifier to
determine the presence/absence of songbird vocalizations in each
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segment based on their associated texture features. The linear clas-
sifier was trained using a random subset of recording segments
manually scored for the presence/absence of songbird vocalizations
based on listener input. The training data set consisted of 6000 ex-
ample segments (<1% of the total data set).

A hyperplane was fit to the training data set to separate the two
classes (presence/absence of songbird vocalizations) based on their
texture features. A receiver operating characteristic curve was used
to investigate the performance of the classifier as the decision
threshold was varied and to find the area under the curve, a measure
of the classifier’s performance above random classification. The
classifier’s decision threshold was adjusted to the equal area rate,
where the true-positive rate and true-negative rate are equal. The
resulting classifier was used to classify the entire acoustic data set
for the presence/absence of songbird vocalizations. Calculating the
proportion of 4-s segments per day containing songbird vocaliza-
tions gave a score of relative vocal activity, the VAL The VAI ranges
from 0 to 1, where 0 represents no songbird vocalizations in any
segments recorded in a day, and 1 means that all segments con-
tained vocalizations.

The performance of the classifier was assessed by comparing the
proportion of segments containing songbird vocalizations in a 30-min
recording, as determined by the classifier and by listening. The
closeness of fit to a linear relationship was quantified with a linear
regression. The difference between the values from the classification
output and the manual listening was measured as the RMSE. Although
each 4-s segment was scored for the presence/absence of songbird
vocalization, for the remaining analysis, we reduced the temporal
resolution to a daily VAL
Unsupervised classification
To identify 4-s segments with similar acoustic characteristics with-
out listener input, we used vector quantization to cluster segments
based on their associated texture features for each 30-day recording
period independently. Vector quantization reduced multidimensional
data by grouping neighboring vectors, in this case, texture features,
to a predefined number of prototype vector codewords or clusters
(45, 46). A codebook of 100 characteristic vectors was trained using
10,000 randomly selected texture feature vectors from each 30-day
recording period. The training vectors were grouped using the
K-means clustering algorithm, which iteratively updates the location
of the codeword vectors until the average Euclidean distance to the
associated training vectors falls below a predetermined threshold
(46). The entire 30-day recording period was then quantized into
the 100 codewords by minimizing the Euclidean distance of each
4-s segment’s texture feature vector to the codewords. This associated
each 4-s segment with a codeword. The codeword assignments of
the entire data set were summarized by histograms of codeword as-
signments over 100 4-s segments (approximately 10 min).

The codeword histograms were reduced through principal com-
ponents analysis via singular value decomposition, which lowered
the dimensionality of a data set by finding the optimal subspace, based
on minimizing the sum of the square perpendicular distances of the
given set of points to the subspace (47). Principal components analysis
was performed for each 30-day recording period independently. On
average, the first 20 principal components explained 72% of the
variability in the codeword data sets; we thus restricted each 30-day
period to the first 20 principal components.

To investigate the relationship of the resulting principal compo-
nents to the presence of songbird vocalizations, we compared their
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scores to the VAL To match the temporal resolution of the VAI,
principal component scores were averaged to give mean daily scores.
A series of linear models were used to quantify the relationship be-
tween the VAI and the principal components added in succession
for each 30-day recording period independently. For example, the
VAI of each 30-day recording period was predicted by linear models
based on the following: (i) the first principal component’s scores,
(ii) the first two principal components’ scores, etc. The mean and
SE of R* values were found for model input configuration replicates
across study years and sites. The appropriate number of principal
components to use in a time series of songbird vocalizations was
considered the first combination that, on average, explained 70% of
the variance in the VAL The fitted values from the multivariable
models were used to generate a time series of the weighted sum of
the selected principal components. The ability of the weighted sum
of principal components to replicate the VAI was measured by the
RMSE.

Arrival date estimation

Supervised classification

Arrival date of the bulk of the songbird community breeding in the
vicinity of our four recording sites was calculated as the first recording
date on which a given site’s VAI exceeded 50% of its maximum value
for that year. The sensitivity of arrival date estimates to thresholds
ranging from 30 to 70% was investigated.

Unsupervised classification

The songbird community arrival date was estimated by analyzing
scores of the first 20 principal components over time and finding
the optimal segmentation boundary at each site for each year. We
constrained our analysis to the time period before May 25th because
songbirds are known to arrive to our study site in this time window
(26, 28). Despite identifying the principal components that were strongly
related to the VAI, and thus songbird vocalization, we included the
first 20 principal components in this portion of the analysis to de-
velop an arrival date estimation procedure that is independent of any
listener input.

The optimal segmentation boundary in the principal components
scores was found using a Bayesian Information Criterion (BIC)-
based algorithm, a common approach to segmenting audio informa-
tion (48). Our BIC segmentation tested all possible segmentation
boundaries up to May 25th by fitting Gaussian mixture models on
either side of the boundary. Boundary placements were scored by
the sum of the negative log of the likelihoods of the associated models.
We considered the optimal boundary placement to be that which
minimized the score criterion. Songbird community arrival date was
estimated as the date of the optimal segmentation boundary.

To validate both the supervised and unsupervised classification
approaches to estimating the songbird community arrival date, we
averaged arrival date estimates among recording sites for each year
and compared them to avian survey estimates conducted concurrently
(although at a coarser spatial resolution; see “T'raditional avian sur-
veys” section). The RMSE was used to quantify the ability of both
classification approaches to replicate survey estimates.

The influence of environmental conditions and songbird
phenology on VAI

Relationships between the VAI and environmental conditions were
investigated at each site and year (20 replicates) with linear models.
To identify which covariates were significantly predictive of the
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VAL we used stepwise regression with backward variable selection.
Multivariable linear models were built for each 30-day recording
period independently with the following suite of environmental co-
variates as predictor variables: snow cover, temperature, wind speed,
atmospheric pressure, and precipitation. Predictor variables were
iteratively removed by the following procedure: (i) generating a linear
model using all available environmental covariates, (ii) performing
a F test, and (iii) eliminating variables one at a time that were not
statistically significant (P < 0.1). This procedure was repeated until
only the environmental covariates that had a statistically significant
linear relationship to the VAI remained. Models for 2010 at the SDOT
and IMVT sites did not include snow cover as a potential covariate
because data were not available (see “Environmental data collection”
section).

Linear models were built for each of the 20 (four sites, 5 years)
30-day recording periods using only the environmental covariate(s)
determined to be statistically significant, hereafter referred to as sig-
nificant multivariable models. Linear models were also built for each
30-day period between VAI and each environmental covariate in
isolation, hereafter referred to as single-variable models.

Songbirds’ propensity to vocalize is known to change through-
out their breeding season—with higher levels of singing when indi-
viduals are searching for mates and lower levels after clutches are
initiated (31). We explored how relationships between the VAI and
environmental conditions changed on the basis of songbird phenology.
The 30-day recording periods were segmented on the basis of the mean
clutch initiation date for Lapland longspurs and white-crowned
sparrows, as determined by avian surveys (see “Traditional avian
surveys” section). The same suite of significant multivariable and
single-variable linear models, described above, was constructed for
the time window before clutch initiation (on average, 22 days) and
the time window following clutch initiation (on average, 8 days).
This analysis was only performed for the years 2011-2014 because
clutch initiation dates were not available for 2010 (see “Traditional
avian surveys” section).

The proportion of variance (R*) explained by the predictor variables
was found for each model. The mean and SE of R” values were found
for model input configuration replicates. Two-sample ¢ tests of mean
R? values were performed to compare model input configurations.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/4/6/eaaq1084/DC1

Supplementary Text

fig. S1. Map of Alaska (inset) and TLFS with approximate locations of acoustic recording units.
fig. S2. Performance of supervised and unsupervised classification approaches.

fig. $3. Songbird community vocal activity estimated by supervised and unsupervised
approaches near IMVT.

fig. S4. Songbird community vocal activity estimated by supervised and unsupervised
approaches near ROMO.

fig. S5. Songbird community vocal activity estimated by supervised and unsupervised
approaches near SDOT.

fig. S6. Comparison of the VAI to linear model predictions using only environmental covariates
found to be statistically significant.

fig. S7. Threshold sensitivity of arrival date estimates from supervised approach.
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