Skip to main content
. 2018 Jun 14;12:46. doi: 10.3389/fncom.2018.00046

Figure 4.

Figure 4

(A) Visualization of the preferred features learned in the different layers of the network. For the first layer, the preferred feature corresponds simply to the weight kernel. We can see that this layer learns filter patches which detect local contrast differences. The higher layer features are constructed by choosing for each neuron in the feature map the feature in the lower layer to which it has the maximum average connection strength. Note that due to the overlapping nature of the weight kernel of each position, the features have a somehow translational invariant appearance. As we can see for the second convolutional layer, the neurons become sensitive to parts of digits. Finally, in the fully connected layer, each neuron has learned a highly class specific version of a particular digit (digits 0–9 from left to right). (B) Weight distribution for the different layers of the network. Most weights converge to 1 or 0. In the higher layers, the weights become increasingly sparse.