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Abstract
Understanding intraspecific relationships between genetic and functional diversity is 
a major goal in the field of evolutionary biology and is important for conserving bio-
diversity. Linking intraspecific molecular patterns of plants to ecological pressures 
and trait variation remains difficult due to environment-driven plasticity. Next-
generation sequencing, untargeted liquid chromatography–mass spectrometry (LC-
MS) profiling, and interdisciplinary approaches integrating population genomics, 
metabolomics, and community ecology permit novel strategies to tackle this prob-
lem. We analyzed six natural populations of the disease-threatened Cornus florida L. 
from distinct ecological regions using genotype-by-sequencing markers and LC-MS-
based untargeted metabolite profiling. We tested the hypothesis that higher genetic 
diversity in C. florida yielded higher chemical diversity and less disease susceptibility 
(screening hypothesis), and we also determined whether genetically similar subpopu-
lations were similar in chemical composition. Most importantly, we identified me-
tabolites that were associated with candidate loci or were predictive biomarkers of 
healthy or diseased plants after controlling for environment. Subpopulation cluster-
ing patterns based on genetic or chemical distances were largely congruent. While 
differences in genetic diversity were small among subpopulations, we did observe 
notable similarities in patterns between subpopulation averages of rarefied-allelic 
and chemical richness. More specifically, we found that the most abundant com-
pound of a correlated group of putative terpenoid glycosides and derivatives was 
correlated with tree health when considering chemodiversity. Random forest bio-
marker and genomewide association tests suggested that this putative iridoid gluco-
side and other closely associated chemical features were correlated to SNPs under 
selection.
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1  | INTRODUC TION

Plant secondary metabolites are closely tied to ecological functions 
and greatly affect community interactions (Dixon & Paiva, 1995; 
Moore, Andrew, Külheim, & Foley, 2014). Certain secondary metab-
olites may provide plants with specialized functions like deterrence 
to herbivory or infection (Harborne & Turner, 1984). Identifying the 
genetic basis of secondary compounds for such functions is of in-
terest to the field of evolutionary ecology. Even small changes in 
genetic diversity may yield exceptionally large changes in second-
ary metabolism—producing novel molecules with often unknown 
biological activity (Firn & Jones, 2000). While specific compound 
classes such as iridoids, phenolics, and tannins are often the basis of 
study for ecological function in plants (Sardans, Peñuelas, & Rivas-
Ubach, 2011), secondary metabolite diversity as a trait, or chemo-
type, represents a special dimension of biodiversity important to 
natural and managed ecosystems (Bustos-Segura et al., 2017). In 
contrast to the research presented in this article, few studies have 
evaluated broader relationships between chemical diversity and ge-
netic diversity within species (focusing on the diversity of chemical 
compound composition among individuals in a population) while ex-
amining a select group of metabolites diagnostic of health versus 
disease (otherwise known as biomarkers) and associated with SNPs 
under selection. Recent innovations in next-generation sequenc-
ing coupled with untargeted chemical profiling provide unique op-
portunities to examine these relationships in plant systems (Eckert 
et al., 2012; Gomez-Casati, Zanor, & Busi, 2013; Raguso et al., 2015; 
Riedelsheimer et al., 2012). Integrating next-generation sequencing 
technologies with population genomics and community ecology 
permits identification of chemical compounds and associated SNPs 
related to disease resistance or other ecologically functional traits.

Secondary metabolite richness and relative abundance of chemi-
cals within individuals—a chemotype referred to as chemodiversity—
are informative yet understudied metabolome properties helpful for 
understanding evolutionary and ecological processes (Hilker, 2014; 
Kellerman, Dittmar, Kothawala, & Tranvik, 2014). Promising work 
has investigated broader patterns of natural metabolome variation 
in the context of natural genetic variation, but most analyses of vari-
ation in chemical diversity focus on distance-based measures versus 
explicit measurement of chemical richness. For example, significant 
correlations between metabolic and genetic distances were de-
tected in nine Arabidopsis thaliana accessions exposed to different 
environments (Houshyani et al., 2012). In a second example, mul-
tigenerational lines inbred from different Drosophila melanogaster 
populations were found to remain distinguishable in general lipid 
composition, and approximately one-fifth of the lipid compounds 
had clear concentration differences between male and female gen-
otypes (Scheitz, Guo, Early, Harshman, & Clark, 2013). More recent 
studies of environmental and bud–leaf metabolome analyses of Pinus 
pinaster (ten European provenances in common garden) revealed 
two groups of individuals corresponding to spatially distinct regions 
(Meijón et al., 2016). All these studies used distance measures based 
on a reduced dimensionality of abundance differences for targeted 

compounds instead of explicitly calculating and comparing diversity 
indices (Appendix S1), which account for both chemical compounds’ 
presence–absence and relative abundances within each sample.

Studies employing diversity indices of broad chemical profiling 
are rare (Hilker, 2014), possibly due to previous aversion to adapt-
ing such indices outside of community ecology (Hurlbert, 1971). 
However, initial trepidations regarding usage of these indices are 
now being addressed with cautious interpretation of chemical di-
versity indices (Morris et al., 2014). Additional studies that integrate 
advancements in untargeted metabolomics (Alonso, Marsal, & Julià, 
2015; Yi et al., 2016) and population-landscape genomics (Anderson, 
Willis, & Mitchell-Olds, 2011; Sork et al., 2013) with adoption of 
these chemical diversity indices would further demonstrate the 
power of this correlative approach to illustrate how genetics (i.e., 
locally adapted genes) and plant functional diversity (i.e., chemo-
diversity) influence plant health, after controlling for environment 
analytically.

We use a multidisciplinary approach to characterize and evaluate 
how properties of genetic diversity and chemodiversity contribute 
to susceptibility or resistance to disease in Cornus florida (L.), the 
flowering dogwood tree. In addition, we have applied exploratory 
analyses to winnow an untargeted list of metabolites down to a se-
lect group of potential antimicrobial compounds—closely resembling 
compounds previously observed in dogwoods (He, Peng, Hamann, & 
West, 2014; Stermitz & Krull, 1998; Yue et al., 2006). The species it-
self occurs naturally throughout much of eastern North America and 
is ecologically important partly because of calcium it delivers to food 
chains in deciduous forests (Baird, 1980; Blair, 1982; Borer, Sapp, & 
Hutchinson, 2013; Holzmueller, Jose, Jenkins, Camp, & Long, 2006; 
Linzey & Brecht, 2003; Lovenshimer & Frick-Ruppert, 2013). In ad-
dition, the plant is a cultural icon, serves as the emblem of three 
southern US states (Jordan, 2010), and is valued in the horticulture 
industry at 30 million dollars in annual sales (NASS USDA, 2007 
Census of Agriculture). In the past three decades, C. florida popu-
lations have experienced major declines in health due to the intro-
duction of a fungal pathogen (Discula destructiva) to North America 
(Miller, Masuya, Zhang, Walsh, & Zhang, 2016), the causal agent of 
dogwood anthracnose (Redlin, 1991). Northern and mountain pop-
ulations have been hardest affected with up to 98% mortality oc-
curring in monitored stands (Hiers & Evans, 1997; Jenkins & White, 
2002; McEwan, Muller, Arthur, & Housman, 2000; Rossell, Rossell, 
Hining, & Anderson, 2001; Sherald, Stidham, Hadidian, & Hoeldtke, 
1996; Williams & Moriarity, 1999). As dogwood anthracnose dis-
ease progresses southward along the Appalachian Mountains, pop-
ulations of C. florida continue to decline (Jones, Smith, & Twardus, 
2012). Whether or not the range of dogwood anthracnose (Figure 1) 
will expand to the southeast overtime is uncertain. Understanding 
the adaptive mechanisms in C. florida that may possibly limit the 
spread of disease will be important in the conservation of the spe-
cies. Iridoid glycosides in particular are highly abundant in Cornelian 
taxa and have been noted to play roles in plant defense and disease 
resistance (Stermitz & Krull, 1998; Yue et al., 2006) in addition to 
various phenolic and tannin compounds (Dudt & Shure, 1993). In this 
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work, we integrated evidence from multivariate analyses of flower-
ing dogwood tree metabolomes, reduced genome sequences from 
genotype by sequencing (Pais, Whetten, & Xiang, 2016; Peterson, 
Weber, Kay, Fisher, & Hoekstra, 2012), and environmental data 
(model controls) to address the following questions: (1) What is the 
relationship between genetic diversity and chemodiversity? (2) Is 
there evidence from candidate SNPs and metabolites for local ad-
aptation, and are there particular chemical biomarkers such as iri-
doid glycosides associated with either diseased or healthy plants? (3) 
Likewise, do healthier plants exhibit greater chemodiversity?

2  | MATERIAL S AND METHODS

2.1 | Plant material

Natural populations of C. florida were sampled from the moun-
tain, Piedmont, and Coastal Plain regions of North Carolina during 
the summer of 2012 (Pais et al., 2016). Each region contained two 

populations, and each population consisted of one or two collection 
sites, or subpopulations, of 30–15 individual trees, respectively, for a 
total of 180 mature and unique trees. Leaves were dried and stored 
in silica gel under standardized conditions. All samples were given an 
extended period to dry before extracting thermally stable metabo-
lites from leaves.

2.2 | Metabolite extraction

Metabolites were extracted following a modified protocol of Strauch, 
Svedin, Dilkes, Chapple, and Li (2015). For each tree, extraction ma-
terial (20 mg) was selected from all sampled leaf tissue visibly free 
of mold or necrosis to minimize the chances of sampling metabolites 
that were unique to fungi, altered or degraded during collection. 
During the drying period, eight samples developed mold growth, 
which prohibited their use for metabolic study—leaving 172 remain-
ing samples. Leaf tissue was ground with liquid nitrogen in a Retsch 
MM 400 oscillating mill for one min at 25 Hz. After grinding, two 

F IGURE  1 Subset of collections from 
broader study of C. florida (top) applied 
to metabolic study of chemical diversity 
in North Carolinian populations (bottom). 
Red counties have known incidence 
of dogwood anthracnose disease. For 
subset of populations sampled in this 
study, differences in mean monthly 
rainfall, length of growing period, soil 
type, and county occurrence of dogwood 
anthracnose are visualized to demonstrate 
the heterogeneity in environment that 
exists among the mountain, Piedmont, 
and Coastal Plain ecoregions of North 
Carolina



5622  |     PAIS et al.

ml of 50% methanol was immediately applied to samples. Samples 
were then incubated in a water bath for 30 min at 60°C and allowed 
to cool one hour at 4°C to minimize potential precipitate (soluble in 
warm solution) from being transferred to final vials. After centrifug-
ing for one min, remaining supernatant was transferred to a new vial 
via a filtered syringe tube.

2.3 | Untargeted metabolite profiling

Untargeted metabolite profiling was performed on a G6530A Q-TOF 
LC-MS system (Agilent Technologies, Santa Clara, CA). Five microlit-
ers of leaf extract was injected onto an Agilent ZORBAX Eclipse Plus 
C18 column (3 × 100 mm, 1.8 μm). Metabolites were separated using 
a binary gradient of solvent A (0.1% formic acid in water) and solvent 
B (0.1% formic acid in acetonitrile) at a flow rate of 0.6/ml/min. The 
elution gradient started with a one-min hold at 2% B, followed by 
ramping up to 45% B over 16 min, and then was increased to 90% 
B in one min and held at 90% B for 2.5 min. The acquisition of mass 
spectra was performed in negative mode for a m/z range from 100 
to 1,600, with the following parameters: drying gas temperature, 
300°C; drying gas flow rate, 7.0 L/min; nebulizer pressure, 40 psi; 
sheath gas temperature, 350°C; sheath gas flow rate, 10.0 L/min; 
Vcap, 3,500 V; nozzle voltage, 500 V; fragmentor, 150 V; skimmer, 
65 V; OctopoleRFPeak, 750 V.

2.4 | LC-MS data processing

Raw data files obtained from LC-MS experiments were converted 
to the mzData format using Agilent Masshunter software, grouped 
into directories by population, and then uploaded to the XCMS 
Online platform (Tautenhahn, Patti, Rinehart, & Siuzdak, 2012) for 
automatic metabolite detection and alignment. Metabolite fea-
tures—peaks defined by mass-to-charge ratio (m/z), retention time 
(RT), and intensity—were extracted with optimized parameters: 
centWave method, minimum–maximum peak width = 8 and 30, 
signal-to-noise threshold = 30, mzdiff = 0.01, prefilter peaks = 3, 
prefilter intensity = 2,000, and noise filter = 0. As retention time 
variation between runs was minimal, the peaks were aligned 
across all the samples without RT correction, using the following 
parameters: bw = 5, mzwid = 0.025, and minfrac = 0.75. A list of 
2,785 aligned peaks/features from 172 individuals was then ex-
ported from XCMS Online as a tab-separated file. A preliminary 
PCA using autoscaled distances of individual peak areas and a 
distance to model (DModX) test (implemented in XCMS) detected 
individual UM19 as a significant outlier sample (possibly due to 
extraction error) to be removed. As one metabolite may give rise 
to multiple peaks including isotope, adduct, or fragment peaks, the 
2,785 peaks were further grouped by peak intensity correlation 
and RT similarity using built-in procedures from the XCMS pipe-
line (Tautenhahn et al., 2012). This resulted in 377 metabolites, 
which were represented by the largest peak within each group. 
Metabolite annotation was performed by searching the exact 
mass of detected metabolite features against the Knapsack and 

Metcyc databases (Caspi et al., 2014; Shinbo et al., 2006) using a 
ten ppm threshold.

2.5 | Chemodiversity index calculation

Calculation of the richness diversity index (S; Whittaker, 1972) is 
primarily described in this study as its results have straightforward 
and biologically meaningful interpretations, which can be easily 
reconceptualized from the study of species diversity to the study 
of chemodiversity. For clarity, we first define richness in the con-
text of a typical community ecology study before transferring the 
analogy to studying intraspecific chemodiversity. In a hypothetical 
field divided into multiple plots, species richness is the number of 
unique species in the field or each plot (Whittaker, 1972). Alpha (α) 
richness refers to the average richness of plots while the total num-
ber of unique species in the whole field is gamma (γ) richness. When 
appropriating these indices for studying chemodiversity, we treat 
each “species” as a metabolite and the “plot within a field” is repre-
sented by an individual plant’s chromatogram, which represents the 
sum of all metabolite intensity peaks. More simply, richness is the 
metabolite count in an individual sample, and when richness is av-
eraged among each tree in a subpopulation, subpopulations can be 
statistically compared by α-richness (Whittaker, 1972). In contrast, 
γ-richness represents total number of unique metabolites within a 
given subpopulation. As exploratory findings showed that γ-richness 
was equal among subpopulations, we hereinafter refer to α-richness 
when reporting chemical richness.

2.6 | Genetic marker data

We used genotype by sequencing (GBS; Peterson et al., 2012) of 
two Illumina Hiseq libraries, de novo assembly into 90-bp GBS tags 
with STACKS (Catchen, Amores, Hohenlohe, Cresko, & Postlethwait, 
2011), latent factor mixed modeling [a genotype–environment as-
sociation (GEA) method; Frichot, Schoville, Bouchard, & François, 
2013], and two FST outlier methods (Excoffier, Hofer, & Foll, 2009; 
Foll & Gaggiotti, 2008) to classify putatively neutral SNPS and SNPs 
exhibiting varying support for being under selection (Pais et al., 
2016). Putatively neutral reference SNPs were used to calculate 
marker-based inbreeding coefficients (F; Keller, Visscher, & Goddard, 
2011) and identity-by-state matrices using PLINK (Purcell et al., 
2007). We added an inbreeding coefficient (F) variable into logistic 
models characterizing plant health and disease (see section 2.9) be-
cause we recognized the need to account for greater heterozygosity 
(fewer homozygous loci than expected) within an individual, which 
could affect plant health (Ouborg, Biere, & Mudde, 2000) by yield-
ing more unique metabolites and raising plant potential to respond 
to novel pathogen effectors (screening hypothesis; Jones, Firn, & 
Malcolm, 1991). GBS samples were also reanalyzed with aid of a 
newly available C. florida draft genome (Dogwood Genome Project 
(NSF ID: 1444567), and the draft genome was used as an additional 
resource to predict candidate gene function by inspecting BLAST hit 
annotations surrounding SNPs of interest.
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2.7 | Environmental-functional traits

We correlated climate–soil variables (obtained through collection 
site measurements and GIS extrapolation; Pais et al., 2016) and 
temperature-precipitation estimates at time of collection (daily–
monthly; PRISM Climate Group; extracted 30 January 2015) with 
chemical and genetic data (Table 1). Similarly, plant health scores 

were plotted against chemodiversity levels. Visual health-diseased 
estimates were taken using the procedure of Mielke and Langdon 
(1986) based on the percent of tree canopy affected by leaf blot-
ting, necrosis, or branch dieback. Additionally, five categorical scores 
obtained from this method were converted into a binary variable. 
Plants with scores of four and five were considered healthy while 
plants with scores of three and below were considered diseased. 
This recoded binary variable served as the response for mixed model 
logistic regressions. For further description how environmental vari-
ables were selected for multivariate modeling of chemodiversity 
levels, see Appendix S1 and additional justification of mixed logistic 
models as described further in methods.

2.8 | Characterizing general relationships of 
chemical structure and diversity to plant health and 
genetic diversity

We determined the general structure among sampled populations and 
the diversity of metabolites from multilocus genotype data. We first 
used discriminant analyses of principal components (DAPC) to identify 
collection sites that clustered together, according to SNP or metabo-
lite abundance data. Using the R package adegenet (Jombart, 2008; 
Jombart, Devillard, & Balloux, 2010), we performed discriminant 
analysis (DA) on the optimal number of principal components (PC) to 
maximize among-population variation and minimize within-population 
variation. We estimated and analyzed PC scores separately from two 
different datasets (both scaled): reference SNPs aligning to the C. flor-
ida draft genome and abundance data (log-transformed) for 377 me-
tabolites. We conducted DAPC both by defining groups by collection 
sites and by allowing the program clustering algorithm to find optimal 
cluster number (K) without priors. Discriminant analyses of principal 
components does not require assumptions on a population genetic 
model (e.g., linkage equilibrium of markers) in contrast to programs like 
STRUCTURE (Pritchard, Stephens, & Donnelly, 2000) so DAPC has 
been widely adopted in recent population genetic studies (Buchalski 
et al., 2016; Cahill & Levinton, 2016; Grünwald & Goss, 2011). Its use 
for metabolic study is recent, but its efficacy in discriminating dif-
ferent biologically meaningful chemotype classes has been demon-
strated and favored over other discriminant analysis methods under 
certain circumstances (Gromski et al., 2015; Scheitz et al., 2013).

Next, we estimated average genetic diversity and chemodiver-
sity of each subpopulation. Rarefied-allelic richness was calculated 
per site using the hierfstat R package (Goudet, 2005) and the same 
genetic dataset analyzed in DAPC. For each subpopulation, hetero-
zygosity (expected and observed) and nucleotide diversity were 
recalculated from GBS markers in Pais et al. (2016) aligning to the 
newly developed draft genome of C. florida. Genetic diversity esti-
mates from Pais et al. (2016) were recalculated as heterozygosity 
and nucleotide diversity were previously calculated independently 
among two different sequence libraries and having a draft genome 
eliminated complications of synthesizing two different de novo li-
braries. We note in results that new heterozygosity–nucleotide di-
versity estimates are congruent with previous findings in Pais et al. 

TABLE  1 Chart of all predictors considered in current study 
accompanied by abbreviations used in main text

Variable Abbreviation

Mean precipitation during month of collection

Precipitation at day of collection

Average temperature at month of collection

Temperature at day of collection Tcol

Health score (1–5) No Abbreviation

Health score (binary) No Abbreviation

Inbreeding coefficient F

Osmometer reading No Abbreviation

Average diameter by height No Abbreviation

Canopy cover average No Abbreviation

Proximity to water No Abbreviation

Percent humic matter (soil) HM

Weight–volume ratio (soil) WV

Acidity (soil) pH

Base saturation (soil) BS

Exchangeable acidity (soil) Ac

Cation exchange capacity CEC

Phosphorus (soil) P

Potassium (soil) K

Calcium (soil) Ca

Magnesium (soil) Mg

Sulfur (soil) S

Sodium (soil) Na

Manganese (soil) Mn

Copper (soil) Cu

Zinc (soil) Zn

Mean annual temperature No Abbreviation

Mean monthly rainfall No Abbreviation

Minimum temperature of January Tmin1

Maximum temperature of July Tmax7

Average monthly precipitation in June Prec6

Average monthly precipitation in July Prec7

Precipitation of driest month Bio14

Frost-free period FFP

Length of growing period LGP

Elevation No Abbreviation

Longitude No Abbreviation

Latitude No Abbreviation
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(2016). Chemodiversity indices derived from 377 metabolites were 
calculated per sample and averaged by subpopulation for correlation 
analyses, and subpopulations were compared with 95% confidence 
intervals for each genetic-chemical diversity estimate.

We next tested for correlations between environmental gradients, 
genetic differentiation, and chemical distance using Mantel tests and 
linear regression. Full and partial Mantel tests (Legendre & Fortin, 1989) 
were implemented in the R package ecodist (Goslee & Urban, 2007) 
with 9,999 permutations and 500 bootstraps to determine the strength 
and significance of association between population-level metabolic 
distance, genetic distance, and mean Euclidean distances of spatial and 
environmental variables [i.e., displacement of collection sites, precip-
itation of driest month (Bio14), and temperature at day of collection 
(Tcol); see Environmental-functional traits continued in Appendix S1 
for justification of environmental variables tested]. For these correla-
tion analyses, we employed Arlequin (Excoffier & Lischer, 2010) and 
reference SNPs (putatively neutral SNPs from Pais et al., 2016) to cre-
ate a matrix of linearized FST values between subpopulations. We then 
correlated this FST matrix to an analogous matrix describing population 
similarities and dissimilarities using metabolite data. To compare meta-
bolic distances between subpopulations, we constructed an ANOSIM 
(Analysis of Similarities) R matrix from intersample Euclidean distances 
following the approach of Houshyani et al. (2012) and Kabouw, Biere, 
van der Putten, and van Dam (2009), 377 log-transformed metabolites, 
and the program PAST (Hammer, Harper, & Ryan, 2001). An ANOSIM 
matrix is a reduced-dimension matrix describing the similarity between 
pairs of subpopulations based on differences in abundances of multiple 
metabolites. Correlations of the FST matrix to the ANOSIM R matrix of 
population-level metabolic distances were assessed using one-tailed 
Mantel tests of Pearson’s r coefficient.

The significance of simple linear regressions between individual-
specific chemodiversity levels, inbreeding coefficients, and all avail-
able environmental predictors was also assessed. In addition, we 
determined the best multivariate models describing general chemo-
diversity as the response (Appendix S1). For these initial regression 
models, we used chemodiversity indices based on all 2,785 chemical 
features as this allowed us to more reliably detect general differ-
ences in chemical richness among samples. However, we caution 
that inclusion of correlated chemical features may bias the calcula-
tion of chemodiversity indices, and as such, we delegate reporting 
and discussion of such results in Appendix S1.

2.9 | Biomarker analyses

For identifying biomarkers associated with healthy versus diseased 
trees, we primarily used random forests (RF) tests and a logistic 
mixed model predicting disease states based on abundance data of 
each metabolite. Random forests tests were previously compared to 
partial least squares discriminant analysis (PLS-DA), principal com-
ponent discriminant analysis (DAPC), and support vector machines 
(SVM) for their ability to correctly assign samples to biologically 
based classes using metabolic data (Gromski et al., 2015). Logistic 
mixed models predicting healthy–diseased states of plants were also 

considered given the ability to statistically evaluate a Bonferroni 
correction and analytically control for inbreeding coefficient, tem-
perature at collection, and random effects of collection site. More 
details on parameters for RF tests, justification of variable selection 
for logistic mixed modeling, and other biomarker tests compared 
in exploratory analyses (PLS-DA, DAPC, and SVM) are available in 
Appendix S1 (Biomarker analyses continued).

2.10 | Predicting metabolite–SNP networks

To understand patterns between chemical data and individual loci 
while controlling for sample structure and environmental variability, 
we employed a linear mixed model implemented in EMMAX (Kang 
et al., 2010). This model has been used in genomewide association 
(GWA) studies of Arabidopsis thaliana (Bac-Molenaar, Fradin, Rienstra, 
Vreugdenhil, & Keurentjes, 2015; Fournier-Level et al., 2011; Li, 
Huang, Bergelson, Nordborg, & Borevitz, 2010; Li et al., 2014; Strauch 
et al., 2015) because of its computational efficiency, and its ability to 
handle and control for population stratification (Price, Zaitlen, Reich, 
& Patterson, 2010) and environment. We tested for both SNP associ-
ations to each metabolite and for SNP associations to the property of 
chemical richness. We corrected for population structure by entering 
an identity-by-state matrix (created from neutral reference SNPs to 
describe pairwise relationships between individuals) into our model. 
For SNP association, we log-transformed metabolite abundances 
prior to association study. For each corresponding GBS tag of a SNP, 
we noted any BLAST result, gene annotation (SWISS-PROT, TAIR, or 
UNI-PROT), and alignment match to the transcriptome (Zhang et al., 
2013) or draft genome of C. florida.

Chemical–genotype associations were calculated in EMMAX 
with: (1) no covariates present; (2) the Bio14 covariate present; 
(3) the Tcol covariate present; or (4) both covariates present (see 
Environmental-functional traits continued in Appendix S1 for justi-
fication of environmental controls specified). p-Value distributions 
from output files were plotted using R package Haplin (Wilcox, 
Weinberg, & Lie, 1998) to assess Q–Q plots for each metabolite. 
Results were considered significant for genotype–metabolite asso-
ciations passing a Bonferroni correction with an alpha value of 5%. 
Only results from normally distributed Q–Q plots were considered.

To explore the relationship between metabolites, we applied 
Gaussian graphical modeling (GGM) to the 377 metabolite dataset. 
Gaussian graphical modeling utilizes partial full-order correlation 
coefficients to test for correlation between two metabolites while 
removing other metabolite effects. Justifications and additional con-
siderations of GGM are further discussed in Appendix S1 (Gaussian 
graphical modeling continued).

2.11 | Modeling health versus disease: Logistic 
mixed modeling with chemodiversity of a specific 
set of biomarkers

To assess whether chemodiversity of a putative terpenoid de-
rivative network was related to the odds of being healthy versus 
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diseased, we employed logistic mixed modeling (previously applied 
to single metabolites; see section 2.9) with chemical richness (or H′, 
D1, D2, E, and BP indices; see Chemodiversity indices continued 
in Appendix S1) specified as a fixed effect (recalculated from me-
tabolites in the GGM-associated group of iridoid glucosides; see 
Candidate metabolite–SNP network). In other words, we recalcu-
lated chemodiversity indices from a set of related iridoid derivatives 
and substituted the predictor representing a given metabolite abun-
dance in our aforementioned mixed logistic model (see section 2.9) 
for a given chemodiversity index. Our justification for recalculating 
chemodiversity from metabolites in presumably related biological 
pathways was to compare the evenness or dominance in the ac-
cumulation of the specific set of metabolites between diseased and 
healthy plants. We also recalculated and examined chemodiversity 
among ten metabolites with common results among GWA and bio-
marker tests in exploratory analyses (Appendix S1; Table S5). Lastly, 
we tested interaction terms between chemodiversity and the other 
effects found to influence plant health (i.e., inbreeding coefficient, 
temperature at collection, and random effects of collection sites). 
Upon adding interaction terms for temperature at collection, we 
consistently found the interaction effects to be insignificant. The 
same applied when testing interactions to inbreeding coefficient. 
Thus, we removed interaction terms from our models.

3  | RESULTS

3.1 | Genetic markers

Of 1,631 GBS tags (containing 2,118 SNPs) consistently geno-
typed from two Hiseq libraries in Pais et al. (2016), we selected 

1,860 SNPs for studying chemical–genotype associations. These 
SNPs passed a 5% minor allele frequency filter, a locus genotyping 
rate in 80% or greater of all samples, and Hardy–Weinberg exact 
tests implemented in Genepop (Rousset, 2008) indicating allele 
equilibrium in over half of the subpopulations. We selected one 
SNP per GBS tag to reduce linkage disequilibrium in our dataset, 
parsing final SNP number to 1,446. For GBS tags showing no evi-
dence of being under selection from Pais et al. (2016), SNPs oc-
curring closest to the PstI cut-site were selected, leading to 1,171 
SNPs as the neutral reference. For GBS tags showing any evidence 
of being under selection (Pais et al., 2016), SNPs with the highest 
estimated FST were included in the 1,446 SNP dataset for GWA to 
metabolites. Of those 1,446 SNPs, 1,163 SNPs occurred within 
GBS tags aligning to the C. florida draft genome and were applied 
to DAPC analyses.

3.2 | General patterns of chemical-genetic 
structure and diversity

As shown in Pais et al. (2016) and corroborated by recalculations 
in this study, nucleotide diversity and heterozygosity levels were 
similar across sites (Figure 2a–c), but subsequent comparisons 
of rarefied-allelic richness showed that Piedmont subpopula-
tions had higher mean rarefied-allelic richness than mountain 
and coastal subpopulations—especially in comparison with moun-
tain subpopulation SM2, which had the lowest rarefied-allelic 
richness (Figure 2d); contrasts of chemodiversity between sub-
populations were most apparent for richness measures—with 
mountain subpopulations SM1 and SM2 having significantly lower 
chemical richness on average compared to Piedmont and coastal 

F IGURE  2 Comparison of subpopulation means of (a) observed and (b) expected heterozygosity, (c) nucleotide diversity, (d) rarefied-
allelic richness, (e) inbreeding coefficient, and (f) chemical richness calculated from 377 metabolites
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subpopulations (Figure 2f,g; see Figure S2 for subpopulation 
means of other chemodiversity indices). Levels of rarefied-allelic 
richness and chemical richness were similar, and significant corre-
lations between subpopulation means were observed (Figure S2). 
When grouping individual trees into healthy or diseased catego-
ries based on a one to five scoring system (Mielke & Langdon, 
1986), the relationship of disease status to chemodiversity indi-
ces derived from 377 metabolites varied depending on the index 
(Appendix S1). In particular, chemical richness of the 377 me-
tabolites highly overlapped among the five disease-state groups 
(Figure 3), but it showed slight trends of medians increasing with 
increasing health states of individual trees (Figure 3).

Subpopulation clustering patterns based on metabolic distances 
from discriminant analysis of principal components largely followed 
clustering patterns based on genetic distances (Figure 4). The only 
deviation was one mountain subpopulation from Pisgah forest (PI1) 
that clustered closer to Piedmont subpopulations, according to 
DAPC results of metabolic distances (Figure 4b). When the optimal 
clustering model was estimated without defining groups by subpop-
ulations, DAPC using genetic distances only supported two clus-
ters—one cluster consisting of samples from mountain–Piedmont 
ecoregions and another cluster consisting of samples from the 
Coastal Plains ecoregion (Pais et al., 2016; Figure 4c,e). In contrast, 
DAPC for metabolite data (without restricting samples to group by 

sampling location) supported up to seven clusters (Figure 4d,f) re-
lated to geography and environmental conditions at collection sites. 
The metabolic-based clusters with high membership of mountain 
individuals (i.e., cluster seven and three) were located in the upper 
ordination space while cluster five (consisting of individuals primarily 
from the coast) and cluster four (including Piedmont samples and 
samples from the PI mountain subpopulation) were located lower 
along the ordination space (Figure 4f). Cluster one had relatively 
few coastal individuals; cluster six included no members of the SM 
mountain subpopulations; and cluster seven consisted primarily of 
SM mountain samples (Figure 4d). These results confirmed high sen-
sitivity of metabolic data to environment (i.e., temperature), which 
was also supported by Mantel test results (Table 2) and regression 
model results of metabolic and environmental data (Tables S1 and 
S2, and Appendix S1). The remainder of reported results focus on 
metabolite associations with SNPs while controlling for the most 
important environmental factors influencing the general metabolic 
profile of samples as described in Appendix S1.

3.3 | Candidate metabolite–SNP associations

To understand the connections between genetic polymorphism and 
metabolite variation, we performed GWA analyses on all available SNPs 
and metabolites. As each SNP–metabolite association analysis was an 
independent test not biased by correlations among chemical features, 
each of the 2,785 chemical features of 377 metabolites was included. 
With and without the most important environmental covariates con-
trolled for in GWA models, we identified 975 unique chemical features 
significantly associated with 347 unique SNPs. Overlapping chemical 
feature and SNP results among the various GWA tests (different co-
variates specified) are presented in Figure 5 and summarized here ac-
cordingly. The total number of chemical features and SNPs associated 
without covariates specified were 774 and 282, respectively. When Tcol 
(temperature at day of collection) was specified as a covariate, there 
were 638 chemical features significantly associated with 244 SNPs. 
When Bio14 (precipitation of driest month) was specified as a covari-
ate, there were 713 chemical features significantly associated with 271 
SNPs. Specifying both Tcol and Bio14 as covariates yielded 527 chemical 
features significantly associated with 237 SNPs. One SNP (B1567_16) 
was significantly associated with the property of chemical richness for 
all combinations covariate controls. Summary of similarities and differ-
ences in results among the various covariate-dependent GWA tests for 
all chemical features and SNPs are available in Appendix S1.

We performed GGM to formulate hypotheses of metabolite–
metabolite associations based on partial correlation. This analysis, 
combined with the GWA results, revealed SNP–metabolite con-
nections for a putative group of terpenoid glucosides (Figure 6a). 
We noted GGM connections of three metabolites consisting of an 
annotated iridoid glucoside/Eleganoside C (M435T576; Bailleul, 
Leveau, & Durand, 1981; Ali, Uzair, Krebs, Jahangir, & Habermehl, 
2000; Xu, Wang, Zhang, & Yang, 2008), an aglycone/Cornolactone 
C (M227T630; He et al., 2014), and a possible intermediate 
(M451T432). Moreover, several SNPs were repeatedly found to 

F IGURE  3  (a) Medians of individual-level chemical richness 
values (calculated from 377 metabolites) by health score categories 
(coded 1-5 with 5 being healthiest). Boxplots depict minimum and 
maximum values (whiskers), outliers (dots), first quartile, median, 
and third quartile. The notches in each box correspond to the 95% 
confidence interval of each median value, and the width of each 
box is proportional to the square root of each groups’ sample size, 
which represents three, 15, 14, 47, and 91 samples with health 
scores of one, two, three, four, and five, respectively
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be significantly associated with chemical features of these three 
metabolites (Figure 6a). SNP loci with multiple significant associ-
ations (labeled yellow; Figure 6) within this associated group were 
as follows: B506_11, B1401_69 (aligned to gene encoding for oligo-
meric Golgi complex; Ostertag, Stammler, Douchkov, Eichmann, & 
Hückelhoven, 2013), B447_54, B977_86, B982_75 (aligned to gene 
encoding for lectin-domain receptor kinase; Singh & Zimmerli, 2013), 
B536_31, B1327_41, and B440_76 (aligned to gene encoding for a 
protein sensitive to rhizotoxicity; Sawaki et al., 2009; Fan, Lou, Yang, 
& Zheng, 2016). Several of these SNPs (B1401, B982_75, B440_76, 
B1401_69, B447_54, and B977_86) also showed evidence of being 
under selection in Pais et al. (2016).

3.4 | Predicting disease status from 
metabolite markers

We identified 39 metabolites that were informative biomarkers 
for predicting plant disease status using RF (12), DAPC (8), PLS-DA 

(12), SVM (11), or logistic mixed modeling (6) (Figures 8, S5, and S6). 
The majority of these biomarker metabolites accumulate more in 
healthy plants compared to diseased ones (Figures 8, S6, and S8). 
It is notable that there were few overlaps between the biomarkers 
detected by different methods (Figure S9a). Logistic mixed modeling 
of individual metabolites showed that six metabolites were signifi-
cantly correlated with the log odds of being healthy versus diseased 
(Table 3) after controlling for temperature at collection, inbreeding 
coefficient, and collection site random effects. Of the 39 biomarker 
metabolites, five had significant associations with SNPs as revealed 
from GWA models controlling for environment (Figure S9a). The hy-
pothesized SNP and GGM associations for these biomarkers are re-
ported in Figure S10 along with results of greater focus concerning 
the hypothesized group of iridoid glycosides (Figure 6).

After controlling for inbreeding coefficient, collection site random 
effects, and temperature at collection, healthy-diseased class correla-
tions (log odds) to chemodiversity indices (calculated from the hy-
pothesized GGM group of iridoid glycosides consisting of M227T630, 

F IGURE  4 Plots of discriminant 
analyses of principal components (DAPC) 
derived from (a) 1,171 reference SNPs 
or (b) 377 chemical features (highest 
intensity metabolite per peak group). Dots 
of different colors and shapes represent 
individual trees belonging to different 
collection sites as indicated by legend. 
Mountain sites are as follows: Smoky 
Mountains (SM1 and SM2) and Pisgah 
Forest (PI1 and PI2). Piedmont sites are 
in Duke Forest (DK) and Umstead State 
Park (UM), and Coastal Plain sites are in 
the Croatan forest (CF) and the Nature 
Conservancy’s Ecological Preserve at 
Nags Head Woods (TNC). When optimal 
cluster models are determined (i.e., when 
groups are not defined by collection 
site), assignment plots based on genetic 
distances (c) or metabolic distances 
(d) show cluster membership of each 
individual (rows with plus marks for most 
probable assignment). Optimal cluster 
models (determined by Bayesian criteria) 
are represented by scatterplots E and 
F for genetic and chemical distances, 
respectively
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M451T432, and M435T576) were significant for the majority of diver-
sity indices (no differences in richness among samples and p-values 
approximately .01 for H′, D1, D2, E, and BP indices). The Berger-Parker 
(BP) dominance index (defined by the relative abundance of the most 

abundant metabolite per sample; see Chemodiversity indices contin-
ued in Appendix S1) was significantly correlated to the log odds of a 
plant being healthy versus diseased (Figure 7). The positive effect of the 
BP index was driven primarily by increasing abundances of M435T576, 
which was the most abundant metabolite within most samples (among 
other metabolites composing GGM network; Figure 6). Moreover, it 
reflected a greater unevenness of chemical expression for this metab-
olite in healthy plants relative to diseased plants (Figure 7). In other 
words, M435T576 was considered the most predictive biomarker 
among the two other associated iridoid glycosides (M227T630 and 
M451T432) for distinguishing plant health and disease.

Ten other credible biomarkers not correlated exclusively with the 
hypothesized group of iridoid glycosides were shown to be strongly as-
sociated with plant disease status (Figures S8 and S9). Accumulations 
of these ten metabolites (including M435T576) were highly predictive 
of plant health and disease status, according to multiple biomarker 
test results (Figure S9). Chemodiversity patterns derived from these 
ten biomarkers also showed that the dominance of M435T576 (in 
relation to the relatively even expression of other biomarkers) was 
associated with log odds of a plant being healthy versus diseased 
(Table S5; Appendix S1; Other candidate biomarkers continued).

4  | DISCUSSION

4.1 | Relationships of genetic diversity and 
chemodiversity

Our analysis showed largely concordant chemical-genetic distance 
clustering patterns (Figure 4). For instance, mountain subpopulations 

TABLE  2 Mantel tests of correlations between subpopulation-
level metabolic, genetic, and environmental distances. Chemical 
distance matrix obtained through Analysis of Similarities (ANOSIM) 
using 377 metabolites. Genetic distance matrix consists of 
linearized FST values calculated from 1,171 reference (putatively 
neutral) SNPs. Site-level means of temperature at collection (Tcol) 
and precipitation of driest month (Bio14) used for matrices of 
Euclidean distances, and geographic distance among sites 
calculated from a X, Y coordinate system. Vertical bar denotes 
partial Mantel’s test controlling for third matrix right of “|”

Mantel formula Pearson r p (r ≤ 0)

Metabolic distance versus 
geographic distance

.51134369 .02750275

Genetic distance versus geographic 
distance

.70352647 .00110011

Metabolic distance versus genetic 
distance

.3340171 .0670067

Metabolic distance versus Tcol .64711201 .00050005

Metabolic distance versus Bio14 .41785384 .05830583

Metabolic distance versus genetic 
distance | geographic distance

−.04212434 .57645765

Metabolic distance versus genetic 
distance | Tcol

−.26949309 .88438844

Metabolic distance versus genetic 
distance | Bio14

.2555054 .1271127

F IGURE  5 Total number of chemical features associated with SNPs. Venn diagram depicts overlapping results among various GWA tests 
with different covariates specified in the program EMMAX. Comparisons include overlapping results among (a) 975 significantly associated 
chemical features (of 2,785 chemical features) and (b) 346 significantly associated SNPs (of 1,446 SNPs). Covariates controlled for were: 
temperature at day of collection (Tcol) and precipitation of driest month (Bio14)
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(cooler in temperature and with higher disease severity) exhibited 
distinct chemical profiles and clustered together as in genetic analy-
ses (excluding PI1), and two studied mountain subpopulations were 
lower in both metabolite richness (Figures 2f and S2a) and genetic 
diversity (rarefied-allelic richness) than the studied Piedmont sub-
populations (Figure 2d). Moreover, trees with greater individual-
level heterozygosity (i.e., smaller inbreeding coefficients) showed 
greater chemical α-richness after controlling for other abiotic ef-
fects (Figure S7). These findings suggest that chemical variation 

preserved in dried leaves may have a link to genetic variation and 
functional diversity within a species.

There is clear impetus to conserve genetically and chemically 
diverse plant populations (Bustos-Segura et al. 2017). It has been 
demonstrated that even small differences in genetic diversity 
(such as single amino acid substitutions) can yield large differences 
in chemical profiles (Kampranis et al., 2007), and several studies 
have found that higher intraspecific genetic diversity reduces her-
bivory and disease in plant populations (Hughes, Inouye, Johnson, 

F IGURE  6 Summary of hypothesized SNP and iridoid glucoside associations of interest. (a) Predicted network connections of gene 
products and secondary metabolites were labeled based on genomewide association (GWA connections dashed) and Gaussian graphical 
modeling (GGM connections solid) results. SNPs are labeled starting with “B,” and chemical features are boxed and labeled by their mass-
to-charge ratio (M) and retention time (T). Significant GWA connections with no covariate controlled for are highlighted gray. Significant 
GWA connections with at least temperature of collection (Tcol) controlled for are highlighted red, and significant GWA connections with 
precipitation mean of driest month (Bio14) controlled for are labeled blue. Significant GWA connections with both covariates controlled for 
are highlighted purple. SNPs associated with multiple chemical features are highlighted yellow and underlined, and a particularly noted SNP 
of interest (B982_75) is denoted with an asterisk

B506_11 M435T576
B536_31

M451T432

M227T630

Adducts, 
fragment 
ions, & 
isotopes

M227T576
M341T576
M342T575
M426T576
M436T576
M438T576
M452T576
M489T577
M534T577
M535T576
M780T576

M832T576

M833T576

B1401_69
B1327_41

B447_54 B440_76

B977_86

B982_75*

GGM
No covariate
Tcol
Bio14
Tcol + Bio14

M319T632 M404T632 M403T632

Hypothesized
associations

M452T432

Adducts, 
fragment 
ions, and 
isotopes

Adducts, fragment
ions, & isotopes 

Chemical feature Estimate SE Z value p (>|z|)

M139T346 −1.65E-05 5.89E-06 −2.8 .005111

M277T1265 −1.33E-04 6.75E-05 −1.975 .04832

M301T1021 −4.60E-05 2.28E-05 −2.015 .04394

M307T406 −1.54E-05 4.04E-06 −3.825 .000131

M447T1161 3.92E-05 1.84E-05 2.131 .0331

M543T1327 −1.17E-04 3.84E-05 −3.038 .002378

TABLE  3 Mixed logistic regression of 
individual metabolite effects (integrated 
intensity of chromatogram peak) on log 
odds of being healthy versus diseased. 
Model controls for inbreeding coefficient 
(F), temperature at collection (Tcol), and 
random effect of sites. Reporting six 
significant features of the 377 chemical 
features after retaining highest intensity 
metabolite per group of isotopic peaks
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Underwood, & Vellend, 2008). Moreover, emerging evidence has 
demonstrated how variation in intraspecific chemodiversity influ-
ences community diversity among different trophic interactions 
(Glassmire et al., 2016; Richards et al., 2015). In the context of this 
study, it is important to note the similarity between clustering pat-
terns derived from genetic and metabolite data in addition to noting 
evidence that some diseased mountain subpopulations (Figure 1) 
have lower genetic and chemical diversity.

While dogwood disease may be constrained to the niche and life 
history of causal pathogens (Chellemi & Britton, 1992; Daughtrey, 
Hibben, Britton, Windham, & Redlin, 1996; Ennos, 2015; Holzmueller 
et al., 2006), C. florida does exhibit a gradient of variation in genet-
ics and metabolites among North Carolina’s coast, Piedmont, and 
mountain ecoregions (Figures 2, 4, and S1), which may correspond 
to variation in health scores (Figures S1 and S4; Pais et al., 2016). 
Furthermore, relatively high chemodiversity estimates among 377 
metabolites are observed in healthier plants (Figure 3). As healthy 
plants occur in all environments from the Coastal Plains to mountains, 
this finding suggests that dogwood anthracnose may not necessarily 
be constrained by only abiotic factors (e.g., cooler and moister habi-
tats) but instead may also be affected by both genetic and metabolite 
diversities. Genetic and metabolite diversity may be important to dis-
ease variation. High levels of metabolic and genetic diversity intrinsic 
to the host may benefit individual trees in staving off disease infec-
tion (Jones et al., 1991). Alternatively, low genetic diversity in moun-
tain populations can also be a consequence of dogwood anthracnose 
disease effects (Hadziabdic et al., 2012). Although the co-occurrence 
of these patterns in C. florida presents challenges to distinguish rela-
tive roles of abiotic, genetic, and chemical factors, available evidence 
supports an influence of genetics on disease as elaborated below.

Previous ecological genomic analysis using GBS data (Pais et al., 
2016) has identified SNPs under selection for local adaption in the 
species, and a few of these SNPs are associated with biomarker 
metabolites (predictors of plant health) after accounting for envi-
ronmental covariates (Figure 6). In other words, our sampled sub-
populations showed evidence of locally adapted genes associated 
with plant–chemical responses to disease pressure after controlling 
for environment. SNP loci B1401, B982_75, B440_76, B1401_69, 
B447_54, and B977_86 [previously identified to be under selection in 
Pais et al. (2016)] were found to be associated with a notable iridoid 
glucoside that was identified as a positive RF biomarker of health 
versus disease (M435T576; Figures 6, 8, S8, and S9). Several of these 
candidate SNPs occurred on loci with predicted functions related to 
disease resistance. Some SNP loci such as B1401 may encode for 
proteins (i.e., an oligomeric Golgi complex) that facilitate glycosyla-
tion to inhibit disease (Ostertag et al., 2013). Other loci such as FST 
outlier B982 (Pais et al., 2016) are predicted to encode for signal-
ing receptors like lectin-domain receptor kinases, which have been 
previously implicated in plant immunity responses among other 
signaling processes (Singh & Zimmerli, 2013), and recent functional 
experimentation on resistance genes encoding for such receptors 
in Solanaceous plants has provided evidence for resistance against 
Phytophthora disease (Wang, Weide, Govers, & Bouwmeester, 2015). 
Other SNP loci like B440 may encode regulatory proteins (Fan et al., 
2016; Sawaki et al., 2009), which similarly respond to stress by regu-
lating transcription of genes involved in pathways such as immunity 
response. Biomarker M435T576 and its related metabolites belong 
to a class of terpenoid derivatives that have known antimicrobial 
and antifungal properties (Bartsch et al., 2010; Chang, Xuan, Xu, & 
Zhang, 2001; Meng, Lu, Li, Yang, & Tan, 1999; Whitehead, Tiramani, 

F IGURE  7 Depiction of chemodiversity trends [estimated from three unique metabolites in GGM-associated group of iridoid glycosides: 
M227T630, M451T432, M435T576], representing six logistic mixed models controlling for inbreeding coefficient (F), temperature at 
collection (Tcol), and random site effects. Response is log odds (LO) of being healthy versus diseased

H′ LO (est: –7.16; p = .0110)

D1 LO (est: –11.5; p = .0106)

D2 LO (est: –6.12; p = .0133)

E LO (est: –18.3; p = .0133)

BP LO (est: 15.6; p = .0121)

Chemodiversity vs. Healthy/Diseased Log Odds
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& Bowers, 2016) and are likely sensitive to disease-mediated signal-
ing processes (Caplan, Padmanabhan, & Dinesh-Kumar, 2008). For 
instance, M227T630 was identified as Cornolactone C, an iridoid 
isolated previously from C. florida (He et al., 2014), which belongs 
to a compound class known to accumulate in response to infection 
and has documented antimicrobial properties (Marak, Biere, & Van 
Damme, 2002).

These predicted chemical compounds serve as an important 
guide for prioritizing which SNPs and biomarkers to further test 
in future research. The abundance and inducibility of certain sec-
ondary metabolites such as flavonoids, other phenolics, and gly-
coside derivatives have been found to be heritable and mediated 

by herbivore–pathogen pressures (Johnson, Agrawal, Maron, & 
Salminen, 2009; Li et al., 2014). Determining the specific genetic fac-
tors regulating such adaptive metabolites remains an important goal, 
and this study adds to emerging efforts to integrate large secondary 
metabolite concentration data with information from genome scans 
(Eckert et al., 2012; Jensen, Foll, & Bernatchez, 2016; Talbot et al., 
2016).

4.2 | Herbivore/pathogen interactions influencing 
chemodiversity in plants

Explanations for natural variation of secondary metabolism have long 
been debated (Fraenkel, 1959). Intraspecific variation of plant chemo-
diversity can be attributed to differences in the environment (e.g., 
variation in surrounding plant, herbivore, fungal, or microbial com-
munities as well as abiotic heterogeneity; Tahvanainen & Root, 1972; 
Root, 1973; Barbosa et al., 2009; Sardans et al., 2011; Rivas-Ubach 
et al., 2014) or to genetic variation within the species. Proponents of 
the latter explanation cite observations used to argue for the role of 
chemodiversity in ecological function and heritability; namely, these 
authors note that congruent patterns of genetic diversity and chemo-
diversity are often inversely related to herbivory or infection levels (re-
viewed in Moore et al., 2014; Raguso et al., 2015). As an example, one 
study of Smallanthus macroscyphus (Asteraceae) reported less sesquit-
erpene lactone diversity (herbivory deterrent) in populations further 
away from the equator, which was explained as a result of selection for 
lower toxicity due to fewer herbivore–plant interactions in areas far 
from the equator (Aráoz, Mercado, Grau, & Catalán, 2016; Salazar & 
Marquis, 2012). This variation of sesquiterpene lactone diversity in the 
species may well have a genetic basis, which has not been investigated. 
In C. florida, a subset of the species distribution occurs from the south-
ern Appalachians to southeastern Coastal Plains where an elevational-
temperature gradient spans eastward through the Piedmont, and we 
have found a decreasing trend of chemodiversity and genetic diver-
sity in subpopulations more embedded in the Appalachian Mountains 
(Figure 2d,f,g). While lower temperatures may possibly be related to 
lower secondary plant metabolism of trees in the mountains, lower 
chemodiversity levels in mountain populations may be a result of 
lower genetic variation or a consequence of the disease infection, as 
mountain populations are in general less healthy. While diseased plants 
may show deficiencies in metabolism due to necrosis, our standard-
ized method for extracting visibly unaffected tissue from both dis-
eased and healthy plants makes the infection scenario less likely. The 
less healthy plants may possess genotypes that mediate metabolism of 
biosynthetic pathways in ways contributing to less constitutively ex-
pressed products—increasing plant susceptibility to initial infections. 
Higher genetic diversity in certain individuals (e.g., less homozygous 
genotypes; Figure S7) or subpopulations (e.g., higher rarefied-allelic 
richness; Figure 2d) can confer a greater range of gene products (e.g., 
secondary compound precursors) and increase host ability to respond 
more readily to any general infection (Firn & Jones, 2000).

On the other hand, herbivory and infection on plants can also 
induce greater secondary compound diversity or induce dominance 

F IGURE  8 Top random forest (RF) results of biomarkers 
indicative of healthy or diseased plants. Metabolites arranged top 
to bottom based on ranked importance, and labeled metabolites 
right of solid black line on plot were considered for biomarker 
selection. Panel right of support index panel for biomarker tests 
indicates relative expression of each compound in healthy versus 
diseased plants with black shades representing higher expression 
and white shades representing lower expression

Random Forest

Selected frequency
(Support index)
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of certain compounds (Mithöfer & Boland, 2012; Thoss & Byers, 
2006). While our study could not discriminate between constitutive 
and induced chemical diversity, our analysis of chemodiversity de-
rived from a specific set of biomarkers did show that healthy plants 
tended to have greater unevenness of chemical expression than dis-
eased plants (Figure 7). The unevenness seemed largely attributed 
to variation in expression of certain biomarkers (i.e., M435T576). 
In C. florida, candidate SNPs like B982_75 and B440_76 as well as 
biomarker M435T576 in the iridoid glucoside network (Figure 6) 
may represent examples of candidate genes governing variation in 
accumulation and degree of inducible expression for certain defense 
compounds.

5  | CONCLUSIONS

Our study demonstrates untargeted metabolite profiling is a use-
ful approach for understanding biodiversity in a new dimension. 
Secondary metabolites preserved in dried leaves of C. florida from 
natural populations provided data for evaluating chemodiversity 
and identifying potential disease biomarkers. We found congruent 
patterns of chemical and genetic variation and identified several 
biomarkers indicative of disease and health after accounting for the 
effects of environment. From those results, a select group of candi-
date SNPs and metabolites (i.e., iridoid glucosides) of clear ecological 
importance was identified to guide future study. Additional inves-
tigation of chemical diversity with increased sampling across the 
species range may provide more details on the relationship among 
genetics, metabolites, and dogwood anthracnose in C. florida, which 
in turn may shed light on forest diseases in general.
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