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Abstract
Ecologists have used Global Positioning Systems (GPS) to track animals for 30 years. 
Issues today include logging frequency and precision in estimating space use and 
travel distances, as well as battery life and cost. We developed a low-cost (~US$125), 
open-source GPS datalogger based on Arduino. To test the system, we collected po-
sitions at 20-s intervals for several 1-week durations from cattle and sheep on range-
land in North Dakota. We tested two questions of broad interest to ecologists who 
use GPS collars to track animal movements: (1) How closely do collared animals clus-
ter in their herd? (2) How well do different logging patterns estimate patch occu-
pancy and total daily distance traveled? Tested logging patterns included regular 
logging (one position every 5 or 10 min), and burst logging (positions recorded at 20-s 
intervals for 5 or 10 min per hour followed by a sleep period). Collared sheep within 
the same pasture spent 75% of daytime periods within 51 m of each other 
(mean = 42 m); collared cattle were within 111 m (mean = 76 m). In our comparison of 
how well different logging patterns estimate space use versus constant logging, the 
proportion of positions recorded in 1-  and 16-ha patches differed by 2%–3% for 
burst logging and 1% for regular logging. Although all logging patterns underesti-
mated total daily distance traveled, underestimations were corrected by multiplying 
estimations by regression coefficients estimated by maximum likelihood. Burst log-
ging can extend battery life by a factor of 7. We conclude that a minimum of two 
collars programmed with burst logging robustly estimate patch use and spatial distri-
bution of grazing livestock herds. Research questions that require accurately esti-
mating travel of individual animals, however, are probably best addressed with 
regular logging intervals and will thus have greater battery demands than spatial oc-
cupancy questions across all GPS datalogger systems.
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1  | INTRODUC TION

Civilian research scientists had access to satellite-based Global 
Positioning Systems (GPS) by the early 1990s, and use in animal 
tracking for ecological research was almost immediate (Rodgers, 
2001). Technological advancement and greater user computing 
power has brought a Big Data approach to animal tracking re-
search in ecosystems around the world (Cooke et al., 2017; Kays, 
Crofoot, Jetz, & Wikelski, 2015). But while the frontiers of GPS-
based animal tracking are exciting, there remains a core set of 
research questions that rely on GPS methods. For example, ecolo-
gists worldwide use GPS to study the spatial patterns of domestic 
livestock and managed herbivores to measure animal movement 
and behavioral responses to heterogeneous environments (Allred 
et al., 2013; Girard, Bork, Nielsen, & Alexander, 2013; Raynor 
et al., 2017; Zhao & Jurdak, 2016). Data from animal-borne GPS 
receivers can also enhance agroecosystem sustainability by giving 
managers information useful to increase productivity and iden-
tify areas of use sensitive to environmental degradation (Haan, 
Russell, Davis, & Morrical, 2010; Turner, Udal, Larson, & Shearer, 
2000). Not only is domestic livestock management a global indus-
try and foundation of rural livelihoods (Randolph et al., 2007), it 
is also an important component of natural areas management as a 
prescribed approach to ecological disturbance (Pietzsch, Ochsner, 
Mantilla-Contreras, & Hampicke, 2013). Thus, whether for pro-
duction or conservation grazing, GPS technology is an important 
resource for monitoring patterns of livestock space use pat-
terns (Allred, Fuhlendorf, & Hamilton, 2011; Putfarken, Dengler, 
Lehmann, & Härdtle, 2008).

Despite the benefits of fine-scale insight into herbivore space 
use, logistical constraints such as cost and functionality limit access 
to GPS tracking technology for many potential users. Commercially 
available systems can be so expensive that a recent criterion for a 
“low-cost” solution was under US$1,000 (Clark et al., 2006). While 
several times less costly than many commercial systems, US$1,000 
is still prohibitively expensive for users in the developing world who 
stand to benefit from GPS tracking data, such as herder communities 
in Ethiopia and Morocco (Akasbi, Oldeland, Dengler, & Finckh, 2012; 
Liao, 2017).

Even those with Western research budgets face questions 
about how to best use GPS technology in ecological studies. GPS-
based tracking systems pose trade-offs between data quality and 
quantity, hardware capability, and cost. Initially, data quality is-
sues related to the accuracy of the receiver unit, and quantity de-
pended on data storage capacity within the span of battery life. 
Ensuring maximum accuracy, storage capacity, and battery life was 
expensive, and lower-cost systems required compromise on one or 
more facets. As receiver accuracy has improved and data capacity 
has increased dramatically while the size and cost of storage units 
have decreased, data quality is now more a question of temporal 
resolution to address more complicated questions about animal 
behavior (Johnson & Ganskopp, 2008). For example, estimating 
the size of wolf home ranges with GPS data is sensitive to logging 

frequency (Mills, Patterson, & Murray, 2006), but the difficulty in 
fitting GPS collars onto wolves in the first place incentivizes long 
logging periods.

Another issue related to sampling frequency is how different 
logging intervals affect estimations of total distance traveled by 
collared animals. Less linear, more tortuous paths are underesti-
mated by infrequent logging intervals, which cut corners and return 
low accumulated distance (Johnson & Ganskopp, 2008; Marcus 
Rowcliffe, Carbone, Kays, Kranstauber, & Jansen, 2012). Thus, one 
might conclude that the major limitation in GPS receiver technol-
ogy today is battery life: Batteries are large, heavy, and expensive, 
but for many systems logging positions more frequently draws bat-
teries down.

We sought an ultra-low-cost GPS animal tracking solution, and 
through the process of development inform outstanding ques-
tions about herd-level replication and logging intervals. We use 
hardware and software based on Arduino (https://www.arduino.
cc), an open-source electronics platform. Designed for physical 
computing, Arduino consists of low-cost, pre-assembled boards 
programmed with a freely available, cross-platform, open-source 
Integrated Development Environment (IDE) that uses C/C++ pro-
gramming languages. Most of the functions users need are pro-
vided with the IDE or are freely available online from third-party 
developers.

While open-source microcontroller systems–including Arduino–
have been adopted in both the field and laboratory (Barnard, Findley, 
& Csavina, 2014; Greenspan et al., 2016; Shipley, Kapoor, Dreelin, 
& Winkler, 2017), we found no instances of Arduino-based GPS 
tracking systems in peer-reviewed literature. Here, we report on 
the assembly, programming, geolocation performance, and field de-
ployment of Arduino-based GPS dataloggers on two different types 
of grazing animals, cattle and sheep. We use data from the trials to 
address two questions of general importance across GPS logger 
systems, not just those based on Arduino: (1) How closely do col-
lared animals in a herd track together? (2) How do different logging 
patterns compare to constant, low-interval logging in terms of mea-
suring both spatial distribution and distance traveled? Respectively, 
addressing these questions inform issues of within-herd logger rep-
lication (and overall project cost), and optimizing sampling intensity 
with battery life.

2  | MATERIAL S AND METHODS

2.1 | The GPS logger system

2.1.1 | Basic hardware

The foundation of our system is an open-source microcontroller 
based on the Arduino electronics platform. Specifically, our hard-
ware comes from the Adafruit Industries Feather series (https://
www.adafruit.com/feather). Adafruit’s Feather hardware is com-
patible with the Arduino Integrated Development Environment 
(IDE) for programming small electronics projects powered by 

https://www.arduino.cc
https://www.arduino.cc
https://www.adafruit.com/feather
https://www.adafruit.com/feather
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lithium ion polymer (Li-Po) batteries for mobility. With pre-
assembled boards fitted with various sensors, receivers, and 
other peripherals (referred to as FeatherWings) designed as part 
of the Feather series, even a novice can develop customized elec-
tronic solutions with minimal experience in either hardware or 
software. The components come as simple kits, and users sol-
der header pins to stack wings onto the microcontroller board 
and seamlessly connect to its circuitry, often with little or no ad-
ditional wiring. Adafruit provides freely available, open-source 
software libraries that integrate easily with the IDE and Arduino 
programs.

Our system is comprised of three basic components: microcon-
troller, datalogger, and GPS receiver (Table 1). Adafruit has com-
bined the microcontroller and datalogger into a single board with 
the Feather M0 Adalogger, which includes a ATSAMD21G18 ARM 
Cortex M0 microchip and microSD card slot (Figure 1). Using header 
pins, the FeatherWing GPS receiver simply slides onto the top of the 
Adalogger. The system is powered by 3.7 v Li-Po batteries; we used 
the highest capacity available from Adafruit, 6,600 mAh, for maxi-
mum run-time (approx. 1 week under default configurations of the 
Adalogger + GPS FeatherWing). These batteries are easily recharge-
able via USB chargers.

2.1.2 | Attachment to livestock

The GPS dataloggers were deployed on livestock by sealing them 
in waterproof cases attached to heavy-duty nylon collars sized 
for the species and age class of the animals. We found a small 
plastic case designed for first aid kits—available in outdoor equip-
ment stores and online (Table 1)— that was perfectly suited for 
the 6,600 mAh battery and stacked Feather logger/receiver. 
We cut small pieces of styrofoam to fit around the Feathers to  
reduce motion in the headspace of the case and prevent the  
microSD card from being ejected. We also included small silica  

gel packets in the cases to absorb moisture and reduce corrosion 
on the Feathers. Prior to attachment, we reinforced the cases 
with rubberized electrical tape and heavy-duty outdoor duct 
tape.

We attached the sealed datalogger cases to the livestock col-
lars with hose clamps. Cattle were restrained in an adjustable 
headgate while collars were attached, while attachments to sheep 
were made both in headgates and while held by herders in the 
field (Figure 2). Collars were fastened at the top of the neck just 
behind the head, tightly but allowed to rotate. We observed no 
evidence that the collars or the units—which weighed less than 
300 g— impaired animal mobility or behavior. Collars were re-
trieved by rounding animals up in the field and simply undoing 
collar fasteners.

2.2 | Software

2.2.1 | Programming the datalogger

We used software examples from Adafruit to program the GPS da-
taloggers in the Arduino IDE. The basic sketch includes two main 
subroutines: read and parse location information from the GPS re-
ceiver, and write data to the microSD card (Appendix S1). In the 
GPS subroutine, functions from the Adafruit GPS library, called 
with Adafruit _ GPS.h, get a fix from satellites and parse the 
data. Data are read once per program cycle, and the user controls 
logging frequency by defining a delay between program cycles, 
which we set to record a location every 20 s. Data are handled 
as strings of ASCII characters formatted as an National Marine 
Electronics Association (NMEA) sentence parsed by the function 
GPS.parse.

Within the same program cycle, the next subroutine writes data 
to the microSD card via the dataFile.print command from the 
library called by SD.h. The data row consists of specific entries from 

TABLE  1 Components of livestock GPS collar system designed around the Arduino-based Feather series by Adafruit Industries. See 
Figure 1 for connections, layout, and assembly

Component type Component Source Price (USD)

Core hardware Feather M0 Adalogger Adafruit Industries $19.95

Ultimate GPS FeatherWing Adafruit Industries $39.95

Additional components Lithium ion polymer battery Adafruit Industries $8–30

micro SD card amazon.com $5–10

Lifeline 4430 waterproof ABS case amazon.com $3.99

Nylon livestock collar Nasco $9–15

Rubber splicing tape Hardware store $10/roll

Hose clamps, nuts and bolts, duct tape Hardware store $10

Micro Li-Po USB battery charger Adafruit Industries 5.95

TPL5110 Low Power Timer + JST plug Adafruit Industries $6.45

ADXL335 3-D accelerometer Adafruit Industries $14.95

GPS, Global Positioning Systems.
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the parsed NMEA sentence, in any specified order. By printing a 
comma between each data value and writing a single line for each 
observation, the program constructs a file comprised of comma-
separated values readable as a.csv file.

2.2.2 | Postprocessing data

While the data file created on the microSD card is human-readable 
via any basic text editor, spreadsheet application, or data analysis 
package capable of reading comma-separated values, one quirk 
in the raw NMEA data returned by Arduino’s GPS.parse func-
tion requires postprocessing. The $GPGLL phrase—Geographic 
Position, Latitude/Longitude, and time— is in the format lll.ll,a, 
for degrees, decimal minutes, and hemisphere. Take, for illustra-
tion, the example from http://aprs.gids.nl/nmea/#gll: Latitude 

49 degrees 16.45 min North is stored as 4916.46,N, which is 
not readily interpretable to data analysis, graphing, and most 
GIS software. However, this obscure but standard format is eas-
ily converted into degrees/minutes/seconds, decimal degrees, or 
the Universal Transverse Mercator (UTM) coordinate system, for 
which we provide script written for the freely available R statisti-
cal environment (R Core Team 2017) in Appendix S2. We assigned 

F IGURE  1 Top: Illustration of our Global Positioning Systems 
(GPS) datalogger electronics. Basic components include the 
Adafruit Feather M0 Adalogger (a) and Adafruit GPS Wing (b). Also 
shown are the TPL5110 low power timer (c), external JST battery 
plug (d), and a 47uF capacitor (e) to stabilize the power supply. 
Bottom: The assembled GPS Wing and Adalogger, with battery, 
case, clamps, and collar

(a)

(b)

(e)

(c)

(d)

F IGURE  2 Top: Attaching a collar with duct tape-wrapped 
Global Positioning Systems datalogger on a cow ahead of initial 
release onto experimental pastures in June. Bottom: Retrieving a 
collar from a sheep in the field

http://aprs.gids.nl/nmea/#gll


     |  5653MCGRANAHAN et al.

Coordinate Reference Systems in R with functions from the sp 
package (Pebesma & Bivand, 2005).

Other steps in postprocessing the GPS data included converting 
the timestamp to a time-date POSIXct object in R with the strp-
time function and correcting the default UTC time to local time 
with the hours function in the lubridate package (Grolemund & 
Wickham, 2011), which allows one to focus on livestock activity at 
specific periods within days and seasons. While GIS-related steps in 
the analysis are discussed below, we began by cropping GPS loca-
tions to the experimental pastures to remove positions beyond the 
pasture boundaries due to transport of turned-on but unattached 
collars, a couple instances of sheep getting through their fence, and 
very few inadvertent outlier positions likely due to poor satellite 
fixes.

2.2.3 | Precision and accuracy testing

As we could find no information on the geolocation performance 
of the Adafruit GPS Wing, we modified the protocol of Clark et al. 
(2006) to measure the average horizontal error or circular error 
probability (CEP) of our datalogger units: Essentially, we deter-
mined how closely positions logged by our dataloggers matched 
up with a known position on the Earth’s surface, specifically, U.S. 
National Geodetic Survey geodetic survey point RP1098 in Fargo, 
North Dakota. Dataloggers were arranged on the top of a 1.2-m 
fiberglass stepladder directly above the survey point and logged 
positions at 20-s intervals for 90 min. From these data, we cal-
culated both precision and accuracy for each unit, defined, re-
spectively, as how tightly positions from a single unit clustered, 
and how far logged positions were from the known georeference 
point. For each measure, we calculated CEP as the 95% quantile 
for each unit (Clark et al., 2006). Distances between individual po-
sitions and either the centroid of a unit’s positions (precision cal-
culation) or the known georeference (accuracy calculation) were 
computed with the distGeo function in the geosphere package 
(Hijmans, 2016) for R.

2.3 | Field trials

2.3.1 | GPS datalogger deployments

We made 4-week-long deployments in the summer of 2017 on ex-
perimental rangeland at the Hettinger Research Extension Center 
in Hettinger, North Dakota, which included four, 65 ha pastures, 
two stocked with cattle and two with sheep. An initial trial in June 
consisted of three dataloggers deployed to one cattle pasture and 
another three dataloggers deployed to one sheep pasture. Collars 
were attached to randomly selected animals, while they were being 
worked through livestock handling facilities prior to initial release 
to experimental pastures for the grazing season. Sampling effort 
was doubled for July, August, and September trials with three units 
deployed in each of two additional pastures, one cattle and one 
sheep.

2.3.2 | Data management

We developed a workflow for loading and processing Feather GPS 
data in R (Appendix S2). We begin with a function that loads and 
combines individual .TXT files written to the microSD card by each 
Feather M0 Adalogger into a single R data.frame. Then, we re-
move duplicate entries from the combined data.frame, which 
occur when data from a previous deployment remain on the mi-
croSD card. Subsequent steps convert default NMEA format for lati-
tude and longitude into the UTM coordinate reference system (UTM 
Zone 13, datum NAD83).

After cropping the positions to pasture boundaries, we combined 
the positions with a spatial data.frame containing information on 
location names and management status using the sp package in R. 
We then discarded locations incorrectly assigned to the wrong pas-
ture by the data.frame merger, which occurred where experimen-
tal pastures shared a fence boundary and locations were incorrectly 
recorded on the wrong side of the fence as animals tracked along it, 
or in a couple instances, when sheep actually crossed fences into 
neighboring pastures. For our analyses, we excluded any individ-
ual logger deployment that did not log at least 1,000 locations. Full 
script for analysis is available in Appendix S3.

2.3.3 | Data analysis

To inform the minimum number of dataloggers required to estimate 
spatial distribution of livestock herds, we calculated how closely col-
lared animals within a pasture ranged with respect to each other. 
We wrote a script to compute distance matrices during the four 
datalogger deployments using the vegdist function in the vegan 
package (Oksanen et al., 2017) for the R statistical environment. By 
calculating distance matrices with the Euclidean distance measure 
based on UTM coordinates, this function returns the shortest dis-
tance between logged positions in meters. Our script used only the 
first logged position per minute for each datalogger, to minimize var-
iability caused by differences in which points in the minute a given 
datalogger spaces its 20-s logging intervals. We excluded nighttime 
positions from the analysis (22:00–04:00). Our script returned the 
mean distance among collared animals per minute per pasture, based 
on a maximum of three dataloggers/pasture. When only two data-
loggers had a position in a given minute due to the third registering 
an outlier or being nonfunctional, the script returned the distance 
between the two valid points. If a minute contained one or no valid 
points for a given pasture, the script did not return any distance 
value for that pasture in that minute.

We compared different patterns and frequencies of logging GPS 
positions on two measures of animal behavior frequently studied 
with GPS data: spatial distribution and distance traveled. Our two 
alternative sampling patterns included regular— in which data were 
subsampled regularly at 5- and 10-min intervals—and burst– in which 
all positions from 5- and 10-min durations were sampled from each 
hour; the combination of 5- and 10-min intervals between regular 
and burst patterns created four potential ways a datalogger could 
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be programmed to reduce the size of data files and/or extend bat-
tery life. Data were subsampled with the cut function to re-format 
the timestamp of each position to fall within either a 5- or 10-min 
window. We then extracted either the first position per window for 
regular logging, or all positions within the first window of each hour 
for burst logging.

To compare patterns of spatial distribution, we first calculated 
the proportion of all daytime locations logged at 20-s intervals 
(constant logging) within equal-sized patches in each pasture, sub-
set the constant logging data as if collected under each of the four 
patterns, and determined the difference between the proportional 
distribution of these data within each patch to the distribution of 
the constantly-logged data. We used two patch sizes: ~16 ha, cre-
ated by dividing our ~64 ha pastures into four equal patches; and 
1 ha, created by subdividing 16 ha patches into 100 × 100 m grids. 
Because these divisions created many more 1-ha patches than 16-ha 
patches, and 1-ha patches are potentially more susceptible to error, 
we employed a conservative approach and report the maximum dif-
ference among all patches per datalogger rather than the mean. We 
calculated the absolute value of differences to ensure positive and 
negative differences between the distribution of positions under 
constant and subsampled logging did not cancel out the magnitude 
of difference between the patterns.

To compare travel distance, we summed the distance between 
logged positions for each collared animal per day under each logging 
pattern and compared them as a percentage of the total distance 
recorded by constant logging at 20-s intervals. Distance between 
logged GPS positions was calculated with the distGeo function in 
geosphere. To explore the utility of applying correction factors 
to underestimated travel distance by less-frequent sampling (e.g., 
Akasbi et al., 2012), we used the maximum likelihood function mle2 
in the bbmle package (Bolker & R Core Team, 2017) to estimate re-
gression coefficients for each combination of logging pattern and 
interval from linear models. June data were excluded from this first 
step, so as to retain a novel dataset to which we multiplied estimated 
distances for each logging pattern by that pattern’s estimated cor-
rection factor and re-calculated regression coefficients from the 
corrected linear model fit to June data. We calculated 95% confi-
dence intervals for the slope coefficients to determine difference 
from 1; a slope of 1 between distance determined by constant log-
ging and estimated by different logging patterns indicates accurate 
estimation.

2.4 | Extending battery life

The constant, high clock speed of the Feather M0’s processor drains 
battery life. Adafruit’s hardware solution is the TPL5110 low power 
timer, which bypasses the direct power supply between battery and 
board and only supplies power at set durations. Integration with the 
Feather M0 Adalogger is simple but does require minor external wir-
ing (Figure 1).

Because many Arduino projects take less than a second or two 
to initialize, external power regulation is an elegant solution, but 

GPS logging poses a potential pitfall in that satellite fixes are lost 
when the unit loses power and longer power-off periods can slow 
fix re-acquisition when power is restored. As such, meaningful 
data require an adequate logging period balanced by a reason-
able power-off period, so GPS receiver initialization is a relatively 
infrequent event with marginal contributions to power consump-
tion, which motivates our “burst” sampling.

3  | RESULTS

3.1 | Unit performance

Mean 95% circular error probability (95% CEP) for all units with re-
spect to the known georeference point—our measure of GPS unit 
accuracy— was 4.0 m (±0.3 SE). Unit precision was 1.8 m (±0.2 SE).

Our GPS dataloggers performed well in field trials with lim-
ited equipment malfunction. Only two datalogger units were ex-
cluded entirely from the dataset due to recording less than 1,000 
locations: one due to unrelated sheep mortality, and one when 
it appeared a battery was incompletely charged. We determined 
that excessive movement within the case could cause the spring 
mechanism of the microSD card holder to eject the cards. We 
cut scrap styrofoam to fit around the Feather units and take up 
headspace in the case, after which all units logged for at least 
109 hr (16,000 valid positions) and up to 190 hr (nearly 32,000 
valid positions) per week-long deployment, with an average of 
171 logging hours.

Each step in the data processing workflow intended to clean 
up the GPS data removed rows from the data.frame, but the 
proportion of positions removed for low-quality fixes and being 
beyond pasture boundaries was extremely low. After cleanup, we 
used 718,510 logged positions in our analysis from a total of 4,962 
functioning datalogger hours over 33 successful individual data-
logger deployments of 39 deployments attempted. Focusing anal-
ysis on positions recorded between 04:00 and 22:00 is justified by 
low activity levels as evidenced by lower distances traveled than 
any other period in the day among both cattle and sheep through-
out the season (Figure 3).

3.2 | Distance between units

Collared animals within the same pasture generally remained close 
to each other throughout the grazing season (Figure 4). Despite 
having many more animals per herd, sheep maintained closer dis-
tances than cattle: Collared sheep were within 25 m of each other 
in 50% of all daytime positions versus 64 m for cattle. Sheep spent 
75% of the daytime period within 51 m, whereas cattle spent 75% 
of the daytime period within 111 m. The mean distance among 
collared animals was greatest among cattle in August (100 m), 
and otherwise, the mean distance between collared cattle was 
72–79 m (Figure 4). Sheep averaged no more than 42 m apart 
(Figure 4).



     |  5655MCGRANAHAN et al.

3.3 | Logging pattern comparison

We found very little difference in the proportion of positions re-
corded in patches within pastures by four different logging pat-
terns compared to constant logging (Figure 5). There was very 
little difference in the proportion of locations recorded in 1-ha 
versus 16-ha patches. The maximum degree of difference oc-
curred among cattle sampled under the burst logging pattern in 
July at both 5 and 10-min durations, which differed from constant 
logging by an average of 3% and a mean maximum among data-
loggers of 8% (Figure 5). Otherwise, the maximum difference in 

the proportion of positions recorded in a given 1- or 16-ha patch 
under burst or regular logging did not exceed 6%, with a mean dif-
ference of 2%.

Regular logging was the least variable, with no maximum dif-
ference from constant logging above 5% (Figure 5) and mean dif-
ferences always under 1% difference across months and livestock 
types. Figure 6 provides an example of how the different logging 
patterns compare to constant logging for one sheep pasture on a 
randomly selected day in July.

3.4 | Distance traveled comparison

Logging fewer GPS positions resulted in underestimated total 
daily distance traveled for collared animals, when the four log-
ging patterns were compared against constant (20-s interval) log-
ging (Figure 7). Not surprisingly, regular logging performed better 
than burst logging in terms of less severe underestimation of total 
daily distance. Shorter, 5-min intervals performed better than 10-
min intervals, especially for sheep. On average, cattle traveled 
4,399 m (±201 SE) per day, while sheep traveled 5,406 m (±221 
SE) per day.

Using linear regression coefficients from maximum likelihood 
estimation as correction factors was effective in compensating for 
underestimations in total daily distance traveled (Figure 8). As in-
dicated by the degree of underestimation (Figure 7), linear models 
fitting total daily distances from constant logging against those esti-
mated by different logging patterns had regression coefficients sub-
stantially above 1.0, with burst logging approaching 2.0 (Figure 8). 
But in each case, multiplying novel data by these estimated regres-
sion coefficients prior to comparison with constant logging pro-
duced 95% confidence intervals centered around 1.0, meaning they 
accurately predicted actual total daily distance traveled.

F IGURE  3 Mean distance traveled per 
animal, per hour, across all days within 
each month. Low activity levels between 
22:00 and 04:00 justify removing this 
nighttime period from subsequent 
analysis. Data from two cattle and two 
sheep pastures in Hettinger, North 
Dakota, with 2–3 collared animals per 
pasture (actual number within each mean 
varies with individual collar performance 
and battery life)

August September

June July

00 02 04 06 08 10 12 14 16 18 20 22 00 00 02 04 06 08 10 12 14 16 18 20 22 00

0

500

1000

1500

0

500

1000

1500

Hour of day

M
ea

n 
di

st
an

ce
 tr

av
el

ed
 p

er
 h

ou
r  

   
   

   
 (m

et
er

s,
 ±

 s
.e

.)

Livestock cattle sheep

F IGURE  4 Mean distance between two and three collared 
animals per pasture between 04:00 and 22:00 during 4-month-
week-long Global Positioning Systems datalogger deployments in 
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3.5 | Battery life extension

Fitting the GPS dataloggers with the TPL5110 low power timer 
(Figure 1) and programming the unit for the 5-min burst logging pat-
tern substantially increased battery life in laboratory tests. Use of the 
low power timer increased battery life by a factor of 7.5, which when 
applied to our average battery life of 171 logging hours suggests bat-
tery life could be extended to as long as 1,306 hr, or 54 days. While 
actual performance in the field is likely affected by battery age, 
operating temperature, and time spent re-acquiring satellite fixes, 
these results suggest incorporating the power timer might greatly 
increase the utility of the system for situations where animals can 
be handled at monthly but not weekly intervals. Alternatively, users 
satisfied with shorter deployments can use batteries that weigh, and 
cost, less.

4  | DISCUSSION

The purpose of this study was twofold: First, we sought to create 
a low-cost GPS datalogger with high data storage capacity, high-
frequency logging, and sufficient durability for attachment to range-
land livestock. Second, we used these high-frequency data to test 
general questions related to datalogger replication within herds and 
trade-offs between battery life and accurately representing animal 
behavior. The dataloggers functioned well in the field trial, and inte-
grating the TPL5110 low power timer can potentially extend battery 
life by a factor of seven, which means up to 50 days of burst logging 
with a 6,600 mAh battery. Our 20-s logging interval certainly quali-
fies as high-frequency for the purposes of comparing error created 
by less-frequent intervals: While some studies logged at 10-s inter-
vals and calculated error from there (Liu, Green, Rodríguez, Ramirez, 
& Shike, 2015; Swain, Wark, & Bishop-Hurley, 2008; Zhao & Jurdak, 
2016), other studies used baseline data from intervals as long as 

4–5 min (Johnson & Ganskopp, 2008; Mills et al., 2006) and 15 min 
(Akasbi et al., 2012).

We found that collared animals within the same pasture spent 
most of their time close to one another, suggesting that few GPS 
datalogger units per herd are necessary to monitor spatial distribu-
tion. Collared cattle were, on average, within 76 m of each other, 
and sheep within 42 m of each other, on pastures approximately 
800 × 800 m square. Clearly, sheep herd very tightly; collared sheep 
were closer together despite their herds being an order of magnitude 
larger (stocking rates were approximately 25 cattle vs. 175 sheep per 
pasture). Distances among animals were generally consistent with 
other research: Schwager, Anderson, Butler, and Rus (2007) showed 
high variability around mean distances to cattle herd centroids of 
50–60 m in 466 ha of arid rangeland, and Guo et al. (2009) showed 
high variability around mean cow-cow distances of 20–25 m in small 
(7 ha) paddocks.

Based on these data, we suggest that one datalogger is probably 
sufficient to record herd locations at a landscape level, but recom-
mend at least 2–3 to ensure data redundancy in the face of equip-
ment malfunction or animal mortality. Conversely, Liu et al. (2015) 
suggest up to 75% of animals in a group should be fitted with collars 
to estimate spatial occupancy, which for most researchers would 
be cost-prohibitive: Such a sampling intensity for our sheep herds 
would require 130 dataloggers per pasture for the animals we found 
to cluster the tightest. At the very least, sufficient sampling inten-
sity likely varies with species, environmental heterogeneity, and re-
search question (Augustine & Derner, 2013). For work in rangelands 
and wildlands, investigators are likely to gain more information by 
distributing equipment across replicate herds in heterogeneous en-
vironments despite possible loss of accuracy.

Each of our four logging patterns provided low rates of error in 
determining occupancy of both small (1 ha) and large (16 ha) patches 
in our experimental landscapes. The accuracy of determining the 
spatial distribution of animals with GPS data declines as the interval 

F IGURE  5 Maximum percentage 
difference among each datalogger 
deployment between proportion of 
locations in each 1- and 16-ha patches 
under four logging patterns (hourly 
bursts of 5- or 10-min duration, regular 
5- or 10-min intervals) compared to the 
proportion of locations in each patch 
under continuous logging. Differences 
expressed as absolute values. Data consist 
of positions logged between 04:00 and 
22:00 during 4–7-day trials on two cattle 
and two sheep pastures in Hettinger, 
North Dakota
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between logged positions increases; hourly intervals produce pre-
diction error rates of 90% for even slow-moving cattle (Swain et al., 
2008). Our maximum error rate was 8%, and averages were around 

2%–3%. According to Swain et al. (2008), an under-appreciated fac-
tor in GPS data quality is how quickly the GPS receiver obtains a 
“fix” on satellites, and they describe a solution very similar to our 

F IGURE  6 An example of four logging patterns (hourly bursts of 5- or 10-min duration, regular 5- or 10-min intervals) compared to 
constant logging at 20-s intervals for three sheep fitted with DIY GPS dataloggers at the Hettinger Research Extension Center, Hettinger, 
North Dakota. Data are from between 04:00 and 22:00 on 7 July 2017. Pasture divisions represent the patches used to compare space use 
patterns by the four logging settings (Figure 5). These maps also illustrate how different logging patterns might vary in their estimation of 
total distance traveled, especially over nonlinear/tortuous routes
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burst logging pattern that greatly reduces error from slow fixes by 
remaining on and connected to satellites for the duration of the log-
ging period.

Total daily distance traveled by collared animals in our study 
was consistent with other data published from rangeland systems. 
Lomillos Pérez, Alonso la Varga, García, and Gaudioso Lacasa (2017) 
reported cattle in rangeland pastures traveled an average of 3.3 km 
per day during warm months in pastures of a similar size; our cat-
tle traveled an average of 4.3 km per day with a daily photoperiod 
exceeding 16 hr in midsummer. Our data do suggest the frequently 

reported bimodal activity pattern (Figure 3) created by early morn-
ing and late afternoon grazing periods (Bailey, Keil, & Rittenhouse, 
2004; Lomillos Pérez et al., 2017; Schlecht, Hiernaux, Kadaouré, 
Hülsebusch, & Mahler, 2006), indicating we are able to detect broad 
patterns of animal activity from the GPS data alone.

Also consistent in our daily distance data was the increase in pre-
diction error as the interval between logged positions increased. The 
degradation of accuracy as logging interval increases is frequently 
reported (Johnson & Ganskopp, 2008; Marcus Rowcliffe et al., 
2012; Mills et al., 2006) and, when explicitly quantified, shows an 

F IGURE  7 Differences in total daily 
distance traveled for collared animals 
under four logging patterns (hourly bursts 
of 5- or 10-min duration, regular 5- or 
10-min intervals) compared to continuous 
logging. Data consist of positions logged 
between 04:00 and 22:00 during 3–7-
day trials on two cattle and two sheep 
pastures in Hettinger, North Dakota
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F IGURE  8 Slope parameters from linear regression models comparing estimated daily distance traveled for collared animals under four 
logging patterns (hourly bursts of 5- or 10-min duration, regular 5- or 10-min intervals) to continuous logging. Corrected models multiply 
the estimated distance in June data by the slope parameter from the uncorrected model, which was determined by maximum likelihood 
estimation on data from July, August, and September; the closer the corrected parameter is to 1, the better the correction factor performs in 
increasing the accuracy of distance estimates. Data consist of positions logged between 04:00 and 22:00 during 3–7-day trials on two cattle 
and two sheep pastures in Hettinger, North Dakota

Burst 10 min

Burst 5 min

Regular 10 min

Regular 5 min

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.1
Estimated slope coefficient (95% CI)

Lo
gg

in
g 

pa
tte

rn
 +

 in
te

rv
al

Regression model Corrected Uncorrected



     |  5659MCGRANAHAN et al.

exponential decay that can be corrected by multiplying observed 
distances by coefficients from the best-fit line (Akasbi et al., 2012). 
Our data suffered the same declines, with travel distance underes-
timations ranging from 15% to 60% depending on logging pattern 
(burst logging was the worst; Figures 7 and 8). However, when cor-
rection factors were determined by maximum likelihood estimation 
and multiplied by observed distances, predicted daily distances 
matched 1:1 with actual distances traveled for even novel data an-
alyzed under the burst pattern (Figure 8). Thus, it appears possible 
to correct distance estimations collected under burst logging if the 
coefficient can be determined, but we acknowledge this is likely not 
sufficient for research questions that require accurate estimations 
of traveled distance.

Although it is frequently reported, traveled distance alone is not 
necessarily the best measure of animal activity (Ungar et al., 2005). 
Often, finer-scale data including instantaneous speed and head po-
sition predict individual behavior, and such data are easily obtained 
from high-frequency GPS logging intervals and additional sensors 
such as 3-D accelerometers (Moreau, Siebert, Buerkert, & Schlecht, 
2009). Many commercial systems can be ordered with accelerom-
eters, and Adafruit offers several options that can be integrated 
with the system we describe here; in fact, we quickly soldered the 
Adafruit ADXL335 (Table 1) onto a datalogger and updated the pro-
gram prior to the final round of field trials. However, these raw data 
are not immediately useful as it is standard procedure among studies 
reporting accurate predictions of activity and behavior from GPS/
accelerometer data to calibrate activity classifications with human 
observations (e.g., Augustine & Derner, 2013; Schlecht, Hülsebusch, 
Mahler, & Becker, 2004), but the models are not necessarily com-
plicated. Augustine and Derner (2013) found that binary grazing/
not grazing classification had the highest accuracy in modeling cat-
tle activity on rangeland, and distance traveled per 5-min interval 
combined with head position data were the two best predictors of 
grazing activity. The burst logging pattern is ideal for these types 
of data, providing high-frequency observations for the duration of 
the burst. Assuming activity can be sampled at some hourly interval 
rather than constantly monitored, burst logging is a potential solu-
tion for gaining high-frequency data over long time periods through 
extended battery life, especially if highly-accurate estimates of daily 
travel are not required.
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