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Abstract

Backgound—The inability to detect premature atherosclerosis significantly hinders 

implementation of personalized therapy to prevent coronary heart disease. A comprehensive 
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understanding of arterial protein networks and how they change in early atherosclerosis could 

identify new biomarkers for disease detection and improved therapeutic targets.

Methods—Here we describe the human arterial proteome and proteomic features strongly 

associated with early atherosclerosis based on mass-spectrometry analysis of coronary artery and 

aortic specimens from 100 autopsied young adults (200 arterial specimens). Convex analysis of 

mixtures, differential dependent network modeling and bioinformatic analyses defined the 

composition, network re-wiring and likely regulatory features of the protein networks associated 

with early atherosclerosis and how they vary across two anatomic distributions.

Results—The data document significant differences in mitochondrial protein abundance between 

coronary and aortic samples (coronary≫aortic), and between atherosclerotic and normal tissues 

(atherosclerotic≪normal), as well as major alterations in TNF, insulin receptor, PPAR-α and 

PPAR-γ protein networks in the setting of early disease. In addition, a subset of tissue protein 

biomarkers indicative of early atherosclerosis was shown to predict anatomically defined coronary 

atherosclerosis when measured in plasma samples in a separate clinical cohort (AUC = 

0.92(0.83-0.96)) – thereby validating the use of human tissue proteomics to discover relevant 

plasma biomarkers for clinical applications. In addition to the specific proteins and pathways 

identified here, the publicly available data resource and the employed analysis pipeline illustrate a 

strategy for interrogating and interpreting the proteomic architecture of tissues that may be 

relevant for other chronic diseases characterized by multi-cellular tissue phenotypes.

Conclusions—The human arterial proteome can be viewed as a complex network whose 

architectural features vary considerably as a function of anatomic location and the presence or 

absence of atherosclerosis. The data suggest important reductions in mitochondrial protein 

abundance in early atherosclerosis and also identify a subset of plasma proteins that are highly 

predictive of angiographically defined coronary disease.
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Introduction

At the molecular level atherosclerosis can be defined as an assembly of hundreds of intra- 

and extra-cellular proteins that jointly alter cellular processes and produce characteristic 

remodeling of the local vascular environment. Ultimately, these proteomic changes produce 

the lesions responsible for most ischemic cardiovascular events. Unfortunately, current 

methods to treat and prevent cardiovascular disease focus on antecedent risk factors that are 

not deterministic of these changes, or on anatomic manifestations of disease that are not 

clinically evident until long after these proteomic changes are underway. To improve early 

disease detection, and to interrupt the disease process before clinical consequences occur, it 

is necessary to recognize the specific patterns and dynamic features of arterial protein 

networks that constitute the molecular signatures of healthy and atherosclerotic arterial 

tissues.

Previous studies have described features of the arterial proteome in murine1-3 and cell 

models of atherosclerosis4, 5 and in limited numbers of human arterial samples with and 
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without atherosclerosis6-19. The most common source of human arterial samples has been 

carotid endarterectomy explants from older individuals with late stage carotid stenosis. To 

date there has not been a comprehensive survey of the human arterial proteome based on a 

large number of human coronary and aortic samples, using contemporary LC-MS/MS 

technology and subsequent identification of the proteins that signify presence of pre-clinical 

atherosclerosis. Accordingly, we established a tissue acquisition, mass-spectrometry analysis 

and statistical and bioinformatic pipeline to characterize the human coronary and distal 

aortic arterial proteome and to identify those proteins, networks and pathways most strongly 

associated with early atherosclerotic lesions. Detailed analyses of the detected proteins 

reveal several key features of the coronary and aortic proteome in health and disease and 

identify a subset of proteins that are also highly informative plasma biomarkers for presence 

of coronary atherosclerosis in the clinical setting.

Methods

The data, analytic methods, and study materials are available to other researchers for 

purposes of reproducing the results or replicating procedures. Specifically, the DDA MS and 

the MRM MS data along with the Skyline document have been uploaded to Peptide Atlas. 

The Spectral Library used for DIA MS quantitation has also been uploaded to Peptide Atlas. 

The data can be accessed at http://www.peptideatlas.org/PASS/PASS01066 or via FTP using 

the following credentials: Servername: ftp.peptideatlas.org; Username: PASS01066; 

Password: KV454u. A detailed description of all the methods can be found in Online 

Extended Methods.

Arterial Sample Acquisition and Pathology Grading Methods

Male and female coroner's cases of any race, aged 18-50 years (men) or 18-60 years 

(women) with no ante mortem clinical suspicion of coronary disease autopsied < 24 hours of 

death were eligible for inclusion. This report includes data from the first 100 autopsies 

included in the study (age range: 15-55 yrs., 75% males, 67% White, 26% Black, 7% Other). 

The Medico-Legal Death Investigators obtain signed family consent for retrieval of anatomic 

specimens prior to the autopsy using a protocol approved by the Lousiana State Univeristy 

IRB. During the autopsy the pathologist dissected the aorta (ligamentum arteriosum to aortic 

bifurcation) and LAD and removed branching arteries and adventitial or epicardial adipose 

tissue (Supplemental Fig. 1). A 5mm segment of the mid-LAD and 10mm segnment of the 

distal abdominal aorta (AA) were graded by the pathologist for % intimal surface 

involvement of the following atherosclerotic changes: a) fatty streaks (FS); b) fibrous 

plaques (FP); c) complicated lesions (CL); and d) calcified lesions (CO), and subsequently 

submitted for proteomic analysis.

Protein Extraction, MS Analysis and Protein Identification

Arterial samples were pulverized in liquid nitrogen, homogenized and digested with trypsin 

(1:20). A total of 2.0 μg of peptides per sample were analyzed using label-free quantification 

on a reversed-phase liquid chromatography tandem mass spectrometry (RPLC–MS/MS) 

online with an Orbitrap Elite mass spectrometer (Thermo Scientific, USA) coupled to an 

Easy-nLC 1000 system (Thermo Scientific, USA). The analysis was operated in a data-
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dependent acquisition (DDA) mode in the Orbitrap analyzer, followed by tandem mass 

spectra of the 20 most abundant peaks in the linear ion trap. One LAD and one AA sample 

(from different subjects) were excluded because of poor protein yield leaving n=99 samples 

from each territory for analysis.

The MS/MS data was searched against the concatenated target/decoy 20 Human Uniprot 21 

database as of July 24, 2015, with only reviewed and canonical sequences used. 

ProteinProphet 22 was then used to infer protein identifications. Label-free quantification 

and subsequent median normalization of each protein was performed using weighted 

spectral counting 23.

Statistical Analyses

Post-processing Quality Control and Data Imputation—A total of 1925 

unambiguous proteins were detected in one or more of the 99 LAD samples. Of these 

proteins 944 had ≤50% missingness and 375 had no missingness in all 99 samples 

(Supplemental Fig. 2). Missing values for the 944 proteins with ≤ 50% missingness were 

imputed using a low rank approximation derived from non-linear iterative partial least 

squares (NIPALS) PCA 24 (Supplemental Fig. 2). In a similar manner the AA samples 

revealed 1495 unambiguous proteins including 725 with ≤50% missingness.

Weighted Co-Expression Network Modelling

The WGCNA package in R was used to identify distinct protein modules among the 944 

proteins used for analysis 25. The power parameter was selected such that the topological 

overlap connectivity (k) of the entire network approximated a scale-free topology. To assess 

stability of module assignments, 50 bootstrap samples of the data were created and each one 

interrogated using identical WCGNA parameters.

Analysis of Association with Extent of Atherosclerosis or Anatomic Location

Regression Models: Both MANOVA and generalized linear models (GLM) with adjustment 

for age, sex, and race were used to model the distributions of % intimal surface 

demonstrating fibrous plaque (FP), fatty streaks (FS), and normal (NL) intima as a function 

of each individual protein. In a similar manner ordinal regression was used to examine the 

association between individual proteins and % FP treated as three level ordinal variables 

(FP: 0%, 1-59%, ≥60%).

When modeling the association between proteins identifed using data-independent 

acquisition (DIA-SWATH) and disease or location we also adjusted for for several 

housekeeping proteins (Proteasome subunit beta type-2, Small nuclear ribonucleoprotein Sm 

D3, Receptor expression-enhancing protein 5, Ras-related protein Rab-7a) and Myosin-11 (a 

vascular smooth muscle cell marker protein) to account for possible differences in tissue 

sample volumes, cellular composition, or protein yields.

Convex Analysis of Mixtures and Protein Expression Differences in Complex Tissues 
Analysis: Tissue heterogeneity, where multiple tissue types are variably mixed in each 

individual sample, represents a major confounder when seeking to identify tissue-specific 
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disease markers 26-30. Accordingly, we used Convex Analysis of Mixtures (CAM) 31 to 

perform a fully unsupervised data deconvolution to define the optimal data-derived tissue 

types present in the heterogeneous samples and to characterize the molecular markers whose 

expressions are maximally enriched in each empirically defined tissue.

GO Term and Pathway Enrichment Analysis

GO Term and pathway enrichment analyses using GO Term Finder 32, and IPA (Ingenuity 

Pathway Analysis, Ingenuity Systems, Redwood City, CA) tools were used to characterize 

the evaluable proteins obtained from the arterial samples. For the analyses of selected 

normal and atherosclerosis enriched samples, the significant differentially expressed proteins 

with |fold change| ≥1.7 and the false discovery rate (FDR) corrected p-value of 0.05 were 

analyzed with IPA for pathways, upstream regulators, and associated diseases and biological 

functions. The fold change cut-point of ≥1.7 was chosen to yield approximately 100 proteins 

for further analysis. Sensitivity analyses were also performed using proteins selected purely 

on the basis of q-value < 0.01 for FP vs NL.

Differential Dependent Network Analyses

Significant rewiring of biologic networks provides a unique perspective on phenotypic 

transitions that can occur in biological systems33-35. We used knowledge-fused differential 

dependency networks (kDDN) 36-38 to systematically characterize significant network 

rewiring in the arterial proteome between normal and fibrous plaque samples. We then used 

permutation-based significance tests to estimate p-values of detected differential dependence 

edges 36, 38

Multiple Reaction Monitoring Assay Design

The 38 proteins identified by DDA-MS analysis to be most highly associated with fibrous 

plaques were selected as candidate circulating biomarker proteins. The top three to four 

performing peptides from each protein were included for downstream MRM-method 

building. Five proteins (DRB1, LCP1, RNASE1, MTHFD1, and CALU) were excluded at 

this step for absence of any detectable peptides in a reference plasma sample. Unscheduled 

MRM methods were developed against 323 fragments from 86 peptides for the remaining 33 

putative FP marker proteins. The MRM data for plasma samples from the case and control 

CAD validation cohort were acquired on a SCIEX QTRAP6500 using multiple reaction 

monitoring (MRM) scanning in positive mode (Framingham, MA). Manual filtering 

eliminated an additional eight proteins from further analysis due to low or undetectable 

signal-to-noise ratios (CATB, TSP1, NNMT, S100A9, ITIH2, POSTN, CORO1A, and 

HTRA). The final 25 candidate proteins were processed to generate protein-level abundance 

data from the endogenous peptides.

Prediction of CAD from the Candidate Plasma Fibrous Plaque Biomarkers

An adaptive elastic net model (α=0.9)39-41 optimized by leave-one-out validation was used 

to select among the 25 candidate biomarkers for prediction of case status. Bias-corrected 

bootstrap sampling (n=10,000) was used to evaluate overall performance of the optimized 

model based on median (95% CI) AUC from the bootstrap samples 42.
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Results

Global Analysis of Coronary and Abdominal Aortic Proteomes Identifies Novel Arterial 
Proteins and Scale-Free Network Topologies

Based on stringent quality control and calling criteria a total of 1925 unambiguous protein 

groups (hereinafter referred to as “proteins”) were identified in one or more left anterior 

descending (LAD) coronary artery or distal abdominal aorta (AA) samples, including 974 

proteins present in 50% or more of the LAD or AA samples (Supplemental Table 1). The 

974 proteins represent a wide range of biological processes, molecular functions, cellular 

components and canonical pathways43 (Supplemental Figs. 3-5 and Supplemental Tables 

2-9). Of the 1925 proteins, 43 have not been previously described in thirteen prior studies 

that directly analyzed protein content of human arterial tissues (Supplemental Table 1). All 

but eight of these proteins were nevertheless predicted based on RNASeq analysis of human 

coronary oraortic samples from the GTEX Consortium 44.

The 944 proteins unique to the LAD exhibited a scale-free network topology typically seen 

in complex adaptive networks of molecular or cellular constituents from a variety of living 

organisms 45-47 (Fig. 1). Furthermore, these proteins included several distinct and 

reproducible co-expression modules that roughly correlated with specific cellular functions 

and locations such as mitochondrial proteins involved with cellular respiration (Red 

module), nuclear proteins involved with chromatin assembly and organization (Turquoise 

module), and extra cellular matrix proteins (Brown module). A similar scale-free topology 

and functional modular structure was also evident in the protein data from the AA 

(Supplemental Fig. 6.) A scale-free topology suggests that the arterial proteome may arise 

from a complex adaptive system with properties such as self-organized criticality, 

emergence, and resilience.46, 48, 49 Complex adaptive systems are uniquely well-suited for 

description using graph theory and network or non-linear dynamic modelling to reveal 

functional insights that may be less evident from more conventional linear conceptual 

models and methods33, 50, 51 (see below). The number and diversity of proteins detected and 

the fact that they exhibit a scale-free topology lends internal validity to our protein extraction 

and measurement approach and suggests that features of a complex adaptive system that are 

evident in gene transcript data remain after translation and protein catabolism.

Comparison of Normal Coronary and Aortic Proteomes Reveal Significant Differences in 
Mitochondrial Protein Mass

Several hundred proteins were detected in the LAD but not in the AA samples 

(Supplemental Fig. 7). This pattern was observed when limiting the analysis to completely 

normal samples (n=30 in each territory) or when limiting the proteins to those present in ≥ 

50% of the LAD and/or AA samples. GO term analysis of the proteins exclusively detected 

in the LAD indicated significant enrichment of mitochondrial proteins (p-value range 

1.7×10-6 to 1.8×10-28).

To confirm this apparent differential abundance of mitochondrial proteins between LAD and 

AA samples we performed a more sensitive data independent acquisition MS (DIA-MS also 

known as SWATH) analysis of entirely normal samples (n=30 in each anatomic location), 
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focusing on 114 quantified mitochondrial proteins involved with fatty acid metabolism, 

oxidative phosphorylation, tricarboxylic acid (TCA) cycle and mitochondrial biogenesis. To 

account for possible site and sample differences in cellular material or protein extraction 

yields the quantitative results were adjusted for several smooth muscle cell specific 

housekeeping proteins and age and sex of the autopsied cases. Overall, mitochondrial 

proteins were 1.98-fold more abundant in the LAD compared with the AA (p<0.001) 

including a 2.25 fold increase in oxidative phosphorylation proteins (p<0.001) and 

anisolated >10-fold excess of inorganic pyrophosphatase (p<0.001; Fig. 2). A similar 

comparison of soluble ECM proteins revealed only a small, albeit statistically significant 

(p=0.01) 6% excess in soluble ECM proteins in the AA samples compared with the LAD 

(Supplemental Fig. 8). A notable exception was tenascin which had a >10-fold excess in AA 

samples compared with LAD (p<0.0001).

These data suggest fundamental differences in mitochondrial mass and potential aerobic 

capacity between LAD and AA tissues, possibly reflecting the differing energy requirements 

of these two arterial tissue types. This heterogeneity in the proteomic profile of two arterial 

tissues emphasize the need for arterial anatomic specificity when characterizing the 

proteomics and functional biology of arterial tissues – especially if considering mechanisms 

or interventions that involve metabolic pathways (see below).

Atherosclerotic tissues in both the LAD and AA present a proteomic profile consistent with 
TNF-α activation; however, the LAD also provides evidence of inhibition of PPAR-α, PPAR-
γ, and insulin receptor regulated proteins - a pattern that is not evident in the AA

To define the proteomic profile of early atherosclerosis two complementary phenotyping 

strategies were used. First, each sample was graded by a vascular histopathologist according 

to %surface area involvement of normal intima (NL), fatty streak (FS) or fibrous plaque 

(FP). Extensive regression analyses (MANOVA, GLM, Ordinal Regression, and Elastic Net) 

were performed to identify proteins individually or jointly associated with %FP in the LAD 

and AA samples (Supplemental Tables 10-11, Supplemental Fig. 9). The internal validity of 

these data is supported by the presence and consistency across anatomic locations of several 

known protein markers of atherosclerosis from model systems among the top hits (e.g. Apo 

B-100, Ig mu chain C, CD5 antigen-like, plastin-2, tenascin, thrombospondin-1, cathepsin 

B, and vitronectin.)1

Second, convex analysis of mixtures52 (CAM) was used to de-convolve the global protein 

profiles from individual samples into unsupervised data-derived tissue phenotypes and to 

identify marker proteins associated with each phenotype (LAD: Fig. 3; AA: Supplemental 

Figures 10-11). This approach has the advantage of generating information about tissue 

phenotype from global protein profiles independent of the pathologist visual inspection of 

the arterial samples.

To take full advantage of both phenotyping strategies we used principal component analysis 

and hierarchical clustering of the pathologist- and CAM-derived phenotype data to produce 

a patho-proteomic classification for each LAD sample (Fig. 4). Clusters at the extremes of 

the first principle component identified samples highly enriched with FP or NL tissue (FP: 
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n=15; NL: n=30) with little or no confounding from fatty streaks from either a gross 

pathology or global proteomic perspective.

Comparing these FP-, and NL-enriched LAD samples identified eighty-nine (n=89) 

individual proteins with ≥(+/-) 1.7 fold-difference and a t-test q-value of ≤0.05 for FP vs NL 

(Supplemental Tables 12 and 13). Bioinformatic functional analysis of these atherosclerosis 

associated proteins revealed a pattern consistent with activation of the TNF-α pathway 

(p=2.64E-07), but also inhibition of insulin receptor, PPAR-α and PPAR-γ pathways 

(p=4.22E-10, 2.42E-13, 8.56E-16 respectively) (Fig. 4, Supplemental Table 14 and 15). A 

similar analysis of the atherosclerosis proteins in the AA samples (FP: n= 9, NL: N= 18) 

also produced a pattern consistent with TNF activation (p=1.92E-05) similar to the LAD 

(Supplemental Tables 16 and 17) and highlighted a core group of n=19 early atherosclerosis-

associated proteins that were shared across both anatomic territories (Supplemental Table 

18). However, in the AA sample proteomes there was no compelling evidence of inhibition 

of the insulin receptor, PPAR-α or PPAR-γ pathways (Supplemental Tables 14). In 

sensitivity analyses using only a t-test q-value of ≤0.01 for FP vs NL samples, qualitively 

similar results concerning upstream regulators and regulated pathways were observed 

(Supplemental Table 19). The apparent inhibition of the insulin receptor, PPAR-α or PPAR-

γ pathways in atherosclerotic samples from the LAD and AA suggests that there are 

fundamental metabolic derangements

Differential network analysis of coronary and aortic proteomes indicate divergent 
mitochondrial dynamics in the setting of atherosclerosis characterized by reduced 
mitochondrial mass in coronary arteries that is not evident in in the distal abdominal aorta

An important feature of complex adaptive systems is the potential for network topologies to 

change under different conditions. Accordingly, we used differential dependent network 

(DDN) analysis of the FP-associated proteins identified above to select proteins pivotal in 

the re-wiring of the network structure between NL and FP in the LAD samples (Fig. 5). 

Analysis of n=26 re-wiring hub proteins revealed significant enrichment of TCA proteins 

(p=4.8×10-6). Subsequent analysis of individual TCA proteins documented an average 60% 

reduction in TCA proteins in FP enriched samples vs. NL.

DIA-MS analysis of the same broad-based panel of n=114 mitochondrial proteins used 

previously was performed comparing FP vs NL samples from the LAD (Fig. 6). The results 

document a consistent reduction of a wide range of mitochondrial proteins in the FP samples 

compared to NL samples after adjustment for vascular smooth muscle specific housekeeping 

proteins, age and sex. In contrast, a similar analysis of the same proteins in AA samples 

revealed a much less consistent and non-statistically significant pattern of mitochondrial 

protein suppression. To determine if this was a mitochondrial specific phenomenon we also 

performed targeted DIA-MS analysis of a targeted panel of soluble ECM proteins (n=77) 

and found a modest atherosclerosis-associated increase of soluble ECM proteins in both 

territories (LAD mean fold-increase = 1.25, MANOVA p-value= 0.02; AA mean fold 

increase = 1.78 fold increase, p-value = 0.017); although there were specific examples of 

anatomic discordance that deserve further study (e.g. laminins and nidogens) (Supplemental 

Fig. 12). Collectively, these data demonstrate how the concept of network re-wiring can 
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produce biologically coherent insights that may not be evident from conventional statistical 

or pathway enrichment analysis strategies.

Clinical Validation of the Plasma Multiplex Atherosclerosis Biomarker Panel

To establish that fibrous plaque proteins discovered using human arterial samples could 

serve as informative plasma biomarkers of coronary atherosclerosis we developed a highly 

reproducible multiple reaction monitoring (MRM) assay for a subset of 25 of these proteins 

that were measurable in plasma (Supplemental Figure 13). Subsequently, we compared 

fasting levels of these proteins in 45 women with angiographically verified coronary 

atherosclerosis (cases) and 41 similar- aged women who were free of signs, symptoms or 

risk factors for coronary disease (controls) (Methods). An elastic net model identified 13 

proteins that jointly contributed to prediction of case status while also avoiding overfitting 

(Fig. 7: A and B). The bias corrected median (95%CI) AUC for this model based on 10,000 

bootstrap samples was 0.92 (0.83-0.96) and the median misclassification rate was 0.13. 

Among individual proteins with the largest effects sizes vitronectin, TGF-beta-induced 

protein, complement factor 7 and apo B were positively associated with presence of 

coronary atherosclerosis and tripeptidyl-peptidase 1, ITI heavy chain H1, and leukotriene 

A-4 hydrolase were negatively associated.

Discussion

The results here provide a comprehensive survey of human coronary and aortic proteins and 

identify individual proteins, protein networks and regulatory pathways that differ between 

arterial beds or that are indicative of early atherosclerosis. These data can be distinguished 

from prior work because of the inclusion of human coronary arteries which are responsible 

for the majority of acute ischemic vascular disease morbidity and mortality, the number and 

diversity of proteins identified, and the fact that these proteins were obtained from a large 

number of samples where the effects of local tissue context and natural biologic variation are 

manifest. Several analytic methods were used to illuminate complex networks involving 

many proteins that jointly signify arterial health and disease. Importantly, these data also 

show that proteins discovered using comprehensive tissue proteomics can be used to develop 

highly informative multiplex plasma biomarker assays with direct clinical utility. The 

publicly accessible data generated by this work, and the analytic methods depicted here 

represent additional resources that may lead to a wide range of future translational research 

concerning human arterial protein biology.

There are several notable findings among the many results reported here. First, the human 

arterial proteome exhibits features consistent with a complex adaptive network, reiterating 

the concept that complex adaptive networks are an overarching organizational feature 

common to many biologic systems53. Transcriptional profiles are well known to exhibit 

features of a complex adaptive system54. To our knowledge this has not been demonstrated 

at the protein level in human arterial tissue in such a large number of samples as described 

here; although others have described features of a complex adaptive system in proteomic 

analysis of human ovarian tumors55. The fact that our data do indeed resemble a complex 

adaptive network lends internal validity to our rendering of the arterial proteome. Looking at 
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the arterial proteome through the lens of complexity theory including concepts such as scale-

invariance (as documented here), self-organized criticality, emergence, and 

resiliency46, 48, 49 may produce insights that have escaped more narrowly focused 

investigations of a smaller number of proteins or a more linear and deterministic framework. 

The differential dependent networks presented here emphasize this point by defining 

dynamic features of complex protein networks that signify normal versus atherosclerotic 

arteries and by using key elements of these dynamic networks to discover important aspects 

of the proteome in atherosclerosis that were not easily evident by other means.

Second, the data reveal significant anatomic variation in the abundance of mitochondrial 

proteins in normal arterial samples, suggesting that coronary arteries likely have 

considerably greater aerobic capacity than the distal aorta. This fits our understanding of the 

different embryology28 and normal physiologic roles of these distinct regions of the arterial 

system with the coronary arteries having greater energy requirements associated with 

regulation of coronary blood flow compared to the distal aorta which serves primarily as 

passive conduit for blood delivery to the lower extremities. To our knowledge this 

substantial variation in mitochondrial protein mass between coronary and aortic tissues in 

humans has not been previously documented.

Third, the data indicate profound anatomic differences in key metabolic regulatory pathways 

and mitochondrial dynamics in the setting of atherosclerosis. Specifically, the data reveal a 

broad-based reduction of mitochondrial protein mass and a proteomic pattern consistent with 

inhibition of PPAR-α, PPAR-γ, and insulin receptor regulated pathways in atherosclerotic 

coronary arteries, but not in similarly diseased distal abdominal aortic samples. These data 

provide critical anatomic specificity to the growing body of evidence that mitochondrial 

dysfunction and altered mitochondrial dynamics are also central features of atherosclerosis 
561557, and may provide a mechanistic framework to explain the anatomic dimorphism 

between coronary and peripheral arterial disease with respect to conventional and genetic 

risk factors for atherosclerosis.58, 59 It remains to be determined whether the reduction in 

mitochondrial protein mass in coronary atherosclerosis is a consequence of oxidative, or Ca
++-mediated mitochondrial damage and mitophagy, impaired mitochondrial biogenesis, or 

both. It is interesting to note that the concurrent increases in the lysosomal cathepsins in the 

atherosclerotic samples may signify enhanced lysosomal biogenesis useful for targeted 

degradation of damaged mitochondria.56

The data also reassuringly highlight numerous individual proteins and a global proteomic 

pattern of TNF-α activation in the FP samples consistent with several decades of research 

documenting the role of inflammation in the pathogenesis of atherosclerosis. 60 However, 

even the more familiar indicators of TNF-α activation and inflammation exhibited 

substantial anatomic variation from LAD to distal aorta in our data.

Recognizing the anatomic heterogeneity with respect to mitochondrial and metabolic 

enzyme profiles has important implications for research on arterial health and disease. Many 

of the pathogenic mechanisms and targeted therapies for atherosclerosis are directly related 

to fatty acid metabolism or aerobic energy biosynthesis and redox homeostasis61. 

Unfortunately, a great deal of our understanding of arterial biology has been generated 
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without regard to anatomic distribution. For instance many animal models of atherosclerosis 

rely on aortic, femoral or carotid manifestations of disease with the assumption that findings 

are generalizable to human coronary arteries. Likewise the overwhelming majority of human 

arterial proteomic data have been generated from carotid arteries – typically severely 

diseased endarterectomy specimens. The current data suggest that a complete understanding 

of the pathogenesis and prevention of human arterial atherosclerosis may require more 

anatomically specific methods of interrogation.

Finally, the data demonstrate the translational potential of proteomics from complex human 

tissues to identify clinically informative plasma biomarkers. While significant portions of 

the arterial proteome reside in compartments inaccessible to the plasma blood pool, there are 

many others that are secreted or released into the circulation, and the plasma concentrations 

for some of these, such as vitronectin, are uniquely informative about the presence of early 

atherosclerosis. The prominent contribution of vitronectin as an atherosclerosis biomarker is 

plausible based on accumulating evidence that this polyfunctional matricellular protein plays 

a critical role in organizing the earliest response to tissue injury62. Similarly compelling 

arguments can be made in support of many of the other atherosclerosis associated proteins 

(e.g. CD5 antigen-like, complement factor I, complement component C7, etc). However, 

based on the data presented here, early atherosclerosis is likely best revealed through 

changes in a complex array of many proteins rather than any single sentinel protein. 

Fortunately, recent advances in mass spectrometry technology now permit sophisticated 

multiplex assays to measure many more proteins with very small plasma volumes – making 

multidimensional proteomics assays such as the one described here a clinical possibility in 

the near future.

Several limitations in the current work should be considered. First, although a 

comprehensive analysis of 200 human arterial specimens is a considerable technical 

accomplishment, and despite the fact that we used stringent statistical methods and other 

information theoretical considerations to minimize false positives (generally to ≤ 5%), there 

remains the possibility of residual confounding or limited statistical power which could 

obscure both positive and negative associations. The fact that many of the sentinel findings 

generated by the initial data dependent MS approach were subsequently confirmed and 

strengthened by a separate data independent acquisition MS method (which uses different 

peptides for protein identification) provides further support for the validity of the findings. 

Second, highly crosslinked ECM proteins can be relatively refractory to extraction without 

specialized solubilization strategies 63. Accordingly, there may be differences in tissue ECM 

composition by anatomic location or disease status that are not evident based on the soluble 

fraction examined here. This limitation not withstanding, we were able to achieve excellent 

coverage excellent ECM coverage including collagens, fibronectin, elastins, lamins 

including feparin sulfate and chondroitin sulfate proteoglycans (see Supplemental Table 1). 

We attribute this to the fact that we used both DDA and DIA acquisitions to maximize 

peptide detection and protein identification. Third, the fact that the samples were all 

collected post-mortem raises questions about possible effects of death on the stability of 

individual proteins or specific cellular functional processes. If such effects are differentially 

manifest in normal versus atherosclerotic tissues, this could give the appearance of 

differences by disease status that are not present during life. It is reassuring that many of the 
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individual proteins identified here overlap with findings from animal models of 

atherosclerosis and in-vitro studies where the effects of post-mortem hypoxia and cessation 

of cellular metabolic activity are more easily minimized. Fourth, the observed differences in 

the proteome between normal and diseased samples represent a unique, albeit macroscopic 

view of the proteomic architecture of human coronary and distal aortic atherosclerosis. More 

work is required to clarify the functional role of the specific proteins, protein networks and 

pathways identified here, and to establish if there is therapeutic value in manipulating them. 

Nevertheless the data already reveal the potential clinical utility of a diverse array of plasma 

proteins as atherosclerosis biomarkers even as their mechanistic underpinning continue to be 

explored.

In summary, these data represent the most comprehensive description of the human coronary 

and aortic proteome to date and reveal numerous proteins, networks and pathways that are 

strongly indicative of early atherosclerosis. They also indicate fundamental differences in 

mitochondrial dynamics between the coronary artery and the distal aorta in both normal and 

atherosclerotic conditions. The data highlight the value of new methods to extricate tissue 

phenotypes from heterogeneous tissue samples and depict dynamic features of protein 

networks that vary as a function of disease state and anatomic location. Finally the results 

illustrate the potential utility of using tissue proteomics to identify plasma biomarker and 

provide evidence of the clinical utility or a multiplex biomarker panel to indicate the 

presence of coronary atherosclerosis. Altogether these data and methods establish a new 

foundation for research to better understand the human arterial proteomic architecture in 

health and disease.
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Clinical Perspective

What is new?

• Proteomic analysis of human coronary arteries (n=100) and aortas (n=100) 

identified hundereds of proteins (n=1925), and numerous networks and 

pathways that are associated with early atherosclerosis.

• Atherosclerotic samples had significant reductions in mitochondrial protein 

abundance.

• Atherosclerostic sample proteins indicated inhibition of the insulin receptor, 

PPAR-α, and PPAR-γ regulated pathways and activation of the TNF 

regulated pathway.

• A 13-protein plasma multiplex assay based on the most promising 

atherosclerosis-associated proteins was strongly predictive of 

angiographically defined CAD in an independent clinical cohort (AUC =0.92; 

95% CI:0.83-0.96).

What are the clinical implications?

• High resolution mass-spec proteomics and network analyses can produce new 

mechanistic insights and indentify novel biomarkers for presence of 

subclinical atherosclerosis.

• Advances in sample collection and high-throughput processing mean that 

multidimensional proteomics assays, including proteins identified here will be 

available to support precision medicine treatment and prevention in the near 

future.
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Figure 1. Weighted Co-Expression Network Analysis of Human LAD Proteins
a. Adjacency map of LAD proteins color coded by module assignment based on hierarchical 

clustering of the topological overlap matrix (TOM)-based dissimilarity measure. For clarity 

of presentation only nodes (proteins) with at least one edge (adjacency measure (k)) > 

97.5%tile are shown (n-544). b. Left panel shows that scale-free topology is best 

approximated when the adjacency power parameter β= 10. Right panel shows the log-log 

plot of adjacency (k) vs prob(k) with β= 10, confirming the power-law relationship in the 

connectivity of the expressed proteins. c. Module assignment for fifty 90% random samples 

of the data illustrating the overall stability of the modular structure of the protein expression 

patterns. Colors are assigned according cluster size which may vary with each random 

sample. As a result actual color assignment may vary from run to run, but module 

membership remains relatively stable. d. Top non-redundant GO Terms with Bonferroni 

corrected p-values and an exemplar protein for each module.
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Figure 2. Comparison of Mitochondrial Proteins in Normal LAD and AA Samples
DIA-MS analysis of completely normal LAD and AA samples (n = 30 from each anatomic 

region) with adjustment for age, sex, MYH11, RABA7A, TERA, G6PI. LAD vs AA 

MANOVA p-values by mitochondrial protein group: fatty acid metabolism, p = 0.04; 

oxidative phosphorylation, p < 0.0001; TCA, p < 0.0001; mito biogenesis, p < 0.0001.
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Figure 3. Convex Analysis of Mixtures of LAD Protein Data
a. Heatmap of mixed expressions of upregulated marker proteins (UMPs) in 99 LAD 

samples. b. Estimated proportions of NL1, NL2, FS, and FP across 99 LAD samples. c. 

Heatmap of subpopulation-specific expressions of UMPs. d. Mathematical description on 

the i-th protein expression readout ‘x’ as a weighted sum of the protein expressions in the 

distinctive tissue types ‘s’ present in the heterogeneous samples, weighted by the mixing 

proportions ‘a’. e. Geometry of the mixing operation in scatter space that produces a 

compressed and rotated scatter simplex whose vertices host subpopulation-specific UMPs 

and correspond to mixing proportions.
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Figure 4. Patho-Proteomic Phenotyping
a. Hierarchical clustering and principal component score plot of the pathologist grading of 

extent of FP, FS, and normal tissue combined with CAM-derived estimates of proportion of 

four different empirical tissue types. Dashed circles indicate samples (2:1) from the 

extremes of the first principal component which separates fibrous plaques and normal 

arterial tissue. b. Volcano plot of log(fold change:FP/Normal) vs. -log(t-test q-value) for 944 

arterial proteins. Black data points indicate proteins with a fold-change of >1.7 (or < 1/1.7) 

and a q-value of <0.05. (Two proteins with –log(q-value)>10 not shown.) c. Heatmap of the 

spectral count values for the N=88 proteins meeting the fold-change and q-value criteria 

noted in panel b. The individual proteins are listed in Supplementary Tables 8 and 9. d. A 

combined network map of the significantly up- and down-regulated proteins that are 

consistent with effects of an upstream master regulator. The observed pattern of proteins in 

FP are highly suggestive of TNF activation (p=1.64E-6, z-score=3.19), and inhibition of 

PPAR-α (p=3.55E-10, z-score=-3.06), PPAR-γ (p=2.87E-10, z-score=-3.02), and the 

insulin receptor (1.41E-12, z-score=-2.16). PPAR-α, PPAR-γ, and the insulin receptor 

pathways are themselves inhibited by TNF activation. When using >1.5 fold-change criteria, 

several additional regulatory networks were also identified (e.g. TGFB1, TP53, SP1, MYC). 

e. Predicted disease processes and their affiliated proteins significantly overrepresented by 

the up- and down-regulated proteins in fibrous plaques. The data are consistent with major 

alterations in cell-cell adhesion/interaction (p = 3.64E-03), lipid uptake (p = 1.67E-03), 

glucose homeostasis (p = 2.83E-06) and blood pressure regulation (p = 3.68E-03).
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Figure 5. Differential Dependent Network Analysis of LAD Fibrous Plaque Proteins
a. Plot depicts re-wiring of the protein network between FP and normal samples. Green 

nodes are down-regulated and red nodes are up-regulated in FP samples. Green edges 

indicate significant correlation in normal samples, but not FP samples. Red edges indicate 

significant correlation in FP samples. Black squares indicate differential network “hub 

proteins” (ie. proteins with different couplings to network partners in FP and normal 

samples.) GO term analysis of the differential network hub proteins indicated significant 

enrichment of TCA proteins (p=4.8×10-6). b. TCA cycle proteins with MS data available for 

additional anlaysis. Every protein indicated by a red box was quantitatively lower in FP 

samples than in normal samples after adjustment for housekeeping proteins, age and sex. c. 

Statistical comparison of TCA proteins in FP vs normal LAD samples.
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Figure 6. Comparison of Mitochondrial Proteins in FP vs NL Samples from the LAD and AA
DIA-MS analysis was used to compare a targeted set of mitochondrial proteins in n=15 FP 

and n=30 NL LAD samples after adjustment for age, sex, MYH11, RABA7A, TERA, G6PI. 

Histogram bars indicate relative difference ebetween FP and NL samples in each anaotomic 

location. LAD MANOVA p-values for each mitochondrial protein group: p < 0.0001 for 

each group; AA MANOVA p-values for each mitochondrial protein group: p= n.s for each 

group.
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Figure 7. Clinical Validation of Fibrous Plaque Proteins
A. Solution path for the elastic net model (α = 0.9) with parameter estimates as a function of 

increasing number of variables entered into the model as reflected by the sum of the Scaled 

Parameter Estimates. The generally monotonically increasing solution paths suggest relative 

stability and no major interactions among the proteins included in the model. B. The-

LogLikelihood derived from the leave-one-out validation samples as a function of increasing 

number of variables entered into the model. The negative inflection point indicates the 

optimal feature selection after which adding additional variables lead to worsening 

(increasing) –LogLikelihoods due to overfitting of the data. C. The ROC curve for the 

optimal model predicting presence of angiographically proven coronary disease. Bootstrap 

estimates of the AUC and its 95% CI based on 10,000 samples were 0.93 and 0.85-0.97 

respectively. D. Parameter estimates for proteins included in the plasma protein biomarker 

panel. Six proteins (indicated in bold) had the strongest evidence for contributing to model 

performance. However, elastic net models permit inclusion of additional variables that may 

be correlated with other terms in the model. These proteins may not individually contribute 

greatly to the overall prediction performance, but nevertheless participate in underlying 

mechanistic pathways worthy of further consideration.
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