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Abstract

Reduced motor control is one of the most frequent features associated with aging and disease. 

Nonlinear and fractal analyses have proved to be useful in investigating human physiological 

alterations with age and disease. Similar findings have not been established for any of the model 

organisms typically studied by biologists, though. If the physiology of a simpler model organism 

displays the same characteristics, this fact would open a new research window on the control 

mechanisms that organisms use to regulate physiological processes during aging and stress. Here, 

we use a recently introduced animal-tracking technology to simultaneously follow tens of 

Caenorhabdits elegans for several hours and use tools from fractal physiology to quantitatively 

evaluate the effects of aging and temperature stress on nematode motility. Similar to human 

physiological signals, scaling analysis reveals long-range correlations in numerous motility 

variables, fractal properties in behavioral shifts, and fluctuation dynamics over a wide range of 

timescales. These properties change as a result of a superposition of age and stress-related adaptive 

mechanisms that regulate motility.

Fractal-like fluctuations are a hallmark of healthy physiological systems such as heart rate 

[1,2], neural spiking [1,2], and gait dynamics of humans [3]. The widespread prevalence of 

fractal-like dynamics in physiological processes refuted classical theories of physiological 

control, which assumed that health is maintained through strict homeostasis and that 

fluctuations away from homeostasis should be uncorrelated. Instead, physiological signals 
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show self-similar patterns across multiple scales and exhibit long-range correlations in their 

fluctuations.

Fractal-like patterns are also widespread in animal behavior such as the timing of specific 

movements and diffusive patterns in the paths of animals moving through their environment. 

For example, it has been argued that Lévy flights are an optimal strategy for landscape 

exploration in the search for food, sexual partners, and so on [4]. Lévy flights have been 

observed in the foraging behavior of ants [5], albatrosses [6], monkeys [7], sharks, bony 

fishes, sea turtles, and penguins [8]. Fractal patterns have also been observed in the timing of 

specific behaviors, such as feeding, sexual, social, and vigilant behavior in Spanish ibexes 

[9], fathead minnows [10], wild chimpanzees [11], and domestic hens [11], respectively.

Here, we examine the behaviors of one of the simplest multicellular model organisms, 

Caenorhabditis elegans, and find that it displays fractal-like movement dynamics. C. elegans 
is a prominent model organism in molecular biology because of its simple body structure 

and a fixed cell lineage containing 302 neurons from a total of 959 somatic cells. Despite its 

relative simplicity, the nematode shares many biological characteristics with more complex 

organisms such as humans. They have an organ system that includes a digestive system, a 

nervous system, gonads, and muscles [12,13]. They have a well-characterized life-cycle 

involving development, reproduction, and aging [14,15]. Despite their small genome size 

(~100 Megabase versus 3.6 Gigabase for humans), nearly 40% of its genes are human 

homologs [16], and the majority of human disease genes and disease pathways are present in 

this nematode [17,18]. These commonalities make C. elegans an ideal model organism for 

experimentally studying health and behavior.

In fact, many aspects of C. elegans behavior have already been linked to specific biological 

processes. Aspects of C. elegans motility have been linked to specific neurons [19], genes 

[20], and environmental stimuli [21]. Many behavioral metrics have been studied for C. 
elegans, including speed [22,23], body posture [24], frequency of particular actions [25], and 

the configuration of the worm’s body over time [26]. Despite having a nearly isogenic 

background, individual nematodes raised under the same conditions can have a high degree 

of individual variability in movement-related behaviors [27]. Furthermore, even individual 

C. elegans can show highly variable behavior when observed for time periods longer than a 

few minutes [Fig. 1].

To create a sufficient number of multi-hour time series tracking the behavior of individual 

animals, we use the multiworm tracker’s real-time data acquisition [28] software and correct 

imaging and worm identity errors after acquisition using the worm analysis for live detailed 

observation (WALDO) [27] software. Our experimental and software infrastructure allow us 

to track tens of animals at a time for multiple hours while still maintaining the identities of 

individual animals.

The methods used to acquire all motility data for this paper were previously described in 

detail by Winter et al. [27]. We used Wild-type Bristol isolate of Caenorhabditis elegans 
(N2) from the Caenorhabditis Genomic Center (CGC) for all experiments. Standard methods 

were used for culturing and observing C. elegans [20]. Nematodes were age-synchronized 
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via egg-laying and grown to adulthood at 20 °C on 60-mm nematode growth medium 

(NGM) plates seeded with 200 μl of Escherichia coli OP50 strain. The plates were swirled 

until they reached a uniform distribution of food across their surfaces. Ten to fifteen animals 

were placed on a 60-mm NGM plate inside a copper frame with 2.5×1.5-cm interior 

dimensions. All motility assays were performed inside of a Percival I-36NL C8 incubator to 

ensure a nearly constant environmental temperature.

The time series shown in Fig. 1 displays irregular patterns that are linked to how the 

organism processes information about its internal state and the chemical and mechanical 

cues from its surroundings. For example, forward or backward motion has been related to 

the activity of specific groups of neurons during foraging behavior [29]. We focus on three 

types of analyses commonly used to detect fractal behavior: mean-square displacement 

(MSD), fractal dimension, and long-range correlations [1,30-36]. By implementing all of 

these approaches, we assess whether individual worms change their position and regulate 

movement in a manner consistent with fractal physiology [Fig. 2].

MSD quantifies how an animal moves from its current position. We have considered the 

positions time series r i(t) to measure the time dependence of the variance of the radial 

position, this is, σ2(t) = 〈[ r i(t) − 〈 r i(t)〉]2〉, where 〈 r i(t)〉 is the average radial position over 

all tracks i at time t. For a random process (Brownian motion) the variance of the position of 

an individual increases linearly with time. More generally, the variance increases with time 

in a power-law fashion [30-33], σ2(t) ~ tγ, where 0 < γ < 1 corresponds to subdiffusion, 1 < 

γ < 2 to superdiffusion, γ = 2 to a ballistic diffusion, and γ = 1 is the memoryless Brownian 

diffusion regime. For Lévy flights in a bounded space, the variance can be modeled as a 

power-law that saturates for long times [38]. Mathematically, this can be written as

σ2(t) =
Dtγ t < tc
C t > tc

, (1)

where γ is the diffusion exponent, D is a constant related to the diffusion coefficient, tc is the 

time need to reach the boundaries, and C is constant arising from the confinement within a 

bounded area.

The results of Fig. 2(a) demonstrate that the exponent γ is significantly different from 1 for 

one-day-old worms. Superdiffusive behavior was also observed in worms recorded on a 

different condition, where no food were present during the data acquisition [39,40]. Our 

experimental data enables us to identify the power-law superdiffusive behavior (γ > 1) and 

saturation regime of the variance for t > 100 s consistent with the theoretical predictions for 

Lévy flights in a bounded area [38]. We can also observe that there is a transient regime 

where the data falls below the adjusted line, suggesting that γ ~ 2 would be a better fit to 

data for t < 10 s and that there is a transient period characterized by ballistic motion for short 

time scales. The ballistic behavior was also found for assays with worms recorded on no 

food [39].
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Box-counting fractal dimensions are used to quantify the fractal nature of intermittent 

behaviors. C. elegans engages in several types of intermittent behavior, such as forward and 

backward motion, reorientation, and coiling [Fig. 1(b)]. The time series of these events 

display a fractal geometry, that is, the structure of the signals looks similar at different 

timescales. To quantitatively evaluate the fractality of these signals, we use the box-counting 

method [34] to calculate the fractal dimension of the intermittent behavior for every 

nematode. Specifically, we count the number N(s) of boxes of size s containing at least one 

non-null value. For a fractal object, N (s) ~ s−df, where df is the Hausdorff fractal dimension 

of the object [34].

For time series, the fractal dimension must be confined between df = 0, when the behavior is 

practically absent, and df = 1, when the behavior occurs with a uniform probability across 

time. In Fig. 2(b) we show a plot of the number of box N (s) versus 1/s for a single worm. 

The fractal dimension exponent df < 1 is a consequence of the unpredictability of the 

worm’s behavior and how it reacts to cues in the environment, such as food or the 

concentration of excreted substances. Indeed, it has been shown that the ability of changing 

behavior accordingly to external stimulus can be crucial for organism survival [29]. The fact 

that we find df < 1 for forward motion implies that forward motion is not the default 

behavior; the worm needs to alternate the states of motion between the different movements 

to achieve an optimal search strategy.

We next use detrended fluctuation analysis (DFA) to quantify long-range correlations in the 

fluctuations of signals [1,35]. This methodology can be implemented using the following 

steps: (i) integrate the time series and divide it into boxes of equal length n; (ii) for each 

segment, a local polynomial trend is calculated and subtracted from the integrated profile 

(here we have used a linear function, but higher orders do not change our results); (iii) for a 

given box size n, calculate the root-mean-square fluctuation F (n); (iv) repeat this procedure 

for all timescales n. Typically, the fluctuation function has a power-law dependence on the 

observation timescale n, F (n) ~ nh. The parameter h (Hurst exponent) is a scaling exponent 

that describes the self-similarity in the fluctuation at different timescales and is related to the 

decay of autocorrelation in the time series. If h = 1/2, the time series has, at most, short-

range correlations. Long-range correlations are present if h ≠ 1/2. A h < 1/2 signals 

antipersistent changes and a h > 1/2 signals persistent changes.

DFA shows that both centroid and head speed time series display long-range correlations 

and present persistence in their velocity fluctuations for worms on the first day of adulthood. 

The behavior of the fluctuation function log10 F(n) as a function of the scale log10 n for the 

centroid speed time series υ(t) and head speed υh(t) of all worms are shown in Fig. 2(c). The 

power-law trend is clear for all individuals.

It is striking that a simple organism such as C. elegans can display a behavior of a 

complexity similar to that found for human physiology. These findings open a new window 

for studying the effects of aging and stress on health, because of the shorter lives, less 

restrictive experimentation constraints on invertebrate testing and the similarities between 

many fundamental cellular structures and biological characteristics of C. elegans and 

humans.
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We know that aging and disease can drastically alter the fractal characteristics of signals 

from human physiology. We next test whether this is also true for C. elegans. To explore 

how aging affects the dynamics of worm physiology, we repeat the previous analysis for 

worms of different ages [Fig. 3].

Using MSD, we observe the prevalence of super-diffusive behavior across all ages, but with 

statistically significant differences across ages. We show our estimates of γ obtained via 

bootstrapping in Fig. 3(a). The distribution of exponents for each age is shown in Fig. 3(d) 

and the p values for the Mann-Whitney test with corrections for multiples comparisons are 

shown in Fig. 3(e).

As we mentioned previously, there is a transient ballistic regime for short times and because 

we are trying to minimize the error when fitting the data, this could leads to a diffusion 

exponent that do not represent well the differences across ages. To overcome this, we have 

calculated the MSD exponent for intervals in the range tw−1 < t < tw with w = [1,4]. Thus, in 

Fig. 3(f) we can identify three regimes: ballistic diffusion (γ = 2) for t < 10 s, superdiffusion 

(γ > 1) for 10 s < t < 100 s, and the saturation regime (γ ≈ 0) for t > 100 s. By comparing 

the exponents in the region of interest (superdiffusion regime) we can see the similar pattern 

to what was found in Fig. 3(a).

The fractal dimension characterizing forward motion also changes with age. In Fig. 3(b), we 

show the statistical significance of the differences between ages, where the differences are 

indicated by the p values for the Mann-Whitney test. We can observe that day two is slightly 

smaller than the other days (excluding day 5 and 6), and this could be related to egg-laying 

since almost 50% of the eggs are laid in this day [12]. Egg-laying is known to affect 

movement of C. elegans. For instance, prior to an egg-laying event, there is a transient 

velocity increasing and reversals movement are inhibited during egg-laying [41]. During 

egg-laying, the worm stays in a state of no movement [42], what could directly change the 

fractal exponents at this period. Indeed, a decrease in the fractal dimension from binary 

behavioral time series were also observed during pregnancy for Spanish ibexes [9].

The DFA correlation exponent for each track—gray lines in Fig. 2(c)—showed a prevalence 

of long-range persistent correlations in the time series of centroid speed and head speed 

across ages, as shown in Fig. 3(c). Although the exponents are almost the same for all ages, 

there are some significant differences, as indicated by the p values for the Mann-Whitney 

test. Notice that, in contrast with the differences found in human physiology where there are 

alterations on the DFA exponent for sick people, here we have statistically significant 

differences for healthy worms that only differs by their ages [Fig. 3(e)].

Our results show that the fractal properties of worm motility depend on its age and life-

stage. Age-related changes, such as egg-laying, seeking mates or food, and deterioration of 

organs and tissues (neuronal and muscle system), can be related to changes in the diffusion 

exponent γ, fractal dimension df, and Hurst correlation exponent h. The superpositions of 

these effects are manifested as small (but statically significant) changes in the exponent 

values. While the measured changes in exponent values appear to be quite small, one should 

note that the measured changes in exponent values for human heart rate variability were 
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obtained comparing records for healthy individuals with records obtained for patients 

suffering from congestive heart failure, a very serious heart condition that is frequently fatal 

[1]. In contrast, our comparisons are performed for the human equivalent of a 15-year-old 

and a 40-year-old.

Like aging, stress can change the fractal properties of physiological systems. Previous works 

have shown that worms can change behavior according to the environmental temperature 

[21,43,44]. C. elegans assays are performed at three growth temperature: 15 °C, 20 °C, and 

25 °C [45]. The stress caused by the variation of temperature at both extremes of this range 

declines fecundity [46,47], can change directionality of movement [21,43], and increase 

levels of activity [44]. The maximum brood sizes for N2 worms in laboratory conditions is 

achieved for temperatures slightly above 18 °C [45,48]. Deviations from this temperature 

can cause stress and, because of that, we used temperature to test different stress conditions 

in worms. To do so, we took worms raised at 20 °C and put them at a colder temperature 

(15 °C) and at a higher temperature (25 °C) and recorded their trajectories. The worms used 

for the temperature assays were young adults (day 1 of adulthood). Then, we evaluated how 

the diffusion exponent γ, fractal dimension df, and fractal correlation exponent h change 

with temperature (Fig. 4).

For the MSD analysis, temperatures different from 20 °C seem to introduce additional noise 

in the trajectories (in the range 10 s < t < 100 s), with bigger effects for the lower 

temperature [Fig. 4(a)]. The distribution of MSD exponents γ and statistical differences are 

shown in Figs. 4(d) and 4(e), respectively. We can identify the three diffusion regimes 

(ballistic, superdiffusion, and saturation regimes) and differences on the diffusion exponents, 

similarly to the results for aging [Fig. 4(f)].

The fractal dimension df for movement behavior decreases as temperature increases [Fig. 

4(b)]. The correlation exponent h for the velocities time series also change with temperature 

[Fig. 4(c)]. Particularly, we can observe a statistically significant increasing in the 

correlation exponent h of the head speed as temperature increases. The response to 

temperature stimulus seems to affect more head speed since head movements are associated 

with exploration and sensing during foraging [49]. The distributions of fractal dimension, 

and DFA exponents are shown in Fig. 4(d) and the matrix of p values are shown in Fig. 4(e).

Despite our efforts to keep temperature constant during the experiments, it is not possible 

remove small fluctuations in the temperature. It is known that spatial gradients of 

temperature lead to changes in directionality of motion [21]. While it is important to 

systematically investigate the impact of local temperature on the self-stimulus of trajectory, 

this goes beyond the scopes of this work.

The motility of healthy C. elegans displays fractal properties reminiscent of human 

physiological signals. As for humans [1,3,36,50], we find statistically significant differences 

in the fractal behavior of the motility of C. elegans for different ages and stress levels. 

Although, the use of C. elegans is already pervasive in biological studies of aging, our 

results suggest that the similarity to the human aging process is deeper than previously 

thought; but it extends to subtler perturbations and subtler phenotypes. We believe that C. 
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elegans can be used to study how fractal dynamics are created by the regulatory processes of 

physiological systems and provide insights into the fundamental processes required to 

maintain a healthy physiology in the face of aging and stress.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Self-similarity of C. elegans motility. (a) Our experimental system enables us to track ten to 

fifteen worms (at a time) that are confined within a cooper enclosure 2.5×1.5 cm, the 

equivalent of a basketball court for humans. We plot the trajectories of four worms during a 

ten minute period. Notice that the variability in behaviors across individuals. See 

Supplemental Material for a video from a single worm [37]. (b) Intermittent behaviors, such 

as “moving forward” display a Cantor dustlike behavior, indicating fractality. The black 

vertical bars represent periods of forward motion and the white ones the absence of this 

behavior. (c) Centroid speed υ and head speed υh time series of a single worm exhibit 

fluctuations across a broad range of timescales.
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FIG. 2. 
Fractality of C. elegans motility. (a) Determination of diffusive behavior of worms at day 

one of adulthood. Red dots are the data, and the black dashed line is a fit to Eq. (1) and the 

continuous line represents a random diffusion. γ is significantly larger than 1, indicating that 

movement of the worm is not random. (b) Determination of fractal dimension of intermittent 

behavior “moving forward” using the box-counting method. df is smaller than 1, suggesting 

that forward motion is not the default behavior, that is, that there are periods of all lengths in 

between consecutive periods of forward motion. The continuous line represents a time series 

where only exist forward motion. (c) The determinant of long-range correlations in 

velocities time series. Each gray line is the fluctuation log10 F(n) as a function of the scale 

log10 n for a centroid and head speed time series. The square red dots represent binned 

averages over all curves and error bars are standard deviations. The dashed black line is OLS 

fit to the averages. The continuous line represents a random process with h = 1/2. The Hurst 

exponent h > 1 indicates that velocities have long-range persistent correlations. The numbers 

between parentheses in all plots are the standard error in the last digit.

Alves et al. Page 11

Phys Rev E. Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIG. 3. 
Changes in the scaling exponents with aging. (a) MSD exponent γ as a function of age for 

100 samples via bootstrapping. (b) Fractal dimension df as a function of age. (c) Long-range 

persistent correlations are pervasive at all ages despite changes in Hurst exponent for 

centroid speed and head speed time series. (d) Probability distribution function (PDF) of the 

exponents calculated using kernel density estimation. The Kolomogorov-Smirnov test rejects 

the normal hypothesis at 95% of confidence for all exponents, except for γ at ages in the 

range 1 to 5. (e) Matrices of the p values resulting from the multiple comparison to test the 

null hypothesis that the two samples come from the same population via Mann-Whitney test 

with Bonferroni corrections. A p value < 0.05/15 means that the populations are distinct. (f) 

MSD exponent as a function of age for different time ranges tw−1 < t < tw. The bars are the 

diffusion exponents γ and the small error bars stand for the fitting standard error. In all box-

plots, the red middle line represents the median, the middle “box” represents the middle 

50%, the upper and lower whiskers bars are the most extreme non-outlier data points, and 

dots are the outliers.
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FIG. 4. 
Changes in the scaling exponents with stress. (a) MSD exponent γ as a function of 

temperature for 100 samples via bootstrapping. (b) Fractal dimension df as a function of age. 

(c) Long-range persistent correlations are pervasive at all ages despite changes in Hurst 

exponent for centroid speed and head speed time series. (d) Probability distribution function 

(PDF) of the exponents calculated via kernel density estimation. The Kolomogorov-Smirnov 

test rejects the normal hypothesis at 95% of confidence, for all exponents distributions, 

except by the distribution of MSD exponents at the temperatures 15 °C and 25 °C. (e) 

Matrices of the p values resulting from the multiple comparison to test the null hypothesis 

that the two samples come from the same population via Mann-Whitney test with 

Bonferroni corrections. A p value <0.05/3 means that the populations are distinct. (f) MSD 

exponent γ as a function of temperature for different time ranges tw−1 < t < tw. The bars are 

the diffusion exponents γ and the tiny error bars stand for the fitting standard error. In all 

box plots, the red middle line represents the median, the middle “box” represents the middle 

50%, the upper and lower whiskers bars are the most extreme nonoutlier data points, and 

dots are the outliers.
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