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Abstract

Analytical methods for Multi-Criteria Decision Analysis (MCDA) support the non-monetary 

valuation of ecosystem services for environmental decision making. Many published case studies 

transform ecosystem service outcomes into a common metric and aggregate the outcomes to set 

land use planning and environmental management priorities. Analysts and their stakeholder 

constituents should be cautioned that results may be sensitive to the methods that are chosen to 

perform the analysis. In this article, we investigate four common additive aggregation methods: 

global and local multi-attribute scaling, the analytic hierarchy process, and compromise 

programming. Using a hypothetical example, we explain scaling and compensation assumptions 

that distinguish the methods. We perform a case study application of the four methods to re-

analyze a data set that was recently published in Ecosystem Services and demonstrate how results 

are sensitive to the methods.
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1. Introduction

The incorporation of ecosystem services (ES) into environmental decision making is an 

important topic and motivator of current research. Much of the research on ES focuses on 

ecological understanding of how ecosystems provide useful goods and services, economic 

understanding of how those goods and services are valued, and connections between the 

provision of ES and social benefits. Frameworks for integrating ES into environmental 

decision making facilitate the screening of management alternatives where the provision of 

ES is a valued outcome (NRC, 2004; USEPA, 2009; Wainger and Mazzotta, 2011; Olander 

et al., 2017). Many of these frameworks emphasize the need to quantify and evaluate 
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tradeoffs in the value of ES outcomes, which may rely on monetary or non-monetary 

valuation methods.

Monetary valuation methods result in estimates of marginal changes to ES in monetary units 

(e.g., dollars), while non-monetary valuation methods result in estimates of ES or their 

benefits, both quantitative (e.g., species saved, number of people or homes affected) and 

qualitative (e.g., “poor,” “good,” “excellent”). Non-monetary valuation is a way for research 

analysts to address the range of ES values to decision makers or other stakeholders, without 

excluding those that are difficult to monetize (Chan et al., 2012). Aggregating non-monetary 

values is less common than aggregating monetary values because it is difficult to aggregate 

such data, which often are not measured in common units. Yet, it is often useful to be able to 

aggregate a set of non-monetary measures into a single value or score that can be used to 

compare management alternatives for decision making purposes.

One approach to the problem of aggregation is to use mathematical concepts that have been 

made popular within the field of Multi-Criteria Decision Analysis (MCDA; Langemeyer et 

al., 2016; Saarikoski et al., 2016). Since the 1960s, over 100 methods for MCDA have been 

developed to support the evaluation of environmental problems with multiple competing 

goals, objectives, and performance measures. Regarding ES assessment, these methods can 

aggregate multiple potential ES measures for pre-determined management alternatives at 

different geographic scales, including single or multiple sites, watersheds, and planning 

districts, so that a clear ranking of management alternatives at those locations is achievable. 

Perhaps the most attractive features of these methods are their abilities to transform 

incommensurable data (i.e., monetary and non-monetary values) into non-monetary, 

dimensionless values, and to mathematically incorporate people’s preferences into the 

aggregation.

A new collection of MCDA research articles are using additive functions (e.g., weighted 

linear combination) to aggregate monetary and non-monetary ES outcomes for 

environmental decision making (e.g., Liu et al., 2013; Favretto et al., 2016; Wam et al., 

2016). Many studies are applying what is referred to as “spatial MCDA,” where Geographic 

Information System mapping of ES is combined with an additive function to aggregate ES 

outcomes at a spatial unit (e.g., Kremer et al., 2016; Grêt-Regamey et al., 2016; Vogdrup-

Schmidt et al., 2017; Tobón et al., 2017).

It is important for research analysts to recognize that different approaches to aggregating ES 

reflect different underlying rationales and mathematical assumptions. Results will be 

sensitive to those assumptions, and analysts should be transparent with decision makers 

about their choices and be prepared to re-evaluate their MCDA models based on input from 

decision makers.

In this article, we explore two important classes of assumptions, those related to scaling and 

compensation, and demonstrate how choice of method and its underlying assumptions can 

affect the ranking of management alternatives. Scaling refers to how non-monetary ES 

outcomes are transformed into a common metric for meaningful aggregation, whereas 

compensation refers to the extent to which an undesirable ES outcome will be compensated 
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by desirable outcomes on other ES. To explain these assumptions and demonstrate their 

implications for decision making, we use a hypothetical example that illustrates four 

common additive aggregation methods: multi-attribute scaling, both global and local (Belton 

and Stewart, 2002; UK, 2009), the analytic hierarchy process (Saaty, 1980), and compromise 

programming (Zeleny, 1973). We present a case study application of the methods using a 

recently published data set in Ecosystem Services (Favretto et al., 2016) to demonstrate how 

results can differ among methods.

2. Mathematical concepts for aggregating non-monetary ecosystem service 

values

The case studies performed in recent articles using additive aggregation have similar 

problem formulations. They are designed to estimate and evaluate the overall performance 

of specific land management alternatives ai, each with a finite set of ES criteria cj, defined 

loosely as measurable and manageable contributions of ecosystem structure and function to 

human well-being (Burkhard et al., 2012). For each management alternative, there is a set of 

quantitative and qualitative ES criteria performance values zij based on the potential ES 

outcomes provided at a site or spatial unit. The criteria performance values are estimated 

using available market information, natural and social science models or metrics, or expert 

opinion-based models. We assume that measurements for each of the criteria performance 

values do not depend on any of the other criteria performance values.

Based on these problem formulation assumptions, a benefit function Bi, sometimes referred 

to in the literature as a value function, is used to aggregate criteria performance values into 

an overall non-monetary value for each alternative. Additive benefit functions are the most 

common; they appear as:

Bi = ∑
j = 1

k
W j χij (1)

for all criteria j = 1, …, k, alternatives i = 1, …, m.

where Bi is the overall value or benefit of alternative i; wj are importance weights for the 

criteria; χij are criteria performance values that have been transformed based on the methods 

discussed in this article. In order to aggregate, it is necessary to transform each of the 

original criteria performance values zij, which are often measured using different metrics and 

scales, into a commensurable value χij that can be aggregated. Criteria performance values 

are almost always transformed as scaled numbers in the benefit function to facilitate 

comparisons across criteria. Importance weights generally reflect the importance of ES 

criteria to relevant beneficiaries or stakeholders; they are scaled to an interval (0–1) and sum 

to one. By combining criteria performance values into an aggregate benefit value, Eq. (1) 

estimates a single overall benefit score for each management alternative, which can make it 

easier for decision makers to compare and rank many management alternatives.
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2.1. Four methods to transform ecosystem service values into a common metric

Additive aggregation methods for MCDA differ in terms of how quantitative and qualitative 

criteria performance values zij are transformed into commensurable performance values χij 

before being aggregated using Eq. (1). In this section, we briefly explain four common 

methods. The first two methods are used in multi-attribute value assessment – global and 

local multi-attribute scaling (Belton and Stewart, 2002; UK, 2009), hereafter referred to as 

global and local scaling. The second two are well-established additive aggregation methods 

for MCDA – the analytic hierarchy process (Saaty, 1980) and compromise programming 

(Zeleny, 1973).

2.1.1. Global scaling—One of the most practical procedures is to transform criteria 

performance values using upper and lower numerical boundaries (Keeney and von 

Winterfeldt, 2007). Global scaling refers to transformations using the maximum and 

minimum possible values for each criterion as upper and lower boundaries. These 

boundaries are often assigned prior to actual criteria measurements for the alternatives. 

Quantitative performance values are transformed to a selected range, such as 0 to 100; linear 

transformation is commonly used:

χij =
Zij − Z j

Z j − Z j
^^ ∗ 100 (2)

where Z j and Z j
^^ are the worst and best possible measurements for each criterion, 

respectively. Qualitative data may be assigned numbers on a constructed scale (e.g., “none” 

= 0, “poor” = 25, “fair” = 50, “good” = 75, “excellent” = 100) before they are transformed 

using Eq. (2).

With global scaling, the lowest and highest transformed performance values for most criteria 

will often not be 0 and 100, since the measured values will typically not encompass the 

worst or best possible outcomes for the criteria. Because of this, the transformed criteria 

performance values will span different sized ranges (e.g., one criterion may span the range 

of 0 to 100 while another may only span the range of 40 to 60). This difference in range 

makes the global scaling method subject to individual criteria having greater influence on 

the results because criteria with larger ranges act like a weight on the results (Otway and 

Edwards, 1977; Section 3.1). An advantage of the global scaling method is that it allows for 

later addition of alternatives to the decision problem without disrupting criteria boundaries.

2.1.2. Local scaling—Local scaling uses the maximum and minimum criteria 

performance values that are measured to set the upper and lower boundaries of the 

transformation. As with global scaling, linear transformation is commonly used:

χij =
Zij − Z j

∗

Z j
∗ − Z j

∗∗ ∗ 100 (3)
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where Z j
∗ and Z j

∗∗ are the worst and best actual measurements for each criterion, respectively.

In contrast to global scaling, local scaling will always result in transformed performance 

values ranging from 0 to 100, where the lowest measured value for each criterion scales to 0 

and the highest to 100. All criteria performance values will have equal influence on the final 

scores for the alternatives, assuming the criteria are weighted equally by decision makers. 

This feature could amplify the overall effect of criteria with smaller ranges relative to other 

criteria.

Many of the studies referenced in Section 1 use either the global or local scaling methods. 

Some articles explicitly specify the use of global scaling (Favretto et al., 2016; Wam et al., 

2016) and local scaling (Tobón et al., 2017), but some don’t specify the method used (Liu et 

al., 2013; Kremer et al., 2016; Vogdrup-Schmidt et al., 2017). As will be demonstrated in 

this article, the choice of transformation technique is a critical dimension of transparency 

that should be discussed with decision makers and explicitly stated in publication.

2.1.3. Analytic hierarchy process—The analytic hierarchy process is an alternative 

approach to assessing the overall value of management alternatives. This method transforms 

the criteria performance values of alternatives using ratio scales and eigenvalue analysis. The 

method is perhaps most well-known for analyzing incommensurable and even immeasurable 

criteria based on qualitative judgements (Saaty, 2013).

When quantitative performance values need to be transformed, we normalize the 

performance values of the alternatives per criterion such that the transformed performance 

values sum to unity:

χij =
Zij

∑i = 1
m Zij

(4)

Ratio scales are preserved in this normalization (Forman, 1993), which allows for easy 

calculations, making computational needs for using Eq. (1) similar to those of the global and 

local scaling methods.

In situations where the consistency of the criteria performance values is questioned, 

particularly when transforming qualitative performance values, an alternative method may 

be used which involves comparing the alternatives in pairs per criterion. To do this, we 

assume that each alternative, ai, …, am, has an importance value assigned to it, υ1, …, υm, 

per criterion; this is done by considering the smallest criteria performance value as the unit, 

and all larger performance values as multiples of that unit. The new importance values are 

ratio scale translations of the importance of the alternatives as they are compared in pairs. 

For each criterion j, the paired comparisons of importance values is represented as a ratio in 

the matrix Aj, which satisfies the reciprocal property (Saaty, 1980):
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A j =
a1
⋮

am

a1 ⋯ am

υ1/υ1 ⋯ υ1/υm

⋮ ⋱ ⋮
υm/υ1 ⋯ υm/υm

(5)

From this matrix, eigenvalue analysis approximates a vector of transformed criteria 

performance values χj for the management alternatives that satisfies:

A j χ j = λmax χ j (6)

where χj is the principle right eigenvector of Aj that sums to unity and is considered to be 

the set of transformed performance values of the alternatives for that criterion; λmax is its 

corresponding maximum eigenvalue. The transformed values over all criteria can then be 

used to calculate benefit function values using Eq. (1).

For qualitative data transformations, Saaty’s 9-point importance scale can be used to directly 

assign ratio scale importance values in the Aj matrix for calculating χj (Table 1; Section 

4.3). The analytic hierarchy process has an established process to analyze the logical 

consistency of the Aj matrix as qualitative judgements can often be inconsistent; an example 

is provided in the Supplementary material. The method also involves some theoretical 

assumptions that are challenged by proponents of multi-attribute value theory (Dyer, 1990; 

Forman and Gass, 2001; Belton and Stewart, 2002; Gass, 2005), which are not covered in 

this article.

2.1.4. Compromise programming—Compromise programming is not commonly used 

in MCDA approaches to ES assessment. However, we include it as an alternative approach 

because it uses a simple additive aggregation technique, making computational needs similar 

to those of the other methods, and it is well-regarded in some of the comprehensive texts on 

MCDA (e.g., Belton and Stewart, 2002) and mapping-based MCDA (Malczewski and 

Rinner, 2015).

Unlike the global and local scaling and analytic hierarchy process methods, compromise 

programming does not utilize a benefit function. Instead, it is an interactive type of approach 

that uses geometry to estimate the “distance” of each alternative from a specified ideal 

outcome on all criteria. Like the other methods, it uses an additive aggregation function, 

referred to as a distance function Di, and an alternative linear transformation:

Di = ∑
j = 1

k
W j

pχij
p (7)

where p is a distance norm;
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χij =
Zij − Z j

##

Z j
# − Z j

## (8)

where Z j
# and Z j

## are the “worst” and “ideal” measurements for each criterion across the 

alternatives, respectively, as determined by decision makers.

For compromise programming, it is assumed that the measured data are bound by some ideal 

and worst criteria values over the alternatives. The set of ideal criteria values are translated 

into an ideal solution point that exists at unity in geometric space (e.g., coordinate with all 

100 scores).

Unlike global scaling, which uses the best possible solution as a bound, the ideal solution, 

where every criterion achieves its ideal value, is not real or feasible. Therefore, the scaling 

function (8) transforms criteria performance values by a measure of the distance between the 

data and the ideal performance value. The transformed performance values are then 

aggregated for each alternative using Eq. (7), and these distance scores are used to rank the 

alternatives.

Distance norm values of 1 < p ≤ ∞ weight deviations from the ideal point higher with 

greater distance; the p parameter controls the level of compensation. Decision makers may 

select p > 1 so that deviations from the ideal solution are penalized in proportion to their 

distance; Euclidean distance (p = 2) is commonly used. When applying the compromise 

programming method, the ideal solution may be amended by selecting criteria values that 

are less than the best possible, that is, they are good enough or satisfactory for decision 

making (Zeleny, 1974). This feature of the method challenges theoretical assumptions in 

multi-attribute value theory, which are not covered in this article.

As with the global scaling method, it is important to note that results are sensitive to how 

differentiated the criteria values are in the measured data set. If there is substantial variation 

in criteria performance value ranges, then re-scaling the data using, for example, Eq. (3) can 

be done prior to applying Eq. (8) to avoid certain criteria inadvertently dominating the 

results (Martin et al., 2017; Section 3.1).

3. Two critical assumptions

There are numerous assumptions that underlie these methods. Two classes of assumptions 

related to scaling and compensation are critical to the recent collection of articles using 

additive aggregation for ES assessment. These assumptions are important topics for research 

analysts to be transparent about with decision makers. We explain these assumptions using a 

hypothetical multi-criteria problem to evaluate four alternatives with four criteria. Data and 

summary statistics are provided in Table 2. Transformed data, benefit function scores, and 

final rankings are provided in Tables 3-6. Visualizations of the results are provided in Fig. 1. 

A spreadsheet with calculations for the example is available in the Supplementary material. 

We assigned equal importance weights to the criteria (0.25 for each criterion), which 
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simplifies comparisons across different scaling and compensation assumptions (for 

references on how importance weights might impact results, see Choo et al., 1999; Steele et 

al., 2009).

3.1. Scaling

The four methods differ in terms of scaling technique performed, which can affect the 

ranking of alternatives. Each method has different implications for decision making. In our 

example, notice how the transformed performance values for Criteria c2, c3, and c4 differ 

between the global scaling (Table 3) and local scaling (Table 4) methods. This is due to 

different upper and lower boundaries used in Eqs. (2) and (3). The global scaling method 

ranked Alternatives a4 and a1 first and second, respectively, and the local scaling method 

ranked those alternatives second and first, respectively.

This occurs because the global scaling method transforms criteria performance values based 

on the best and worst possible outcomes for each criterion, so that performance values that 

do not span the full range of possible outcomes have less influence on the overall rankings 

as compared to the local scaling approach. The performance value measurements of Criteria 

c2, c3, and c4 are transformed to the same range (0–100) using the local scaling method 

(Table 4). Using the global scaling method (Table 3), however, Criteria c2, c3, and c4 range 

from 30 to 100, 10 to 75, and 25 to 100, respectively. This is important because variation in 

the transformed scores acts like a weight on the results (Otway and Edwards, 1977). The 

significance for decision making is that the global scaling method effectively ranks 

alternatives relative to potentially better or worse alternatives that are not in the set of 

evaluated choices, while the local scaling method ranks the alternatives relative only to the 

alternatives that are being evaluated.

Using the global scaling method, the transformed data for Criterion c1 influences the results 

more so than the other criteria because its range (0–100) is greater than the other criteria, 

regardless of the criteria weighting scheme. Consequently, Alternative a4 is preferred. If, for 

example, the range of criteria performance value measurements for Criteria c1 and c3 were 

lessened or increased, respectively (e.g., we change the minimum measured criterion values 

of Criteria c1 and c3 to 0.35 and 0 in Table 2, respectively), then Alternative a1 would rank 

first using the global scaling method while the ranking of alternatives using the other 

methods would remain unchanged. UK (2009) claim that there should not be a difference in 

the ranking of alternatives between the global and local scaling methods, but we and others 

(Steele et al., 2009) disagree based on our hypothetical example and case study application 

(Section 5).

The analytic hierarchy process method provides the same ranking of the first and last 

alternatives as the local scaling method, but gives equal ranks to Alternatives a3 and a4, as 

opposed to the local scaling method, which ranks Alternative a4 higher than Alternative a3 

(Table 5). In general, the magnitude of differences in transformed performance values and 

benefit function values is greater using the local scaling method than using the analytic 

hierarchy process. This is due in part to the different normalizations of the measured data set 

across methods.
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The analytic hierarchy process distributes value among the alternatives so that the 

transformed performance values for each criterion sum to unity across all alternatives 

evaluated. In other words, the analytic hierarchy process interprets a criterion performance 

value of an alternative as a reflection of its relative contribution to that criterion’s value as it 

compares to the other alternatives. This is mathematically and intuitively different than local 

scaling, which uses Eq. (3) to assign a reference to the highest criterion value and all other 

values proportionately less across the alternatives.

The mathematical distinction is twofold: (i) ratio scales are preserved in the transformed 

performance values using the analytic hierarchy process, which implies that the method 

explicitly compares alternatives to each other and not to a reference, and (ii) there are fewer 

zero transformed values using the analytic hierarchy process method because few criteria 

have zero value relative to others (Table 5). Using the local scaling method, each criterion 

will have a zero value for the lowest-valued alternative (Table 4). For these reasons, the 

difference between the scaled performance values and, consequently, the benefit function 

values may be smaller using the analytic hierarchy process method.

Intuitively, the decision maker compares the alternatives in terms of their proportional 

values, as in a pie chart, using the analytic hierarchy process (Fig. 1c), where the alternatives 

each contribute a relative proportion in value to achieving the problem goal(s). In contrast, 

the global and local scaling approaches require the decision maker to compare the 

alternatives’ overall values, as in a histogram (Fig. 1a and b), where each alternative’s value 

is independent of its proportional relationship to the others.

3.2. Compensation

In our example (Table 2), notice that Alternative a3 has performance values that are less than 

the “best” but higher than the “worst.” It is ranked third using the global scaling (Table 3) 

and local scaling (Table 4) methods and second using the analytic hierarchy process method 

(Table 5). However, Alternative a3 ranks first using the compromise programming method 

(Table 6) because its scaled values are collectively closer to the ideal solution point in 

geometric space (Fig. 1d). This variation in rank is based in part on the compromise 

programming method being less compensatory, because unit increases do not equally 

compensate for unit decreases when p > 1. In this context, decision makers need to take a 

position: Are alternatives with well-balanced ES values preferred to alternatives that are well 

valued on a number of ES but worse on others (Bouyssou, 1986)? In other words: How 

strongly should higher valued criteria be allowed to compensate for lower-valued criteria?

The global scaling, local scaling, and analytic hierarchy process methods are generally 

considered to be compensatory approaches because they focus on maximizing overall value 

and thus allow high values to compensate for low values, whereas the compromise 

programming method is less compensatory because it focuses on minimizing distance 

measurements and thus allows flexibility in how much low values are compensated by high 

values. It is important to note that, according to the scaling properties of the analytic 

hierarchy process (i.e., differentiation in criteria performance values; Section 3.1), an 

argument can be made that the analytic hierarchy process is less compensatory than the 

global scaling and local scaling methods in some, but not all, situations because the method 
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distributes the value of each criterion among the alternatives. In addition, the compensatory 

properties of these methods can be altered by changing the weights placed on the individual 

criteria. In our example, we used equal weights.

4. Case study

We reviewed several recently published applications of MCDA for ES assessment and 

selected one study (Favretto et al., 2016) to use as a case study evaluation of the four 

approaches described in this article. Favretto et al. (2016), which appeared in a previous 

issue of Ecosystem Services, is among a limited number of articles that published their data 

set (Table 7). The article reported on an evaluation of ES trade-offs with the proposed 

implementation of four land management alternatives in the Kgalagadi District, southern 

Botswana: (i) communal livestock grazing, (ii) private cattle ranches, (iii) private game 

ranches, and (iv) wildlife management areas.

Nine monetary and non-monetary ES criteria were measured with five quantitative and nine 

qualitative sub-criterion indicator metrics (Table 7). Quantitative data came from relevant 

land management assessment reports, stakeholder interview data, and/or financial 

statements. Qualitative data were generated from stakeholder interviews and measures were 

categorized as “Very low,” “Low,” “Medium,” “High,” and “Very high,” which were 

translated into 0, 25, 50, 75, and 100 scores, respectively. Mean values of the indicators for 

each criterion and the global scaling method were used to estimate a single benefit function 

value for each land management alternative. An initial criteria weighting scheme was 

estimated from direct stakeholder input (left-hand column in Table 7). Sensitivity analyses 

were performed using five alternative criteria weighting schemes and one alternative scoring 

scheme that altered ES values.

We tested the four additive aggregation methods described in this article on the data set to 

note differences in rank among the methods. First, we implemented an iteration using equal 

weights that served as a baseline for our analysis. Second, we implemented sensitivity 

iterations using the weighting schemes from Favretto et al. (2016). In the following sections, 

we explain the data analysis assumptions that we made for applying each transformation 

prior to benefit or distance function calculations.

4.1. Global scaling

As Favretto et al. (2016) used the global scaling method, reproducing their results was 

straightforward. We transformed the quantitative data using Eq. (2). Implementing this step 

required using different maximum and minimum global endpoints for each quantitative 

indicator (see Range column in Table 7), which resulted in different ranges of transformed 

performance values. The qualitative data were assigned numbers using the 0/25/50/75/100 

scale before transformation using Eq. (2). The initial criteria weights were equally 

distributed among the sub-criteria indicators for each ES.

We also reproduced the paper’s sensitivity results with the exception that we noticed the 

authors changed certain ES weights in the sensitivity iterations without normalizing the set 

of weights to sum to one. This resulted in the sensitivity weighting schemes summing to a 
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number other than one. Nevertheless, we applied the weighting schemes used by the authors 

of that paper to reproduce their results. We did not perform the sensitivity iteration that 

altered ES values because that analysis was based on altering mean values per criterion 

(Table 4 in Favretto et al., 2016) instead of using the indicator values (Table 7 in this article). 

We checked the benefit function values based on implementing the global scaling method 

against the Favretto et al. (2016) results to confirm that our global scaling calculations 

reproduced their results precisely.

4.2. Local scaling

We used Eq. (3) to scale the quantitative data onto a 0 to 100 scale using each indicator’s 

measured end points. The qualitative data were assigned numbers using the 0/25/50/75/100 

scale before transformation using Eq. (3). We used these values and each alternative 

weighting scheme for the indicators to calculate new benefit function values. The sensitivity 

analysis was performed in the same manner.

4.3. Analytic hierarchy process

Data analysis using the analytic hierarchy process took a few extra steps to get from the data 

set in Table 7 to a transformed data set for using Eq. (1). First, we performed vector 

normalization using Eq. (4) on the quantitative indicator data in Table 7 with the exception 

of the net profit of meat production indicator. That indicator ranged between negative and 

positive numbers. We normalized the values using Eq. (3), and then normalized those values 

using Eq. (4) to preserve ratio scales. Second, we performed eigenvalue analysis on the 

remaining nine qualitative indicators in Table 7. We set up nine reciprocal matrices using Eq. 

(5) for each qualitative indicator and performed pairwise comparisons of the land 

management alternatives using Saaty’s 9-point pairwise importance scale (Table 1). For 

example, if a “low” value was compared to a “low” value, it was given the ratio “1/1” 

denoting equal importance. Similarly, if a “low” value was compared to a “very low” value, 

it was given the ratio “3/1,” and if a “low” value was compared to a “medium” value, it was 

given the ratio “1/3.” Lastly, we approximated a vector of performance values for each 

reciprocal matrix using Eq. (6). Our new table of transformed indicator performance values 

were used to calculate benefit function values using Eq. (1).

4.4. Compromise programming

We transformed the quantitative data into distance measurements using Eq. (8) and assumed 

that the “ideal” and “worst” values were reflected in the data set. Likewise, the qualitative 

data were assigned numbers using the 0/25/50/75/100 scale before transformation using Eq. 

(8). We used those data and the alternative weighting scheme to calculate distance function 

values using Eq. (7) with the goal of minimizing the Euclidean distance (p = 2) between the 

management alternatives and an ideal but non-feasible alternative.

5. Results

As expected, our re-analysis of the Favretto et al. (2016) data set produced different results 

for each method. Because the overall benefit and distance function values resulted in 

different dimensionless scales, we did not conduct statistical comparisons. Rather, in 
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accordance with the field of MCDA, we compared the results based on how each land 

management alternative ranked using the overall benefit or distance function calculations 

(Table 8).

Examining the baseline iteration using equal weights, the highest ranked alternatives differ 

across methods. Notably, the highest ranked alternative using global and local scaling was 

communal livestock grazing, whereas the highest ranked alternative using the analytic 

hierarchy process and compromise programming was wildlife management areas.

There are discernible differences in rankings between the global scaling method used by 

Favretto et al. (2016) and the other methods. This outcome is consistent with the fact that 

each of the methods use different scaling and compensation assumptions to determine 

overall value.

6. Discussion

Although Favretto et al. (2016) recognize that their results may vary with changes in 

performance values and weights for the ES criteria, our re-analysis shows that results also 

depend on the choice of MCDA technique for transforming ES performance scores into 

commensurable scales and aggregation. These results are due in part to the way scaling is 

performed on the data set and on the compensation features of the methods.

As shown in the data set (Table 7), the communal livestock grazing alternative performed 

better than the wildlife management areas alternative for seven out of the 14 indicators, 

whereas the wildlife management areas alternative performed better than the communal 

livestock grazing alternative for four out of the 14 indicators, all other indicator values 

between the two alternatives being equal. This explains why the communal livestock grazing 

alternative is consistently ranked higher than the wildlife management areas alternative by 

the global and local scaling methods (Table 8). However, the overall performance of the 

wildlife management areas alternative is high relative to the other alternatives across all 

criteria, which is meaningful for calculations using the analytic hierarchy process. Likewise, 

the wildlife management areas alternative is closer overall to an ideal but non-feasible 

alternative where all the indicator values are maximized, which is meaningful for the 

compromise programming method. For these reasons, the wildlife management areas 

alternative would rank as preferred over the communal livestock alternative in decision 

making situations where a more balanced outcome across criteria is desired, versus 

maximizing value over all outcomes (without the use of weights).

Rankings for the other management alternatives were somewhat variable across methods. 

The private game ranches alternative ranked last for most iterations for the same reasons that 

communal livestock grazing ranked first for most iterations. However, throughout the 

sensitivity iterations, the private cattle ranches and wildlife management areas alternatives 

differed in rank among the local scaling, analytic hierarchy process, and compromise 

programming methods that were not used by Favretto et al. (2016). Although the variations 

in ranking are due in large part to the changing criteria weights and their effect on the 

results, the rankings are also affected by the scaling and compensation assumptions. This has 
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implications for how the goals of a decision problem should be incorporated into the 

analysis through method selection. If decision makers aim to constrain their decisions within 

the bounds of known alternatives, or if less compensatory, well-balanced alternatives are 

important to decision makers, then identifying a clear second and third ranking among the 

management alternatives is not straightforward.

A critical dimension of transparency that is not often considered in ES studies using MCDA 

concerns providing decision makers with implications of the methodological assumptions of 

the various MCDA techniques. Our hypothetical example and case study results point to the 

importance of decision makers understanding and specifying which assumptions are most 

relevant or desired for their particular decision context: (i) an emphasis on high-valued ES 

and overall benefits for each alternative (global or local scaling; Fig. 1a and b); (ii) a focus 

on relative ES values over all alternatives (analytic hierarchy process; Fig. 1c); or (iii) an 

emphasis on achieving well-balanced values across all ES (compromise programming; Fig. 

1d). From this perspective, it is the decision maker or their stakeholder constituents who 

need to specify the preferred method based on how they prefer to scale and compensate for 

monetary and non-monetary values.

Research is ultimately limited in time and resources. Research analysts are tasked with 

ensuring the maximum level of participation from decision makers throughout the MCDA 

process; yet, decision makers or funding agencies may be uncomfortable or unable to give 

methodological input. There is a knowledge gap in how to better handle transparency about 

methodological assumptions with decision makers. In our experience, we have encountered 

both desire and indifference from decision makers in choosing methodological assumptions 

as we carry out an MCDA process. Regardless of choice of technique, relevant assumptions 

should be reported in publication.

7. Conclusions

In this article, we explained how scaling and compensation assumptions of four different 

additive aggregation methods for MCDA lead to different rankings of management 

alternatives. We demonstrated the sensitivity of results to common assumptions of each 

method through a hypothetical example and through reanalyzing a published data set. These 

implications of different methods have not generally been made explicit in the field of non-

monetary valuation of ES, nor are they emphasized in publications. This article 

complements other overviews of MCDA in the literature (e.g., Langemeyer et al., 2016; 

Saarikoski et al., 2016), with a more in-depth description of the scaling and compensation 

assumptions of several aggregation techniques. In a companion study, we are expanding on 

this work, exploring outranking techniques (e.g., ELECTRE, PROMETHEE) using a case 

study where decision makers give input on methodological assumptions.

Research in this field is growing (Huang et al., 2011) and we expect to see more ES 

assessments that determine an overall non-monetary value of environmental management 

alternatives. We have shown that certain multi-attribute value functions (e.g., global and 

local scaling methods) produce results that differ from other additive aggregation methods 

that use alternative value and distance measurements. Although the different assumptions 
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underlying the methods outlined in this article can lead to different rankings of alternatives, 

one method is not inherently better than others. This is why it is critical that ES analysts and 

decision makers jointly decide which method is a better fit for aggregating ES values in a 

particular decision-making context. Since decision makers may be unaware of 

methodological assumptions, ES analysts should be transparent about the methods they 

choose, to ensure that the assumptions match the objectives and preferences of decision 

makers. Doing this could produce results that are most meaningful to decision making. This 

article provides context to inform that choice.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Benefit function values from the hypothetical multi-criteria problem using the global scaling 

(a), local scaling (b), and analytic hierarchy process (c) methods. Higher benefit function 

values correspond to more preferred alternatives. Distance function values using the 

compromise programming method (d). Performance values for each criterion range from 

“worst” = 1 to “ideal” = 0; alternatives closer to the ideal (lower distance function values) 

are preferred.
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Table 1

Saaty’s 9-point pairwise importance scale. Modified from Saaty (1980).

Ratio importance value 
scale

Judgement Explanation

1/1 Equal importance The two alternatives are equally important

3/1 Moderate importance of one over another Experience and judgement slightly favors one alternative over 
another

5/1 Strong importance Experience and judgement strongly favors one alternative over 
another

7/1 Very strong importance An alternative value is strongly favored over another and its 
dominance is demonstrated in practice

9/1 Extreme importance The evidence favoring one alternative over another is of the highest 
possible order of affirmation

Reciprocal example If element υ1/υm has one of the above ratio scale measurements assigned to it (e.g., “3/1”), then υm/υ1 is the 
reciprocal value (e.g., “1/3”)
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Table 2

Hypothetical multi-criteria problem. Measured data and method-relevant calculations are given to set up 

transformation and additive aggregation.

Criterion c1 Criterion c2 Criterion c3 Criterion c4

Alternative a1 0 2.25 75 Excellent

Alternative a2 0.74 0.9 15 Poor

Alternative a3 0.55 2.25 30 Good

Alternative a4 1 3 10 Fair

Global “worst” ( z j)
0 0 0 None

Global “best” ( z j
^^)

1 3 100 Excellent

Local “worst” ( z j
∗; z#)

0 0.9 10 Poor

Local “best” or “ideal” ( z j
∗∗; z##)

1 3 75 Excellent

|z j
∗ − Z j

∗∗|
1 2.1 65

∑
i = 1

m
z j(ai)

2.29 8.4 130

Notes: We assume c4 categories correspond to numbers (None = 0, Poor = 25, Fair = 50, Good = 75, Excellent = 100); we assume local “worst” 

and “best” “worst” and “ideal” values, respectively, for compromise programming.
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