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Abstract

Conventional water resources in many regions are insufficient to meet the water needs of growing 

populations, thus reuse is gaining acceptance as a method of water supply augmentation. Recent 

advancements in membrane technology have allowed for the reclamation of municipal wastewater 

for the production of drinking water, i.e., potable reuse. Although public perception can be a 

challenge, potable reuse is often the least energy-intensive method of providing additional 

drinking water to water stressed regions. A variety of membranes have been developed that can 

remove water contaminants ranging from particles and pathogens to dissolved organic compounds 

and salts. Typically, potable reuse treatment plants use polymeric membranes for microfiltration or 

ultrafiltration in conjunction with reverse osmosis and, in some cases, nanofiltration. Membrane 
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properties, including pore size, wettability, surface charge, roughness, thermal resistance, chemical 

stability, permeability, thickness and mechanical strength, vary between membranes and 

applications. Advancements in membrane technology including new membrane materials, 

coatings, and manufacturing methods, as well as emerging membrane processes such as membrane 

bioreactors, electrodialysis, and forward osmosis have been developed to improve selectivity, 

energy consumption, fouling resistance, and/or capital cost. The purpose of this review is to 

provide a comprehensive summary of the role of polymeric membranes in the treatment of 

wastewater to potable water quality and highlight recent advancements in separation processes. 

Beyond membranes themselves, this review covers the background and history of potable reuse, 

and commonly used potable reuse process chains, pretreatment steps, and advanced oxidation 

processes. Key trends in membrane technology include novel configurations, materials and fouling 

prevention techniques. Challenges still facing membrane-based potable reuse applications, 

including chemical and biological contaminant removal, membrane fouling, and public perception, 

are highlighted as areas in need of further research and development.

Keywords

Potable reuse; polymeric membranes; nanocomposite membranes; reverse osmosis; filtration; 
fouling

1. Introduction

Dwindling water supplies and growing populations have made planned potable reuse an 

increasingly important component of water resource management for many urban areas 

around the world [1–3]. Although reuse can only be a portion of a water supply portfolio due 

to intrinsic water losses, reuse of wastewater can augment the supply of water for 

agriculture, industry, and potable use, even in regions where climate change and cyclical 

droughts make traditional supplies unreliable. Membranes, particularly polymeric 

membranes, play a crucial role in the purification of municipal wastewater to potable quality, 

and are the core part of almost all of these systems [1, 2]. However, despite the technologies 

available, several challenges including membrane fouling, contaminant permeation, energy 

consumption, high pretreatment costs, managing treatment residuals, membrane integrity, 

and public perception limit widespread implementation of potable reuse [1, 3–5]. For 

example, as of 2010, only about 0.1% of treated municipal wastewater was directed to 

planned potable reuse in the U.S. [6]. The purpose of this review is to summarize recent 

developments for polymeric membrane that relate to potable water reuse, and also to identify 

areas in which future research and innovation are needed.

1.1 Reuse Terminology

Planned potable reuse projects can be categorized as direct or indirect [3]. Direct potable 

reuse (DPR) is the direct addition of reclaimed wastewater to a drinking water treatment 

plant’s influent (referred to as “raw water augmentation”) or a drinking water distribution 

system (“treated drinking water augmentation”, Figure 1a). Indirect potable reuse (IPR) is 

the planned addition of purified wastewater (i.e., reclaimed wastewater) to an environmental 

buffer, namely a surface water reservoir (“reservoir water augmentation”) or groundwater 
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aquifer (“groundwater augmentation”) [7], that is subsequently used for a drinking water 

supply (Figure 1b). In addition, de facto potable reuse (i.e., unplanned potable reuse) refers 

to the production of drinking water from wastewater-impacted water resources (Figure 1c). 

De facto potable reuse is common [8] and often unavoidable in major river systems such as 

adjacent to the Mississippi and Nile River (in the U.S. and Egypt, respectively).

As one implementation of IPR, water agencies may also inject or infiltrate reclaimed water 

at locations in between the ocean and drinking water production wells to slow or reverse 

seawater intrusion into coastal aquifers. While de facto potable reuse and IPR have been 

practiced for some time, DPR has more recently become a technically and (to a lesser 

extent) socially viable reuse option in many geographies world-wide [4].

1.2 Potable Reuse History

The purification of wastewater has been examined as a means of augmenting conventional 

drinking water supplies for over 100 years [1]. In the 1920s, the Los Angeles Department of 

Water and Power constructed a wastewater purification plant to accommodate increased 

water demand due to rapid development and the lack of additional water supplies prior to 

access to Colorado River water [6]. By the 1930s, spreading basins were being used to 

augment groundwater with the effluent of a wastewater treatment in Southern California [1]. 

In 1968, the first DPR scheme was constructed in Windhoek, Namibia; in the years 

following, numerous IPR projects were established globally [7]. It was not until 1977 that 

membranes became an integral component of potable water reuse applications, when RO 

membranes were first used to purify wastewater at Orange County Water District’s Water 

Factory 21 [7].

As treatment technologies for potable reuse have evolved over 50 years, there has been a 

gradual shift away from traditional processes, such as lime softening, toward membrane 

filtration [6]. As the cost and performance of membrane products have improved, polymeric 

membranes played an increasingly important role in potable reuse [9]. Polymeric 

membranes are now used to remove colloidal and dissolved materials in most potable reuse 

facilities. In the last 20 years, the number of IPR and DPR projects employing membrane 

technologies has increased significantly in the U.S., Australia, Singapore, and South Africa 

(Table 1). Globally, water reuse for potable and non-potable applications continues to be a 

critical water resource (Figure 2.), and has reached approximately 32 million m3/day [10].

1.3 Treatment Processes

Years after the first application of reverse osmosis (RO) for wastewater purification at 

Orange County Water District, California, a treatment train consisting of microfiltration 

(MF) or ultrafiltration (UF) followed by RO and an advanced oxidation process (AOP) has 

emerged as an industry standard for many potable reuse applications Figure 3 [8]. The RO 

and AOP components are referred to as “full advanced treatment” (FAT), which is defined as 

the treatment of an oxidized wastewater using RO and an oxidation treatment process (e.g., 

UV/AOP). The use of MF/UF in front of RO is referred to as an integrated membrane 

system (IMS) where MF/UF acts as pretreatment to RO [7]. In Figure 3, the steps shown 

prior to membrane treatment help reduce membrane fouling, and the steps after (e.g., AOP) 
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break down small neutral organic compounds that pass through the RO process. FAT and 

IMS are favored for many potable reuse projects due to high removal efficiencies of 

microbial pathogens, organic and inorganic contaminants, and other constituents relative to 

potable water production (e.g., particles, inorganic nitrogen, and dissolved solids; see Table 

1) [11]. Post-treatment disinfection at current IPR and DPR facilities may be accomplished 

through the UV or UV-AOP processes. For groundwater and reservoir augmentation 

systems, post-treatment chlorine disinfection is generally not implemented as the water is 

sent to an environmental buffer. Primary disinfection for current DPR systems is typically 

performed downstream at the water treatment plant treating potable reuse treatment system 

effluent [11]. Additionally, chloramine residual is often applied before the RO membranes in 

order to minimize membrane biofouling, and is used instead of the stronger biocide chlorine 

due to polyamide RO membrane sensitivity [3]. Water stabilization (adding chemicals like 

calcium hydroxide) as a final step is often done to minimize distribution pipe corrosion.

Compared to alternative unconventional water resources such as seawater desalination and 

water importation, potable water reuse generally requires less energy and is less costly [12, 

13]. Although the FAT has become the backbone of most planned potable reuse projects and 

many consider it the standard for potable reuse worldwide, a number of drawbacks are 

associated with its implementation. Thus, alternative treatment trains may be used [14]. One 

such variation is to omit biologically activated carbon (BAC) from tertiary treatment plant, 

instead using other means for biological nutrient removal, which is often combined with 

ultrafiltration (UF) instead of microfiltration (MF). As another variation, biologically 

activated filtration may be used after RO and UV to remove byproducts of disinfection. 

Some trains even lack salinity control, omitting RO membranes. However, RO membranes 

are rarely omitted for direct potable reuse. Overall, several aims are always accomplished 

regardless of whether FAT or an alternative treatment train is used for potable reuse: physical 

removal, oxidation, and chemical inactivation [15].

Overall, the widespread use of RO membranes in potable reuse applications is due to: 1) 

demonstrated success in multiple installations worldwide enabling technology familiarity in 

a risk-averse industry responsible for protecting public health; 2) ability to handle variable 

input (i.e., operational reliability); 3) modularity; and 4) the very high quality of the product 

water, particularly with respect to pathogens, dissolved salts characterized as total dissolved 

solids (TDS; typically >99% removal), and wastewater-derived organic contaminants such as 

pharmaceuticals (removal varies, but typically >90%) [16–18]. While high pathogen 

removal is expected, current regulatory structures often give little or no disinfection credit 

for RO due to limitations in monitoring membrane integrity. Major advantages of 

membrane-based treatment systems over conventional processes for potable reuse include 

small footprints, modular designs, synergistic combinations with other treatment processes 

[19], fewer treatment stages and the ability to reject compounds that other processes cannot 

eliminate [20].
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2. Membrane Technologies

Although the secondary or tertiary treated wastewater used as a source water for potable 

reuse applications may be of acceptable quality for environmental discharge and non-potable 

uses, it may still contain a wide range of undesirable constituents including [21]:

i. Conventional pollutants, e.g., suspended solids, colloids, nitrogen, metals, 

phosphorus, inorganic salts and pathogens

ii. Unconventional pollutants, e.g., oxyhalides and refractory organics

iii. Emerging contaminants, e.g., pharmaceuticals, plasticizers, pesticides, 

degradation by-products of detergents, and endocrine disrupting compounds 

(EDC’s).

The principle of most membrane separations is the selective filtration of influent through 

pores of different sizes [22]. Figure 4 summarizes the separation performance of these 

membrane types based on the size ranges of certain common constituents found in water and 

the effective pore size of the membrane [23]. As the practice of potable reuse becomes more 

common, removal of pathogens and chemical contaminants will be an ongoing area of focus, 

and new treatment requirements may be on the regulatory horizon. The removal of target 

constituents from an aqueous solution by polymeric membrane systems can vary 

significantly and depends on many factors including constituent physicochemical properties, 

membrane type, and operational conditions [23]. The World Health Organization guidance 

document for potable water reuse provides recommended contaminant removal criteria [24].

Membrane processes can be classified into different categories, based on different criteria 

including membrane configuration, type of membrane materials, driving force, separation 

mechanism, and size range of constituents removed. The latter is dictated by the 

membrane’s pore size or molecular weight cut-off (MWCO) [22]. Four main membrane 

types, as noted previously, are commonly used to treat wastewater to potable standards and 

are classified in order of decreasing pore size [22, 25]. As the pores get smaller the processes 

need more driving force. The technologies are often classified as low pressure (MF, UF) and 

high pressure (NF, RO) [22, 26].

For easier reference, a schematic diagram summarizing the most important constituents 

rejected by each membrane type is shown in Figure 4. For a better understanding of the role 

of membranes in potable water reuse, the fundamentals of the most important membrane 

technologies used within the context of advanced wastewater treatment are briefly discussed 

in the following sections.

2.1 Microfiltration and Ultrafiltration

Microfiltration (MF) and ultrafiltration (UF) are classified as low-pressure (<2 bar) 

processes. Separation by MF mainly occurs through sieving and, due to the relatively large 

pore size (approximately 0.1 to 1.0 µm), is mainly limited to the removal of suspended solids 

or particles, bacteria and, to lesser extent, organic colloids [16]. UF membranes also mainly 

operate through sieving but have a wider separation range than MF and depending on the 

pore size (generally between 0.01 and 0.1 µm), can remove particles, pathogens, viruses, and 
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colloids. Potable reuse treatment (as shown in Table 1) commonly employs MF or UF for 

pathogen removal and as pretreatment for the NF or RO process. This pretreatment is critical 

to maintaining the integrity of the NF/RO system. The rejection achieved by MF and UF 

membranes depends on the properties of the membrane as well as the hydrodynamic 

conditions [27]. Additionally, disruptions in the upstream wastewater treatment processes 

can negatively affect the performance of a MF/UF unit and can cause significant fluctuations 

in MF/UF filtrate water quality [21], as well as increasing the required frequency of 

backwashing and chemical cleaning.

In potable reuse systems, MF membranes are commonly relied on to remove most fine 

suspended solids (more than 99% rejection) and some colloidal material. They can also 

provide 3 to 6 log removal (order of magnitude reduction for every increase of 1, i.e., 99.9 to 

99.9999% removal) of protozoan cysts and coliform bacteria [21, 28]. MF pores typically 

range between 0.1 and 1.0 µm in diameter, providing limited removal of viruses (up to 2-

log), although virus disinfection credit is rarely awarded [25]. The MF filtrate in potable 

reuse treatment schemes will subsequently be treated by RO and UV-AOP, each of which 

independently provides a very high level of disinfection. However, the incentive for virus 

removal at the pretreatment (MF/UF) stage remains high particularly since pathogen 

removal regulatory credit for RO is currently limited, as described in the section 2.2.2 [25]. 

In contrast, MF and UF system integrity can be confirmed daily via pressure decay testing 

(see section 7.2), thus allowing the cyst removal disinfection credits (e.g., 4-log credit for 

Giardia cysts and Cryptosporidium oocysts in the California regulatory framework).

UF membranes can typically reject all suspended solids, remove organic matter, reduce 

BOD5 (Biological Oxygen Demand over a 5 day test) by at least 95%, and greatly reduce 

turbidity. In addition to the contaminants removed by MF, UF can provide up to 6-log 

removal of bacteria, and if the membrane modules are intact, they can completely eliminate 

protozoan cysts and coliform bacteria from the filtrate [21]. However, practical experience 

has shown that typical UF membranes operated at reuse facilities do not always perform as a 

complete barrier to bacterial contamination, such as indicated by positive coliform results 

from the literature [25]. Membrane surface defects, deterioration of membrane due to 

biofouling, or imperfections in the packing of membrane modules or elements are the most 

probable causes of bacteria permeation [25]. UF membranes also provide an improved 

barrier to viruses (with up to 7-log removal) compared to MF [21]. Retention of viruses is 

enhanced at lower transmembrane pressures. As observed in MF membranes, virus and 

solids aggregates can form a cake layer on the membrane surface. The presence of turbidity 

and/or biomass in the feed water can enhance this adsorptive removal of viruses due to 

additional surface area [25].

Phosphorus, nitrogen, and total organic carbon constituents in soluble and colloidal form can 

also be partially removed through UF (and less with MF) but the achieved rejection can vary 

widely, 10 to 85%, depending on the phase of the contaminants (soluble or particulate). 

Increased removal can be achieved if chemical coagulants are dosed into the feed water [21]. 

Neither MF nor UF remove dissolved constituents such as salts and organic chemicals [21, 

29]. In Table 2, the rejection ranges for MF and UF membranes for tertiary effluent are 
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tabulated. It should be noted that the actual performance of a particular installation can vary 

according to the system’s specifications and operating practices [26, 29].

In all membrane technologies, fouling prevention and mitigation can be challenging. Fouling 

prevention measures for MF and UF usually include regular backwashing (cleaning every 

~30 minutes for large-scale applications) and chemical cleaning [20]. For cleaning, the type 

of chemical used depends on the membrane’s chemical tolerance, and the cleaning 

frequency can vary from as much as once per day to once per month in potable reuse 

applications depending on the membrane type and quality of wastewater treated. Polymeric 

UF and MF membranes are less tolerant to chemical cleaning than their inorganic (e.g., 

ceramic) counterparts [30].

2.1.1. Membrane Bioreactor (MBR)—A common way to utilize MF and UF 

membranes for wastewater treatment in various industries is to combine them into an 

activated sludge process termed a membrane bioreactor (MBR). In MBRs, typically the 

membrane is submerged inside the bioreactor and vacuum is used to permeate the treated 

water while solids are retained in the bioreactor. This configuration not only reduces energy 

consumption, but also lower the amount of membrane fouling compared to a traditional side 

stream configuration [31]. The membrane is usually provided as a flat-sheet or hollow fiber 

configuration. Typical polymeric membrane materials for MBR applications include 

polyvinylidene fluoride (PVDF) (which accounts for approximately 45% of polymeric MBR 

membranes), polyethylene (PE), polyacrylonitrile (PAN), and Polyethersulfone (PES); of 

which the PAN membrane is most likely the most fouling resistant due to its lower affinity 

with extracellular polymeric substances [32]. The nomical pore size of MBR membranes is 

usually between 0.03 and 0.4 µm. In addition, the versatility of PDVF membrane 

manufacturing makes them available in the whole range of pore sizes, while, for example, 

PES and PE membranes seems to be mostly available only with 0.03 and 0.2 – 0.4 µm 

nominal pore sizes, respectively [33]. Notably, MBR membranes often have lower integrity 

than UF membranes.

The MBR replaces the two-stage conventional activated sludge (CAS) process (biotreatment 

and clarification) with a single, integrated process. There are several advantages of MBRs 

compared to conventional treatment, the most important being product consistency, reduced 

footprint, reduced sludge production, and nearly complete suspended solids separation from 

the effluent [34]. MBR technology more efficiently removes a wide range of biodegradable 

and hydrophobic trace organics than CAS processes, as MBR systems operate at a much 

higher mixed liquor suspended solids (MLSS) concentration [35]. During MBR treatment, 

hydrophobic trace organic contaminants can be adsorbed to MLSS, increasing retention time 

in the bioreactor and thus enhancing removal efficiency. Furthermore, unlike a CAS 

treatment process, MBRs provide a definitive boundary layer that provides complete 

suspended solids retention. Because of these features, MBR effluent may be suitable for use 

as irrigation water, process water, or as a pretreatment for potable reuse applications [36].
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2.2 Nanofiltration and Reverse Osmosis

Nanofiltration and reverse osmosis processes are very similar in that they are designed to 

remove dissolved chemical contaminants including salts. Both require high hydraulic 

pressures and utilize similar membrane materials. NF removes many of the same solutes as 

RO but to a lesser degree (see Table 3). Although NF is rarely used in potable reuse 

processes, treatment plants are considering it as a lower-energy alternative to RO.

2.2.1 Nanofiltration—NF membranes were introduced in the late 1980s as an alternative 

“loose” RO membrane for applications wherein some ionic solutes in the feed water are 

selectively and purposely passed into the permeate [22]. The pore size of NF membranes is 

approximately 1–5 nm, which allows passage of neutral solutes of that size or smaller as 

well as some passage of monovalent salts such as Cl− [22, 27]. Compared to RO membranes, 

NF membranes have higher water permeability and allow operation at lower pressures, thus 

reducing the specific energy consumption [22].

In NF, solute rejection occurs as a result of several exclusion and transport mechanisms. 

Solutes are excluded from the membrane through steric, dielectric, and Donnan exclusion 

[38] and, in some cases, by adsorption to the membrane surface [4]. Solute rejection is also a 

function of the relative transport resistances of solutes and water. Solute transport occurs 

through three mechanisms, according to the extended Nernst-Planck equation (see Ref [38]): 

(1) convection of solute with the flowing water, (2) diffusion down the concentration 

gradient across the membrane, (3) electro-migration down the potential gradient that 

develops across the membrane due to the unequal diffusion rates of different ions. Water 

transport is generally modeled using a modified Hagen–Poiseuille equation (see Refs. [4, 

39]).

Typically, NF rejects more than 95% of divalent ions of the same charge as the NF 

membrane, whereas the rejection of monovalent ions ranges from approximately 20 to 80% 

[4]. For uncharged solutes, however, the rejection as a function of molecular weight is 

represented as a sigmoidal curve, indicating differential separation between different 

compounds on the basis of molecular mass [40]. Therefore, the typical NF permeate could 

contain molecules of size varying below and above the claimed pore size of the membrane 

[23]. Models of the rejection of organic micropollutants by NF membranes have been 

proposed by various researchers [41, 42]. As an alternative to RO, NF membranes are 

appealing for potable water reuse applications in which the source wastewater TDS level is 

relatively low (i.e., <500 mg/L) and/or where hardness (rather than monovalent salt 

rejection) is the primary challenge. In addition, recent research has indicated that higher 

recovery from NF systems can be achieved through non-thermal crystallization [43] and/or 

ozone pre-treatment to reduce second stage membrane fouling [44]. Recent studies have 

been undertaken to further demonstrate the viability of NF within a multi-barrier potable 

reuse treatment process [42, 45].

2.2.2 Reverse Osmosis—RO membranes consist of a homogeneous polymer layer (e.g., 

polyamide), which preferentially permeates water, on top of a hierarchal polymeric support 

material (e.g., polysulfone and polyethersulfone) [22, 46]. Pressure is applied to drive the 
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solvent (water) through the membrane while retaining most solutes on the feed side [22]. In 

order to produce fresh water, the applied pressure exceeds the osmotic pressure of the feed 

solution [47–49]. RO is the key treatment step of FAT, the current industry standard for 

potable reuse [11]. The FAT train has been demonstrated to be an effective and efficient 

process for potable reuse, largely because RO highly purifies water through rejection of most 

dissolved salts and organic molecules that are common contaminants in wastewater (e.g., 

organics like CECs), as well as larger particulates if not already removed by upstream pre-

treatment membranes (MF or UF). For example, at the Torreele IPR plant in Belgium, the 

RO step effectively reduces hardness, TDS, organic carbon, nitrogen, and phosphorus, and 

removes approximately 98% of pesticides at an energy consumption of just 0.63 kWh/m3 

[50]. RO energy consumption has decreased significantly since 1970, primarily due to 

improvements in membrane permeability and energy recovery efficiency [47–49]. RO uses 

highly-selective membranes to reject salts, colloids, biological materials, and most dissolved 

organics [22].

With RO, salts are generally highly-rejected; commercial seawater RO membranes reject 

99.5–99.8% of sodium chloride. Brackish water RO membranes commonly used for potable 

reuse have approximately 99.5% salt rejection, despite their high water permeability [51]. 

Even higher rejections are reported for divalent and multivalent ions such as sulfate and 

phosphate, at ranges of 99.7– 99.98% and 99.7 – 99.99%, respectively [52].

Due to the sub-nanometer scale of RO pores, RO is considered to be a complete barrier for 

pathogens. For example, in a pilot study of RO treatment of wastewater, neither E. coli nor 

viruses were detected in the RO permeate with either MBR or MF pretreatment [53]. At the 

Orange County Water District’s (California, USA) advanced water purification facility, 

currently the largest potable reuse plant in the world (IPR via groundwater recharge), twice 

weekly monitoring for the indicator organisms’ total coliform and E. coli and monthly 

monitoring for virus indicators (coliphage) in RO permeate since the plant came online in 

2008 has never resulted in a detection. Nevertheless, regulatory credit in the United States 

for pathogen removal by RO at advanced treatment facilities for reuse is currently limited to 

2-logs, based on the approximately 2-log salt removal across RO that can be continuously 

monitored via conductivity analyzers [27]. To obtain higher credit closer to known 

performance (e.g., virus log removal of 4–7 per Table 3), a permitted method/technology 

(e.g., fluorescent dyes) is needed for continuous or frequent demonstration of an RO 

system’s integrity (e.g., due to possible malfunctions, operator error, or unnoticed leakages 

via glue strips or permeate seals in the spiral-wound elements) [25] at greater than 2-log.

RO membranes have been found to be effective in removing high molecular weight organic 

constituents (such as humic and fulvic acids) [28]. The BOD and chemical oxygen demand 

(COD) can be reduced up to 98% and 96%, respectively, and TOC can be rejected at 96% or 

higher [28]. The removal of EDCs can be as high as 95 to 99% [28]. Removal of organic 

solutes, such as wastewater-derived pharmaceuticals, is crucial in potable reuse, but the 

rejection varies between solutes and membranes [33]. Urtiaga et al. [54] performed pilot-

scale testing of pharmaceuticals rejection by UF and RO treatment of wastewater effluent. In 

this study, all 12 compounds tested had rejection values greater than 99.3%. Radjenovic et 

al. [55] studied rejection of pharmaceuticals in a full-scale drinking water treatment plant 
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using RO and NF treatment of groundwater. Most compounds were rejected by 85% or more 

by RO, but few solutes (both neutral and charged) were rejected poorly by 30–70%. Lower 

removal of neutral organic solutes was observed for lower molecular weight compounds. 

Additionally, incomplete rejection of certain DBPs, such as nitrosamines, and some micro-

pollutants, such as 1,4-dioxane, of low molecular weight (less than 1001 Da) has been 

observed during full and pilot scale tests of high-pressure membrane applications [28]. 

However, detection of the low molecular weight compounds in product water has been 

reported only at trace concentrations, well below health significance [28, 56].

Despite low rejection for certain organic compounds, RO generally removes most 

compounds to a very high degree and better than other engineered or natural alternatives. 

For example, Drewes et al. [57] examined the efficacy of soil-aquifer treatment (SAT), NF 

and RO at removing organic carbon including dissolved organic carbon (DOC), 

polysaccharides, and humic substances, among other types. In almost every metric, RO 

removed the greatest fraction, followed by NF and SAT. SAT was still moderately effective, 

as shown by a 77% DOC removal over 12–18-month residence time of tertiary effluent. 

TOC rejection by RO and NF were 94–96.4% and 91.3–94.5%, respectively. Lower-

molecular weight compounds were less rejected by the RO and NF membranes. Of 36 

pharmaceuticals and EDCs chosen to represent a range of contaminant types and structures, 

another study showed that RO removed most to below detection limits, and double-pass RO 

removed all but two compounds to below detection limits [58].

Although there is experimental evidence of sub-nanometer pores in the active layer of 

polymeric thin film composite (TFC) RO membranes [59] (see Section 3.1.3), the passage of 

water and rejection of dissolved matter by RO is commonly simulated with the solution–

diffusion model (which neglects transport by convection; see [60]) and variations thereof 

(see [52]). In the solution–diffusion model, both water and solutes are considered to dissolve 

into the membrane and diffuse through it. The chemical potential gradients inside the 

membrane’s active layer depend on the feed and permeate concentrations, membrane 

sorption coefficients, and applied pressure. For a given membrane, the solution–diffusion 

model predicts that solute rejection increases with increasing flux (i.e., the amount of 

permeate generated per unit area of membrane surface per unit time). Other RO membrane 

transport models including pore-flow models are reviewed in [61]. These models are divided 

into pore-flow, irreversible thermodynamics, and nonporous membrane models.

Various configurations of RO modules have been developed with the intent to minimizing 

energy consumption and contaminant permeation. In RO plants, multi-pass design (i.e., 

permeate from first stage is treated in a second stage) can be used to improve rejection of 

potentially harmful solutes such as borate, although this is uncommon in potable reuse 

applications. In reuse plants, multiple stages (i.e., concentrate from one stage is treated in the 

following stage) are commonly used to increase recovery and improve energy efficiency. As 

an example of multiple RO membrane passes, Israel’s Ashkelon seawater desalination plant 

uses multiple passes to meet stringent water quality standards and multiple stages within the 

2nd and 3rd pass to improve recovery [62]. However, multiple RO passes are uncommon in 

potable reuse applications. In reuse plants, multiple stages (i.e., concentrate from one stage 

is treated in the following stage) are commonly used to increase recovery and in some cases, 
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can improve energy efficiency Multiple stages with inter-stage pumps improve energy 

efficiency by minimizing the applied pressure in the first module(s) [63].

At typical potable reuse recovery percentages (50–85%) [7], 15–50% of the feed volume is 

converted into concentrate that must be disposed of or reused. The RO concentrate from a 

reuse plant is typically disposed through surface water (e.g., ocean) discharge, recycled to 

the wastewater treatment plant, deep well injected, or sent to an evaporation ponds, and may 

require treatment beforehand [2, 19, 64]. The vast majority of large-scale RO-based potable 

water reuse facilities are located in coastal areas, thus concentrate disposal is most 

commonly achieved by discharge to the ocean. However, some regions have restrictions or 

prohibitions on ocean outfalls. For instance, in 2008 the Governor of Florida signed into law 

a requirement that wastewater utilities in southeast Florida cease to use ocean outfalls by 

2025 [65]: this may require membrane and system designs for much higher recovery ratios 

and thus solute tolerance (fouling, etc.). Inland water utilities often have few, if any, 

capabilities to discharge the concentrate, which is highly enriched in salts, emerging 

contaminants, pathogens, and other materials rejected by the RO system. Thus, further 

treatment of RO concentrate may be advantageous to increase the overall water production 

of a water reclamation facility while at the same time minimizing the volume of concentrate 

that requires disposal [43].

3. Membrane Materials

Development of novel membrane materials is a major research thrust for academia, industry, 

and national laboratories because membrane performance is often challenged by fouling, 

low permeability, and high contaminant permeation relative to stringent selectivity 

requirements. There are unique needs for membranes made for potable reuse. Reuse 

applications, as opposed to industrial applications, face a diversity of contaminants of 

concern. Such contaminants range from microorganisms (e.g., viruses) to molecular organics 

(e.g., pesticides) and inorganic compounds (e.g., heavy metals). These membranes, where 

possible, also need to be tolerant to relatively extreme chemical cleaning processes [30]. 

This translates into a number of different materials that may be effectively used within 

potable reuse treatment trains.

3.1 Polymeric Membranes

3.1.1 Membrane Comparison—Numerous polymers are used in the creation of 

membranes, although a select few have emerged as leading choices for potable reuse 

applications. Like any other application, two main design considerations drive potable reuse 

membrane technologies: membrane material properties and membrane formation 

mechanisms. Driving factors for which material is used include pore size distribution, 

wetting susceptibility, porosity, mechanical strength, cost, polymer flexibility, fouling 

resistance, stability, durability, and chemical resistance [64]. The latter may include 

resistance to pH, oxidants, and chlorination (Which is of particular importance for potable 

reuse membranes given the high levels of dangerous microorganisms, with little tolerance 

for their presence) [64]. Other desirable properties that also relate to the fabrication itself 

include low tortuosity and surface properties that influence rejection (e.g., surface charge). 
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Additional characteristics may influence performance as well, such as improved 

regeneration/fouling recovery, which results from many things including low surface 

roughness, poorly adhering materials, and resistance to cleaning agents [66].

Potable reuse membranes share much in common with other processes such as desalination, 

but have notable differences. Salt-selective potable reuse membranes gain more benefit from 

high permeability due to reduced concentration polarization. Such membranes also need 

superior solute rejection and reliability, due to the wide variety and variability of solutes in 

the wastewater feed, with larger toxicity concerns. Still, many reuse systems use modules 

and technologies borrowed from desalination and municipal water treatment.

Many reviews of membrane materials have been previously reported published, so the 

present discussion is intended to be concise and comparative, focusing on membrane design 

than individual polymers. A list of common membrane materials and properties is displayed 

in Table 4.

With respect to membrane materials used for MF/UF in potable reuse facilities, a variety of 

materials are used (see Table 4) [66–68]. As an example, currently polypropylene MF 

membranes (Evoqua S10T submerged, outside-in configuration) are used by Orange County 

Water District (OCWD), which operates the largest potable reuse facility in the world. This 

material choice is less common today for MF compared to alternatives that have emerged 

(such as PVDF) since the OCWD facility came online in 2008; regardless, the original 

polypropylene membranes operated successfully at OCWD for nine years (past a typically 

assumed life of approximately seven years) until their replacement in 2016 with the same 

product [69]. For potable reuse applications, the industry has moved largely toward PVDF as 

a material of choice, which is stated to have reduced capital cost, increased membrane life, 

and reduced nominal pore size compared to polypropylene [70]. Like polypropylene, PVDF 

is amenable to the outside-in configuration (i.e., direction of flow in a hollow fiber module – 

see later section on module types), air scour, and backwashing, but unlike polypropylene is 

chlorine resistant (enabling use of this effective oxidant during monthly membrane cleaning) 

[30]. Within the PVDF family of hollow fiber materials, modifications in manufacturing 

techniques have resulted in the development of two distinct classes of materials: non-solvent 

induced phase separation (NIPS) and thermally induced phase separation (TIPS) fibers. 

While new materials with performance advantages continue to emerge, consideration of 

alternate MF/UF materials (products) at an existing facility can require significant capital 

expense for a system retrofit, because unlike the RO industry, low-pressure membrane 

systems have not standardized around a common platform (e.g., size, design) which would 

(like RO) enable a new product to be directly installed (swapped in with no system 

modifications). Rather, MF/UF systems are unique to each supplier and are offered in a 

variety of configurations in both pressurized or submerged designs [71].

RO membranes are analyzed in this review in greater detail (see next section), as they are the 

most crucial to potable reuse and dominate cost, energy use, and R&D interest. Membrane 

materials may be modified to improve performance and mixed in composite membranes.
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3.1.2 Membrane Fabrication—A variety of manufacturing techniques are used to 

fabricate membrane. Often, these methods depend more on the membrane material than the 

membrane class (e.g., UF, MF, etc.), although processes vary for controlling pore size, 

especially for composite membranes. Phase inversion and electrospinning are respectively 

the most and second most common techniques to fabricate mem- brane which is mostly used 

for fabricating potable reuse membranes. Notable phase inversion variants include non-

solvent induced phase separation (NIPS) (a dominant technique), thermal phase separation, 

controlled evaporation, and finally vapor induced phase inversion (VIPS).

More complex methods are used for composite membranes and/or membrane surface 

modifications [72]. Other techniques used in membrane fabrication or modifications include 

in-situ polymerization, film casting, ion assisted deposition, aerosol deposition, ion 

exchange, dip coating, hydrothermal synthesis, sputtering and etching, surface adsorption, 

layer-by-layer deposition, and spray coating [73].

Chemical methods are also used to modify polymer membrane chemistry as a whole, 

depending on applications. These include hydrophilization treatment with plasma, radical 

grafting, and chemical coupling.

For more on self-assembled polymer nanostructures for filtration membranes, readers are 

referred to Asatekin and Vannucci [74]. For recent reviews on reverse osmosis membrane 

materials and nanomaterials readers are referred to Lee at al. [51], Maleb and Ayoub [61], 

Giwa et al.[3], and Lau et al. [75]. For reviews on NF membrane materials, Amirilargani et 

al. [76], for carbon nanomaterials, Goh et al [77], and for more general nanomaterials, 

Santhosh et al. [78]. Additional reviews include membrane fabrication by Lalia et al. [73], 

NF membrane fabrication by Cheng et al. [79], RO fouling by Pandey et al. [80], and for 

antifouling membranes, by Kang and Cao [81] and Saqib and Aljundi [82]. Additionally, 

chemical cleaning for potable reuse membranes has been reviewed by Porcelli and Judd 

[30]. A review of electrospun membranes was recently published by Kaur et al. [83], on 

phase inversion membranes by Wang et al.[84], and on track etching by Chakarvarti [85].

3.1.3 RO Membranes—RO membrane materials were reviewed in depth by Lee at al. 

[51] in 2011. Aspects of that review are summarized in this section, along with subsequent 

research. Although current potable reuse plants exclusively use thin-film composite (TFC) 

membranes, a range of RO membranes have historically been made from single polymers. 

Lee et al. [51] offer a brief history of cellulose acetate (CA) membrane development: After a 

symmetric CA membrane was found to have very low flux, asymmetric CA membranes 

were developed [51]; later, cellulose triacetate or diacetate–triacetate blends were also 

developed. CA has higher chlorine resistance, but it is prone to compaction (loss of 

permeability at high pressure) and hydrolysis in both acidic and alkaline environments, 

which reduces cleaning options. For CA membranes, significant acetylation (replacement of 

hydroxyl groups with acetyl groups using a catalyst such as H2SO4) improves salt selection 

but reduces permeability [86].

Other polymers including polyamide, polybenzimidazoline, and poly(piperazine-amide) 

have been evaluated for use in single-polymer asymmetric membranes, but none have the 
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combination of permselectivity, compaction resistance, and chemical stability offered by the 

thin film composite membranes that currently dominate the RO membrane market [87].

Most state-of-the-art commercial RO membranes today are TFCs. TFC membranes consist 

of a semi-permeable “active” layer, typically an aromatic polyamide, of around 50–200 nm 

thickness supported by a microporous polymer layer (typically polysulfone) roughly 40 µm 

thick, which is itself supported by a non-woven polyester web of approximately 100 µm 

thickness [51, 59] (Figure 5). These membranes achieve salt rejection around 99.5%, and 

good rejection of low molecular weight organics compared to CA [51, 59, 88, 89]. Lee et al. 

[51, 59, 88] reviewed the history of TFC membrane development and the various 

combinations of polymers used. Polysulfone was identified as the optimal material for the 

porous support layer because of its compaction resistance and stability under acidic and 

alkaline conditions making it compatible with interfacial polymerization. Various polymers 

have been used for the formation of active layer on membrane surface, but polyamides are 

most common. Notable commercial TFC membranes are listed in prior studies [51]. As an 

example, the OCWD potable reuse facility (100 MGD) utilizes three different types of TFC 

RO membranes – Hydranautics ESPA2-LD (previously used ESPA2 before membranes 

reached end-of-life), Dow XFRLE, and CSM FLR – which were selected at different times 

for installation into newly-built RO units as the plant expanded over time. Regardless of the 

fact that RO products are all TFC, OCWD testing complete prior to any product selection 

has indicated that product performance varies; namely, different manufacturer’s membranes 

can require significantly different feed pressures (affecting operational cost) to produce the 

same flux with similar permeate quality on the same feed water.

Modern TFC membranes are produced by interfacial polymerization, a process in which two 

immiscible liquids, each containing one monomeric or polymeric aromatic amine, are 

brought together, allowing polycondensation at the interface. Various manufacturing 

methods were explored before the industry settled on interfacial polymerization. Early TFC 

membrane manufacturing methods included float-casting, dip coating, and acid 

polycondensation [51].

Recent studies have elucidated various aspects of the active layer structure. Fujioka et al. 

[59] reviewed positron annihilation spectroscopy and found that, for various RO membranes, 

free-volume holes (referred to as network holes in Figure 5) in the active layer have been 

measured in the range of 0.20–0.29 nm. Rejection of neutral species improves as the solute 

increases in size with respect to the free-volume holes. The active layer also exhibits 

roughness on a 100 nm scale [90] (Figure 6.). SEM images of the active layer surface show 

villi-like structures with a thin (~20 nm) skin and 50–200 nm cavities [59]. Permeability 

increases with increasing roughness (linearly, for the membranes tested) [90], a phenomenon 

ascribed to the increased cross-sectional area for diffusion.

In contrast to RO and NF membranes, MF and UF membranes have much more porous 

structures, and do not have the tight relatively nonporous active layers seen in RO (Figure 

7.). Because of the large particle size tolerance and high permeability, the MF/UF 

membranes are typically less complex than RO/NF membranes, and are thus easier and less 

costly to manufacture. Furthermore, their higher fluxes compared to RO membranes allows 
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for a smaller surface area and corresponding investment, which further drives the research 

interest toward RO membranes over MF/UF.

3.2 Nanocomposite Membranes

Introduction of nanomaterials into polymer membrane matrices has focused less on salt 

removal and more on niche applications. Surface coatings have produced enhancements of 

many physical/chemical characteristics such as water permeability, fouling resistance, 

selectivity, increased mechanical strength and temperature resistance. Comprehensive 

reviews have been recently published outlining the impacts of incorporating nanomaterials 

into various types of membranes [3, 92, 93]. The nanomaterials that have attracted the most 

attention in wastewater treatment are carbon based nanomaterials (e.g., graphene oxide (GO) 

and carbon nanotubes (CNTs)), titanium dioxide (TiO2), and silver nanoparticles (nAg). 

This section highlights areas of particular interest to the reuse industry.

Promising results have been obtained for spiral wound flat membranes modified with 

inorganic additives used for improving the antifouling properties including nano-sized 

titanium dioxide, silica, nano-sized alumina, zirconium dioxide, and lithium perchlorate as 

well as antimicrobial additives such as copper or silver [94]. CNTs and GO have also been 

actively explored in efforts to develop ultrapermeable membranes [95]. Hu and Mi [96] 

integrated GO into a layer-by-layer assembly for forward osmosis (FO) applications and 

demonstrated water permeability an order of magnitude higher than commercial polymeric 

membranes [97]. Computational studies have claimed that a membrane comprised of single 

sheet graphene would produce water flux 250 times higher than current commercial RO 

membranes under the same conditions [98]. Notably, in contrast to potable water reuse 

applications, for seawater RO, resistance to the drive for ultrapermeability has emerged 

because concentration polarization will sharply limit the achievable flux increase for saline 

feeds. [99]. However, for lower salinities, the case in most reuse applications, they find that 

more significant performance gains are still possible. Apart from flux, Cohen-Tanugi et al. 

[100] showed that the energy savings possible from high permeability reach diminishing 

returns rapidly as permeability rises. More significant energy savings could potentially be 

realized in wastewater reclamation due to its lower feed salinity.

CNTs have garnered interest for membranes because their diameters can be controlled to, in 

theory, allow for higher selectivity [101]. TiO2 nanoparticles have been used to impart 

superhydrophilicity and photocatalytic properties that help prevent biofouling and improve 

permeability [102]. The photocatalytic nature of TiO2 has also been utilized for degradation 

of natural organic matter (NOM), trace levels of pharmaceuticals and personal care products, 

and polishing of wastewater effluent [103]. Most research in this area focuses on finding the 

optimal TiO2 concentration and method of incorporation into different polymer matrices 

rather than scalability to commercial applications. A remaining concern is the potential 

degradation of the host polymer matrix by the reactive species generated at the surface of 

embedded nanocatalyst. Silver nanoparticles, nAg, are incorporated into membrane 

materials to impart biocidal properties to the membrane and prevent or reduce biofouling. 

Incorporation and regeneration of nAg can prove challenging and researchers have taken 

different approaches. For example, nAg surface functionalization [104] and in situ formation 
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[105] were both explored for TFC polyamide RO membranes. The surface functionalization 

approach achieved > 95% of inactivation of surface bacteria while in situ formation led to an 

inactivation of more than 75% of bacteria.

A new class of hollow fiber nanocomposite membranes is emerging as a promising solution 

for MF and UF [106]. Hollow fiber nanocomposite membranes have several advantages, 

including low cost, ease of fabrication, high mechanical stability, and combination of 

polymeric and inorganic material properties [107]. In addition, they have been observed to 

efficiently disinfect and adsorb/degrade organics in potable reuse feed if incorporated during 

hollow fiber membrane fabrication [108]. TiO2 nanoparticles have been found to be most 

useful in this respect and have also been found to increase thermal resistance, permeability, 

hydrophilicity, porosity, and tensile strength of hollow fiber membranes [109]. Similarly, 

hydrophilicity, permeability, and mechanical stability of hollow fiber membranes can be 

enhanced by embedding zinc oxide nanoparticles (ZnO), which also increase reversible 

fouling which is very much essential for potable reuse applications [110]. Ag has been 

shown to improve antibacterial properties, fouling resistance, and mechanical stability of 

hollow fiber membranes [71, 111].

Apart from the properties imparted to the membrane, the scalability of the manufacturing 

processes and regeneration once installed are essential to ensure commercial adoption. 

Manufacturing scalability still remains a serious hurdle for nanocomposite membranes. At 

this point, very few of these emerging technologies are competitive with polymeric 

membranes in terms of cost [51], and while the feasibility of nanocomposite membrane 

technology has been demonstrated at lab-scale, commercial realization is very limited. One 

commercially available RO membrane that includes a propriety nano zeolite additive is 

manufactured by LG Chem (originally NanoH2O). Their membranes have demonstrated 

only slightly lower salt rejection, but 140–200% higher water permeability when compared 

with standard commercial thin film membranes [92].

In general, the effects of the incorporation of nanomaterials varies greatly depending upon 

the specific material, base membrane material, and the manner in which the nanomaterial is 

incorporated (e.g., during casting versus grafted onto the surface) [77, 78]. To date, the goal 

of many studies in early stage research is to determine the optimal loading of the 

nanoparticles to maximize performance measured in terms of permeability, strength, 

wettability, and selectivity rather than pilot studies for field applications. Additionally, 

nanocomposite membrane parameters and challenge tests are primarily optimized for 

seawater desalination, not reuse. Overall, desalination and reuse applications need research 

to address challenges for both membranes (e.g., low water flux, membrane fouling and 

regular replacement) and the reuse industry (e.g., potentially high solids loading and 

matrices that may contain emerging contaminants). In summary, while most nanocomposite 

membranes are not yet commercially available, diverse and promising ongoing research may 

serve the potable reuse community in terms of target contaminant removal and energy/cost 

savings.
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3.3 Ceramic Membranes

While polymeric membranes have been the staple in the suite of membranes used in water 

treatment applications for all pore ranges and operating modes, ceramic membranes have 

recently emerged as a broad classification of materials that show significant promise for 

applications to potable reuse. Contrasting polymeric and ceramic membranes is important 

for understanding the advantages and disadvantages of both. Ceramic MF/UF membranes 

have demonstrated potential for pretreatment to reduce fouling of RO membranes in 

combination with oxidation processes (e.g. ozone, UV) to degrade pollutants reducing 

membrane fouling, but their cost is high relative to polymeric membranes. Where ceramic 

membranes are employed, they are often used in combination with polymeric membranes 

later in the same treatment train (e.g., polymeric RO membranes) [112]. Although the 

present review focuses on polymeric membranes, ceramic membranes possess unique 

attributes relevant to wastewater reuse that should also be described. With further research, 

ceramic membranes might be improved to match the performance of polymeric membranes 

at a more feasible cost.

Ceramic membranes have the ability to be cleaned with harsh chemicals that would damage 

polymeric membranes. Thus, ceramic membranes have potential for treatment of high 

fouling feeds such as filter backwash [113]. Ceramic membranes employed in municipal 

water treatment are most commonly produced from alumina. Other common active layer 

materials include titanium dioxide and zirconia oxide. Since the use of ceramic membranes 

is uncommon, few studies directly evaluate potable reuse using ceramic membranes, but 

there are several areas where ceramics are particularly promising.

Various ceramic membranes ranging from MF to NF in pore size have been evaluated for 

use in treating secondary municipal wastewater effluent [114]. Materials including α-

alumina, anatase, γ-alumina, amorphous titania, and amorphous organo-silica active layers 

on α-alumina supports have been evaluated. The γ-alumina NF membrane was deemed the 

most promising membrane for treatment of wastewater treatment plant effluent based on 

permeate flux (6.6 LMH) and selectivity (75% of UV254 absorbing compounds and 15% of 

ions). Most commercially available ceramic membranes lack pore sizes small enough for 

virus removal, but their tolerance for higher concentration of chlorine, oxidants, and 

coagulants allows them in theory to achieve high degrees of virus removal. Kramer et al. 

[115] studied the use of ceramic UF and NF membranes for pretreatment of typical 

municipal sewage prior to RO. After pretreatment by 6 mm screening and 0.5 mm sieving, 

the ceramic filters required less frequent cleaning than polymeric membranes [116]. Kramer 

et al. [109] also observed that biofouling of a RO membrane treating ceramic membrane 

permeate was very low. This study demonstrated that ceramic membranes may be 

considered for raw sewage reuse, where longer cleaning intervals are desired, and/or to 

prevent biofouling of RO membranes. Another membrane material that warrants further 

study is zeolite, which has demonstrated salt rejection in both molecular dynamics 

simulations and, to a lesser extent, in practice [51].

The oxidative resistance of ceramic membranes may provide more flexibility in the design 

of treatment processes for enhanced NOM removal. Ozone threatens the integrity of many 

polymers (although PTFE and, to a limited extent, PVDF are exceptions), but ceramic 
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membranes are resistant to oxidation because they are already completely oxidized. If ozone 

is applied before a membrane, substantially more NOM, DBP precursors, and estrogenicity 

is removed, and a lower fouling propensity is observed in comparison to when ozone is used 

after MF/UF membrane processes [117, 118]. Catalytic ozonation on the surface and inside 

ceramic membrane pores can also prevent fouling [119]. The limited studies of ceramic 

membranes in reuse applications have highlighted their ability to handle high solid loadings 

and resist oxidation by ozone used for pretreatment. Therefore, due to their chemical 

resistance, ceramic membrane technology warrants continued research attention for water 

reuse applications. However, in comparison to polymeric membranes, ceramic membranes 

are less cost competitive, generally have larger pores and less permeable.

4. Membrane Module Types

Membrane filtration technology has developed not only with respect to the membrane 

materials, but also how membranes are packaged in reactors and modules. Module types 

often place large constraints on membrane materials due to available fabrication processes. 

Thus, a wide range of membrane modules have been developed, suited to a variety of 

applications. The four conventional polymeric membrane module types are flat sheet, hollow 

fiber, spiral wound, and tubular (Figure 8) [120, 121]. However, flat sheet membranes and 

the rarer tubular modules (1–3 cm in diameter) have higher costs and lower practical packing 

density. These types are largely being replaced by hollow fiber or spiral wound membrane 

modules for water treatment and reuse applications. Some researchers have developed and 

tested novel configurations apart from those mentioned above. For example, one novel 

module configuration is a helical membrane configuration, where two pieces of membrane 

sheets are supported on a plastic spacer. Another is a fishbone or broom-like structured 

spacer, which has been examined by Liu et al. [122]. Other recent configurations, induce 

membrane vibrations to increase filtration rates [123, 124]. However, to date, none of these 

have proven to be cost competitive. Hence, the discussion below is focused on the three most 

commonly used polymeric membrane modules for potable water reuse applications: flat 

plate, hollow fiber and spiral wound. Relevant findings for each of these module 

configurations and challenges ahead are discussed in the following subsections.

Notably, flow configuration is another key distinction for membrane modules and consists of 

either dead-end or cross-flow (tangential flow) filtration. In dead-end configurations, all 

fluid passes through the membrane, perpendicular to its surface. In contrast, cross-flow 

systems are designed so that the flow is parallel to the membrane, and residual feed water is 

rejected as brine. Dead-end filtration is often used in experimental studies or when the 

particle loading in the feed is very low. While it has higher water recovery, dead-end 

filtration suffers faster fouling, requiring frequent backwashing [67, 125].

4.1 Flat Plate

Flat plate (plate and frame or flat sheet) membrane modules, also known as stacked 

membrane modules, are used in few water treatment applications where the feed streams to 

be treated contain high amount of foulants and/or have high viscosities. Modern flat plate 

membrane systems are built to tolerate very high pressures, in excess of 100 bar. They are 
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used in the treatment of landfill leachates and for industrial textile wastewater reuse [126]. 

Even though tangential flow flat plate membranes have proved to be a popular MBR 

configuration for wastewater treatment (e.g., immersed flat sheet modules from Kubota®), 

their application is limited to advanced water treatment due to their low surface area to 

volume densities. Flat plate modules are predominantly used for MF and UF, with little 

industrial use for RO and NF. Extensive membrane fouling and low treatment efficiencies 

remain major challenges associated with flat sheet membrane modules in potable reuse 

applications [127].

To counter these challenges, recent research has focused on combining flat sheet membrane 

modules with embedded photo catalysts, such as TiO2, for the removal of organic matter 

from feed water [128, 129]. Hernandez et al. [130] showed that doping flat sheet membranes 

with Fe/Pd nanoparticles can enhance removal of contaminants due to an order of magnitude 

increase in catalytic activities on membrane surfaces. In addition, research has also shown 

that pretreatment of the feed water with polyaluminium chloride (PACl) and ozone can 

enhance the efficiency of flat sheet membranes used for potable reuse applications [131, 

132]. Research in minimizing fouling of flat sheet membranes is also directed at hybrid 

forward osmosis (FO) systems for wastewater treatment/reuse, where FO membranes are 

first cast on hydrophilic glass plates and thermally annealed in water thereafter. These 

membranes have a highly porous sublayer sandwiched within and are termed as double-

skinned membranes. They generally have less fouling propensity and mitigated internal 

concentration polarization (ICP) [133, 134].

4.2 Hollow Fiber

Hollow fiber (HF) membranes consist of several thousand hollow fibers with a small hollow 

portion called as lumen with various dimensions from of 0.5–1 mm in diameter. Due to its 

high surface area per volume, HF modules are mostly preferred over other configurations for 

large-scale operations. Generally, the hollow fiber modules used in potable reuse 

applications are manufactured to accommodate MF or UF membranes where they are 

common. However, this configuration has recently become commercially available again for 

RO (although it remains rare), and to some extent, for NF [135]. Challenges in making 

sufficiently permeable NF/RO membranes with sufficient structural strength have limited 

this applications, although fundamentally hollow fiber membranes have favorable mass 

transfer coefficients and packing densities for these processes [130]. The manufacturing of 

hollow fibers can be more limited than that of the flat membranes seen in flat plate or spiral 

wound systems, as roll-to-roll processes and coating techniques such as spray deposition or 

fabrication methods like polymer composites are more challenging. Due to technical 

limitations the technology and precision of making HF membranes and modules is still not 

widely explored. On the other HF membranes have higher packing density than that of other 

flat membranes so the separation efficiency is higher in this case for potable water reuse.

Filtration in HF membranes can operate from inside-out or vice versa, allowing for 

backwashing. HF membrane modules are increasingly used for wastewater potable reuse and 

desalination [136]. Hollow fibers are more resilient to small particulate fouling than spiral 

wound membranes for reuse applications, though they still benefit from pre-filtration if 
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suspended solids are present in the feed water. Most HF membranes, even after surface 

modifications, are limited in their applications to pressures below 3.4 bar [70] whereas 

research on HF membrane with higher mechanical strength is ongoing which include 

inorganic additives.

Hollow fiber membranes for wastewater reuse are restricted by challenges including the 

trade-off relationship between permeability and rejection (related to membrane porosity), 

and low resistance to fouling [106]. Fouling issues are exacerbated by fiber clogging, and 

also by the small channels, which make high velocity cleaning difficult. Continuous efforts 

have been made to counter these challenges by modifying standard configurations, as in the 

case of spirally wound silicone rubber hollow fiber membranes and monofilament nylon 

[121], which display lower pressure drops and higher mass transfer rates due to combined 

advantages of both spirally wound and hollow fiber modules. Research has shown that 

inside-out hollow fiber modules, arranged in parallel configuration and operated in dead-end 

filtration mode, at some stage during cleaning need chlorinated water for backwashing if 

used for wastewater reuse [125]. Hence, tangential flow filtration is the most preferred 

hollow fiber membrane configuration due to reduction in fouling

Modifying membrane sometime called novel membrane surfaces is another alternative to 

counter the above-mentioned challenges of hollow fiber modules similar to using 

nanocomposite materials [71, 111]. Apart from metal nanoparticles, multi-walled carbon 

nanotubes (MWCNT) are increasingly being used during fabrication of hollow-fiber 

membranes [137] for either improved fouling resistance (carboxylated MWCNT) or 

increased permeabilities (hydroxylated MWCNT) [137] but the goal of high permeability 

and high selectivity is still a dream to fulfil.

4.3 Spiral Wound

The most common membrane module used in NF/RO processes is spiral wound [120] which 

is also used for MF/UF. Spiral wound design success relates heavily to high packing 

densities and the relative ease of manufacturing the modules and the flat sheet membranes. 

Spiral wound modules contain a small-diameter tube tightly packed with flat sheet 

membranes separated by mesh spacers in the feed and permeate channels (Figure 10). This 

dense configuration means available surface area is higher for a filtration unit (example 

picture provided in Figure 11), thus overcoming the limitations of flat plate and tubular 

configurations. Most of these modules are composed of polymers (plastics), including the 

membranes, spacers, and other components, with the exception of the stainless steel pressure 

vessels and pipes. Spiral wound membranes have been found to be successful in not only 

removing traditional contaminants from feed [138, 139] but also emerging contaminants 

[140, 141] from wastewater sources. In the case of spiral wound RO, pretreatment is 

essential for water reuse applications [142]. Spiral wound membrane modules are highly 

sensitive to particulate fouling that can reduce process efficiency and reduce membrane 

lifetime (U.S.EPA, 2005). Hence, increasing fouling resistance remains the biggest 

challenge for spiral wound membranes.

Ongoing research, through the last decade, focused on the optimization or complete removal 

of the feed spacer mesh from the spiral wound feed channels [144, 145]. Spacers in the feed 
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can create dead regions that promote scaling, fouling, and particulate deposition. Successful 

spacer research has implement combinations of 3D printing with numerical modelling and 

experimental testing for reducing biofilms and improving flux recovery in RO and NF [146]. 

Limited lab-scale improvements are implemented however, because improved fabrication of 

complex geometries of these polymeric spacers (e.g. through 3D printing) remains 

expensive. Another area for innovation is higher-pressure tolerant modules composed of 

plastics, which can be cheaper, more chemically resistant, and less likely to induce salt 

nucleation than the typical stainless steel vessels and pipes.

The other significant breakthrough in this domain has been in surface modifications [147]. 

In addition, current research is focused on optimization of cleaning parameters for spiral 

wound membranes. To control biofouling and increase efficiency of the treatment, periodic 

cleaning of high-pressure RO/NF membranes is conducted as an effective operational 

strategy [148].

5. Alternative Membrane Technologies

5.1 Electrodialysis/Electrodialysis Reversal

ED is a membrane-based desalination process in which ions transport through ion exchange 

membranes under the influence of an applied electrical field [149]. EDR was proposed by 

Meyer and Strauss in 1940, but its application at industrial scales started much later [150, 

151]. ED was introduced and used in industrial applications before RO [150]. A schematic 

of an ED stack is shown in Figure 12. In EDR, the basic ED process is enhanced by 

periodically changing the direction of ion transport by reversing the polarity of the 

electrodes. This periodic change in polarity is done in order to prevent scaling and fouling 

problems and increase process efficiency [152, 153]. Additionally, when the polarity is 

reversed, automatic valves switch the flows of the dilute and concentrate streams through the 

cells [154].

The ion exchange membranes used in ED/EDR processes can be considered as ion exchange 

resins in the polymeric matrix, and they are categorized into cation exchange membranes 

(CEMs) and anion exchange membranes (AEMs), as depicted in Figure 13. These ion 

exchange membranes have low electrical resistance, high pH stability, resistance to scaling, 

and fouling, robust structure for washing, cleaning, and long lifetime [155]. CEMs, which 

are negatively charged ion exchange membranes, can only pass cations. Most 

commercialized CEMs are composed of sulfonated cross-linked polystyrene that has a large 

number of sulphonate groups. In water, this ionic group is ionized to mobile H+ counter-ions 

and functional groups of –SO3
− fixed in the structure [150]. AEMs, which are positively 

charged ion exchange membranes, only permeate anions. These ion exchange membranes 

typically have fixed quaternary ammonium groups, –NH4
+ or quaternary –N-R3 in the 

polymeric structure [150].

Ion exchange membrane characteristics are especially important in the ED/EDR process, and 

these characteristics can be controlled to some extent in the manufacturing process. Ion 

exchange membranes are characterized by their properties of electrical resistance, ion 

exchange capacity, water content, ion transport number, solute permeability coefficient, 
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electro-osmotic coefficient, water permeation coefficient, swelling ratio, and mechanical 

strength [156].

The ion exchange membrane performance can be significantly affected by its physico-

chemical characteristics. For instance, the electrical resistance of IEMs can be changed by 

changing fixed charge groups or membrane charge density, strongly affect ion selectivity 

through interactions with different counter-ions [157]. Increasing ion exchange capacity 

(IEC), as another key membrane characteristic, can result in higher membrane conductivity, 

improved counter-ion pathways [158, 159], which results in higher swelling in the IEM and 

less effective Donnan exclusion, and consequently less counter-ion permselectivity [158]. 

Although larger water content in ion exchange membranes can elevate ion passage and 

conductivity of the membrane, it results in lower permselectivity for counter-ions [160].

5.1.1 Application of ED/EDR in Wastewater Reclamation—While other membrane-

based water treatment processes, such as UF and RO, have been used for potable water 

reuse, ED/EDR processes are not very common in municipal wastewater reclamation since 

EDR can remove only ionized species. It thus lacks of removal of organic matter, taste, and 

odor. A facility that currently utilizes this technology for salinity removal with agricultural 

and industrial reuse is North City Water Reclamation Plant in southern California [6]. The 

application of ED/EDR in wastewater reuse has recently attracted attention [161]; however, 

only feasibility studies for applying ED/EDR in indirect potable water reuse are underway in 

the US and Japan. While lacking in potable applications, EDR has been widely used for 

desalination of industrial wastewater and concentration in pharmaceutical processes. Hence, 

only sparse data are available on the use of ED/EDR for water reclamation. One potential 

application of EDR for potable water reuse could be for higher water recovery via salts 

removal when coupled to RO/NF for the organics removal.

Rodrigues et al. [162] (2008) demonstrated the feasibility of an integrated 

photoelectrochemical oxidation (PEO) and EDR system for the removal of ionic and organic 

species from tannery effluents. The integrated PEO process improved the performance of the 

EDR system by reducing the membrane fouling potential. It has been observed that the 

removal of the ionic species was considerably higher which is around >> 98.5% [162]. ED 

systems are typically used to desalinate mainly brackish feed water at lower salinities [7].

The airport wastewater treatment plant (WWTP) in the City of San Francisco has also used 

EDR for irrigation purposes [163]. There, sand filters and activated carbon is use for the 

pretreatment of wastewater with a salinity of 2,600 ppm [163]. At the North City plant in 

San Diego, EDR systems are used to reduce the salinity of a portion of reclaimed water [7].

Notably, ED/EDR has a unique advantage for agricultural water, as it preferentially can 

remove the most harmful salts (e.g. Cl−). An EDR pilot treating municipal wastewater for 

agricultural applications decreased the TDS of influent by 71% from 1104 ppm to 328 ppm 

[164]. Additionally, ED pilot systems of wastewater have been shown to meet standards for 

water purity for more than 6 months [165]. These systems have been very effective for heavy 

metal removal from wastewater as well [16, 165–167].
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Although six-month comparisons between EDR and RO systems used for the desalination of 

reclaimed water with TDS of 500 to 750 ppm showed that an EDR process with a cartridge 

filter was more cost-effective than an MF/RO process [168], RO is generally preferred for 

wastewater reclamation with potable reuse. On the other hand, ED/EDR can be used 

appropriately for the salinity reduction of wastewater when the reclaimed water is used for 

agricultural and industrial applications. Additionally, it can have the potential to be 

considered for wastewater reclamation for indirect potable water reuse if it is appropriately 

integrated with other required technologies.

5.2 Forward Osmosis

Forward osmosis processes use concentrated solutions (e.g., with salts such as NaCl) to 

remove clean water from impaired sources [169, 170]. Here, water moves from the feed to 

draw solutions due to an osmotic pressure difference across a semi-permeable membrane 

(similar to RO membranes). Then the draw agent must then be separated from the product 

water in an additional step such as RO [170, 171]. FO is sometimes considered to be more 

resistant to fouling because it is a low-pressure process, but hydraulic pressure alone has 

been shown not to affect fouling; therefore, low pressure does not mitigate fouling in FO. To 

limit fouling in FO, the smooth active layer of the membrane usually faces the feed solution 

and the porous support layer faces the draw solution.

FO has been successfully demonstrated as pretreatment of the feed for wastewater streams 

for water reuse (including in the osmotic membrane bioreactor configuration and FO-RO 

systems [172]), as well as to pretreat seawater and brackish water for desalination, 

concentrate landfill leachate, and process (concentrate) foods and beverages [172–174].

Membranes used for FO are similar to NF and RO membranes in their high solute rejection 

and asymmetric construction. One of the leading FO membrane materials is cellulose 

triacetate, which provides a robust structure, low fouling propensity, and longer shelf life 

[175]. Some new FO membranes have a thin-film composite (TFC) structure similar to RO 

membranes [176]. However, the FO membrane support layer is thinner and more porous 

than in RO so as to reduce internal concentration polarization. In FO, internal concentration 

polarization lowers the concentration gradient across the selective layer of the membrane, 

and thus the water flux, by maintaining a lower salt concentration inside the support layer 

compared to the bulk draw solution [177]. Additionally, for FO, double skinned hollow fiber 

membranes have been synthesized and have shown a great promise in reducing fouling and 

increasing permeability without compromising selectivity of hollow fiber membranes [178, 

179], but this approach is still not commercially used or available.

A noteworthy application of FO membranes is their use in an osmotic membrane bioreactor 

(OMBR) configuration together with RO (Figure 14) The OMBR is a multiple-barrier 

system that has been investigated for IPR and DPR applications [180–188]. The system 

combines activated sludge processes with the FO process, which extracts water directly from 

the activated sludge into the high-salinity draw solution, which is then desalinated and 

recovered with RO. The FO membrane in the OMBR offers the advantage of reduced 

fouling and greatly increased rejection of dissolved species [189], including macromolecules 

[190] and TOrCs [191, 192] when compared with MF or UF [189]. As dissolved organic 
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compounds (DOC) in the MF/UF effluent can cause organic fouling on the RO membranes 

and provide a substrate for microbial growth, the FO barrier may limit biological fouling on 

RO membranes [193]. Given the high fouling potential of activated sludge, it can be 

beneficial to have the activated sludge contact FO membranes rather than RO because FO 

tends to be easier to clean and has longer shelf life. Furthermore, the high rejection of 

dissolved organic and inorganic species by the FO membrane in the OMBR system (Figure 

14) followed by RO for draw solution separation results in a higher RO permeate quality 

when compared with the conventional MF or UF followed by RO systems [194, 195]. 

However, FO-RO systems have higher energy consumption than direct RO systems [196, 

197] when desalinating a given the same feed, so an overall system assessment should be 

undertaken into account when comparing FO and RO treatment options.

In another water reuse configuration, FO can be combined with seawater RO (SWRO) to 

create an integrated water reuse/desalination solution [190] (see Figure 15) [190]. As high 

water quality diffuses through the FO membrane from the impaired stream to the seawater, 

the impaired water becomes concentrated while the seawater draw solution becomes diluted. 

The SWRO membranes are protected from fouling with wastewater constituents and high 

quality water can be recovered for potable reuse by the RO process. The RO feed water 

salinity is significantly reduced, so the RO stage itself may be operated at lower pressure and 

energy consumption than would be required to produce the same volume of fresh water from 

unblended seawater [172]. However, the overall system’s energy consumption may be 

greater than would be needed to recover water from the wastewater using MF-RO, because 

the salinity of the wastewater is so much lower than that of either seawater or seawater 

diluted with FO permeate. Further, the FO membranes themselves are not immune to fouling 

[198].

The FO-RO system can be operated in one of two modes: i) with the RO system at the same 

pressure of a standalone RO and FO applied for increased water recovery; or ii) operating at 

the recovery of a standalone seawater RO with a lower energy consumption and more dilute 

brine [199]. Both arrangements can mitigate environmental concerns associated with the 

discharge of concentrated brines [200].

5.3 Membrane Distillation

Membrane distillation (MD) is a thermally driven process, in contrast to the pressure driven 

processes usually used for potable water reuse [201, 202]. In MD, a temperature gradient 

across a hydrophobic porous membrane causes vapor to evaporate from the saline feed, 

diffuse through a membrane that is impermeable to liquid water, and condense in a cooler 

stream [202]. These membranes differ from MF/UF/NF/RO substantially, as they need to 

repel liquid water instead of preferentially passing it. Almost all MD membranes are 

composed of hydrophobic polymeric materials such as PVDF, PTFE, and polypropylene 

[203]. Hydrophilic polymers can be coated with a nano-layer of hydrophobic materials or 

moieties, using techniques such as chemical vapor deposition, to render them viable for MD 

[204, 205]. The energy needs of thermal processes like MD are relatively insensitive to the 

salinity [206], in contrast to the energy for processes like RO which are significantly 

increased by higher salinity [207]. While MD has advantages in fouling resistance and the 
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production of very pure water (rejection >99.9%), relatively high energy consumption makes 

it rarely viable for potable water reuse [208].

6. Non-Membrane Processes

A major drawback to membrane processes for potable reuse application is fouling, 

increasing energy use and operating costs. Also, membrane processes alone are not very 

efficient in removing a small number of important trace-level contaminants from the 

permeate, such as certain pharmaceuticals and personal care products (PPCPs), endocrine 

disrupting chemicals (EDCs), and disinfection by-products (DBPs) as well as persistent 

organic pollutants (POPs) [58]. Hence, membrane technologies are often combined with 

other conventional non-membrane technologies, which can enhance the overall treatment 

efficiency and reduce operating costs, for potable water reuse applications. To maintain high 

permeate fluxes over long periods of time at potable reuse plants, adsorption, biological 

active filtration (BAF), and/or advanced oxidation processes (AOPs) are used in conjunction 

with membrane processes [11]. Advances and challenges in each of these processes are 

highlighted below.

6.1.1 Adsorption

Adsorption (largely through activated carbon) is an important step in potable reuse, where it 

removes small quantities of dangerous compounds (soluble organics, heavy metals, etc.) as 

part of tertiary treatment [209]. Classification is done by particle size, with granular 

activated carbon (GAC) denoting larger particles of diameter >0.1 mm, and powdered 

activated carbon (PAC) for smaller particles of diameter <0.074 mm [6] (Figure 16). GAC is 

dominantly used for potable reuse because of cost concerns, and the risk of smaller particles 

forming a fouling cake and irreversible pore fouling [210] on the UF/MF membranes in later 

steps [6, 37]. Adsorption with GAC is critical for removing compounds that cause 

membrane fouling. It is particularly effective in removing compounds with high and 

moderate hydrophobicity (e.g., steroid hormones, triclosan, bisphenol A [211]), hydrophobic 

NOM, and trihalomethane precursors. GAC improves removal as measured by DOC, COD, 

total nitrogen and phosphorous, turbidity, and other metrics. Favorable technology 

combinations include GAC with ultrasound (improved absorbance) and coagulation [212, 

213].

PAC is usually found to be superior in removing DOC and NOM in hybrid systems [210]. 

Hence, the challenge remains to find an innovative solution for combining PAC’s superior 

adsorption capacity with the convenience, affordability, and regeneration ability of GAC, for 

increasing effectiveness of downstream membrane processes for potable reuse.

6.1.2 Biologically Active Filtration

Biologically active filtration (BAF) is a promising membrane process for pretreatment in 

potable reuse, especially for dealing with wastewater with high levels of biological 

components. BAF combines three treatment benefits: biodegradation, micropollutants 

adsorption, and suspended solids filtration through the media. The microbial growth 

attached to the filter media (GAC) consumes the organic matter that would otherwise be 
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responsible for membrane fouling. As shown in Figure 17, ozone is usually coupled with 

BAF and can together be used as a pretreatment step prior to MF/UF to reduce organic 

carbon. Further, depending on the finished water quality needs, ozone/BAF may eliminate 

the need for RO, although it does not remove salts [37]. If combined with RO directly, the 

ozone/BAF treatment has been shown to effectively reduce the biodegradable dissolved 

organic carbon (BDOC) and assimilable organic carbon (AOC) contents, and the bacterial 

regrowth potential, thus confirming its potential for mitigating biofouling of the RO 

membrane [214]. The use of bio-filtration after ozonation has also been reported to reduce 

the formation of DBPs during chlorine disinfection [215].

Bio-filtration alone is not very effective, without a prior oxidation step, in removing organic 

contaminants if used in potable reuse treatment train. Notably, BAF (via biologically 

activated carbon, BAC) can improve coagulation efficiency for DOC removal [216, 217]. 

Overall, GAC is a preferred media for BAC due to stronger adhesion of biomass; however, 

other media, including anthracite, can be effective media as well [215]. The prominent 

challenge for incorporating BAC in a potable reuse treatment train is balancing adsorptive 

and biodegradation capacities, as regenerating BAC for adsorption disrupts the biofilm 

[216]. More research is required to understand optimum conditions (temperature, water 

quality, operation) for media to support all three mechanisms contributing to enhanced 

efficiency of BAC.

6.1.3 Advanced Oxidation Processes

Advanced oxidation processes (AOPs) are often the final step of potable reuse treatment 

trains and rely upon formation of highly reactive radical species, such as hydroxyl radicals 

(•OH), for oxidation of residual trace organics that were incompletely removed by upstream 

treatment units or were formed during treatment (i.e., DBPs). AOPs compliment membrane 

processes as they aid in removing taste, odor, and color along with more resistant chemicals, 

such as PPCPs, EDCs, and DBPs [218], which membranes fail to remove. As detailed in 

Table 5 [218], use of hydrogen peroxide coupled with ozone or UV light are the most 

commonly employed AOPs in potable water reuse [219]. As opposed to adsorption or BAC, 

AOPs form the tail end of the potable reuse treatment train and are almost always installed 

after membrane processes [11], to polish final water quality and because of the increased 

efficiencies of UV light and radical oxidants in purified water (high UV transmittance and 

minimal organics competition for radicals) [11].

Ozone is itself a powerful oxidant. However, once dissolved in water, it produces radicals, 

including hydroxyl, superoxide, and hydroperoxyl, which can non-selectively oxidize most 

of the organic matter [197]. Ozone can be used alone, due to its high oxidation potential, as a 

polishing step for potable reuse [219, 222, 223].

UV light alone or as part of an AOP can selectively transform trace organic compounds that 

are sensitive to direct photolysis (e.g., nitrosamines, triclosan, acetaminophen, diclofenac, 

sulfamethoxazole) [58]. However, UV light alone is ineffective for broad organic compound 

removal since many compounds are not photosensitive. Thus, the addition of hydrogen 

peroxide or other oxidants, which react with UV light to generate radicals, is essential for 

contaminant oxidation (indirect photolysis). However, complete mineralization is likely not 
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obtained during AOP for many constituents, resulting in transformation products including 

potentially undesirable ones. Overall optimization of AOP (cost and water quality 

performance) therefore remains a significant challenge and area of research for potable reuse 

treatment. Emerging AOP processes that have not been used at scale include high energy 

beam irradiation (e-beam), cavitation (sonication and hydrodynamic), and Fenton’s reaction 

[220]. Notably, better contaminant rejecting RO membranes could reduce the reliance on 

AOP’s, including a reduction in dosage requirements and energy use.

7. Challenges for Potable Reuse

The key challenges for potable reuse are: 1) membrane fouling and scaling, which increases 

project cost; 2) the incomplete removal of certain trace level dissolved compounds by 

advanced treatment including membranes, which may necessitate additional treatment units 

or, if not a public health or compliance concern, creates public perception challenges; 3) 

public perception of re-using treated wastewater for drinking; and 4) regulations that can be 

complex or entirely absent depending on the available regulatory framework in the region 

where the project is implemented. Each of these challenges is briefly described below. 

Addressing these will require research innovation and successful policy implementation.

7.1 Membrane Fouling: Overview

Much innovation in membrane and process design is driven by the need to mitigate fouling. 

Membrane fouling decreases membrane permeability1, raises energy requirements, alters 

permeate quality [227], reduces membrane life, and generally raises the cost of water 

production. In experimental studies conducted at constant pressure the fouling-driven 

decline in membrane permeability leads to declining flux. However, in full scale water 

recycling plants, the applied transmembrane pressure is usually increased (at increased 

energy cost) as the membrane permeability declines in order to achieve the plant’s target 

water production rate. Fouling in wastewater reuse differs from fouling in other types of 

desalination because of the low salinity and high organic content of the source waters and 

the typically high recovery of the process. In this section, the types, mechanisms, and effects 

of fouling are reviewed. Unique fouling issues related to the high organic and biological 

content and low salinity of wastewater effluents are discussed. Finally, fouling mitigation 

methods are reviewed. This section aggregates the findings of previous membrane fouling 

reviews as well as more recent primary research articles.

In a review about fouling of RO membranes in wastewater reuse [80], fouling is categorized 

as scaling (crystallization of dissolved inorganic salts), cake formation by rejected material 

that accumulates on the membrane including colloids and organic macromolecules, or 

biofilm formation [228]. A more general review of RO membrane fouling [229] further 

divides cake formation into particulate fouling and organic fouling. Most source water have 

foulants of all types. For example, organic and silica fouling occur together in RO 

membranes treating MBR effluent [230]. Different types of fouling even enhance one 

1In experimental studies conducted at constant pressure the fouling-driven decline in membrane permeability leads to declining flux. 
However, in full scale water recycling plants, the applied transmembrane pressure is usually increased (at increased energy cost) as the 
membrane permeability declines in order to achieve the plant’s target water production rate.
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another: for example, biofouling has been shown to enhance scaling by enhancing 

concentration polarization of sparingly soluble salts [231]. Additionally, membrane 

compaction and damage by chlorine are sometimes considered to be types of fouling [80]. 

Concentration polarization of rejected dissolved material is not typically considered fouling 

because of its reversibility, but the resulting increase in transmembrane osmotic pressure 

difference needs to be considered when designing plants [80]. Mechanisms of membrane 

performance degradation due to fouling have previously been reviewed [232, 233]. These 

include pore blocking, cake formation with associated hydraulic resistance and cake-

enhanced osmotic pressure [234], biofilm-enhanced osmotic pressure [235], membrane 

compaction, and membrane degradation due to exposure to oils and chlorine.

Although fouling typically decreases membrane permeability (i.e., water flux per unit of 

pressure applied), the effects of fouling on solute rejection may be beneficial or detrimental. 

In a study of fouling with tertiary effluent and model organic and colloidal foulants on salt 

and N-nitrosamine rejection for RO and NF membranes, Fujioka et al. [236] found that, for 

most foulants, rejection of both salt and N-nitrosamines increased due to fouling. In contrast, 

during biofouling of NF membranes with MBR permeate, rejection of both organic matter 

and inorganic salts dropped (although only slightly) during a 10-day period in which the flux 

declined to one third of its initial value [237]. Xu et al. [238] measured the change in solute 

rejection of NF and RO membranes after fouling with microfiltered secondary effluent. The 

rejection of hydrophobic neutral solutes and ionic organic solutes increased after fouling, 

whereas rejection of the hydrophilic neutral primidone decreased due to fouling.

Although most of the worldwide RO capacity is devoted to seawater desalination, most 

fouling studies have used low ion concentrations because of the relatively lower pressures 

required. Low salinity tends to raise the recovery ratio of desalination processes, leading to 

scaling (see Section 7.1.2), but it also affects organic fouling, which depends on other 

aspects of the water composition, including pH, calcium concentration, and ionic strength 

[239]. Low feed salinity also reduces the pressure required in wastewater desalination, but 

low operating pressure does not mitigate organic fouling of desalination membranes

The mechanisms of permeability decline in wastewater RO differ from those in seawater RO 

because of their different ionic compositions and concentrations. The low osmotic pressure 

of municipal wastewater limits the strength of the contribution of cake-enhanced osmotic 

pressure (CEOP) to permeability decline [234]. In RO filtration of dead cells and 

extracellular polymeric substances (EPS) in 15 mM ionic strength synthetic wastewater and 

0.01 µm LaCl3 solution, Herzberg et al. [240] found that foulant hydraulic resistance was 

much more significant than CEOP in EPS fouling; however, CEOP was more significant 

with dead cells. Sodium alginate, a polysaccharide produced in Pseudomonas aeruginosa 
biofilms [241], has been shown to produce a gel with smaller pores and thus more hydraulic 

resistance at lower sodium concentrations [169]. Protein fouling also depends strongly on 

the solution ionic composition [242]. Given the prevalence of polysaccharides in both 

wastewater and seawater RO fouling layers [243] and the relatively low osmotic pressure of 

municipal wastewater, wastewater RO flux decline is expected to be primarily driven by 

hydraulic resistance.
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Several studies which have autopsied membranes from full- or pilot-scale plants revealed 

that the most important types of fouling in wastewater reuse are organic/biological and 

inorganic. Tang et al. [105, 198, 244] autopsied RO membranes used in a full-scale 

wastewater reclamation plant and compared the influent composition to the composition of 

the deposition on membranes in various positions in the train. On all membranes autopsied, 

the foulant layer was highly hydrated, with water content around 90%. By dry mass, the 

organic content of the fouling layer exceeded the inorganic content in all three positions, 

although the inorganic fraction increased in the later modules. Both organic and inorganic 

mass deposition decreased along the length of the membrane module, despite the increase in 

solution concentration. In a similar study, Khan et al. [243] performed autopsies of RO 

membranes in seawater and wastewater pilot plants. Organic and biological fouling 

dominated the lead elements in both seawater and wastewater plants. On the other hand, the 

end element had mostly organic/biological fouling in the seawater plant and inorganic 

fouling in the wastewater plant. The high level of inorganic fouling (scaling) in the end 

element in wastewater RO was attributed to the high concentration of sparingly soluble salts 

in the RO brine due to the high recovery ratio of the wastewater process. Organic 

compounds accumulated on the membranes were primarily proteins, lipids, and 

polysaccharides. The following sections discuss the roles of organic and biological fouling 

as well as scaling in wastewater reuse.

7.1.1 Organic and Biological Fouling—Organic fouling and biological fouling 

(biofouling) are major contributors to membrane fouling in wastewater reuse because of the 

high concentration of organic matter and microorganisms. Organic and biological fouling 

tend to occur in tandem because of the co-occurrence of organic compounds and 

microorganisms in wastewater, and because of the extracellular polymeric substances (EPS) 

produced by bacteria, which make up a significant fraction of biofilm volume [237]. Organic 

fouling and biofouling are mitigated through pretreatment, membrane cleaning, and 

membrane modification (particularly to enhance hydrophilicity), as discussed in Sec. 7.1.3. 

Material properties also improve organic fouling resistance, especially hydrophilicity. For 

protein antifouling, helpful properties include electroneutrality, minimization of hydrogen 

bonds, and containing surface groups with hydrogen bond acceptors.

Several studies have highlighted the importance of biopolymers and proteins in membrane 

fouling in wastewater reuse. Shon et al. [245] reviewed the constituents of effluent organic 

matter (EfOM) and treatment methods in wastewater reuse. EfOM is comprised of NOM, 

organics accumulated during domestic use, disinfection by-products, and “soluble microbial 

products” of biological wastewater treatment steps [245, 246]. Organic carbon is categorized 

by size as particulate (POC, over 0.45 µm) or dissolved (DOC). DOC is categorized as 

hydrophobic (e.g., humic acids), transphilic (moderately polar, e.g., sugar acids), or 

hydrophilic (e.g., polysaccharides). Organic compositions of wastewater effluents as well as 

the removal of various constituents by UF, MF, NF, and combinations of processes are given 

by Labs et al. [247] who studied fouling of MF and UF membranes with wastewater effluent 

and found that EfOM, composed of proteins, polysaccharides, and organic colloids in the 

range of 10–100 nm, are primarily responsible for the flux decline. Filloux et al. [248] 

examined the fouling potential of different classes of EfOM. This study concluded that 
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biopolymers contribute to low-pressure membrane flux decline more than humic substances 

or low-molecular weight organics. Haberkamp et al. [249] tested UF membrane fouling with 

both real and synthetic wastewater and found that both biopolymers and proteins are 

important for UF fouling, but smaller organic compounds that are not rejected by the UF 

membrane (such as humic acids) are less problematic.

Several studies have examined biofouling of NF and RO membranes by wastewater [80]. 

Through a review of fouling studies, Pandey et al. [80] concluded that current pretreatment 

strategies are insufficient to control biofouling in wastewater reclamation. Ivnitsky et al. 

[237] studied biofilms formed on NF membranes treating MBR permeate and a synthetic 

wastewater effluent without suspended solids. Initial biofilm growth was characterized by 

polysaccharide accumulation on the membrane and the attachment of individual cells. 

Mature biofilms imaged by SEM showed layers containing both EPS and a variety of 

different other cells. The majority of the species identified in the biofilm were 

proteobacteria. These results were found to be largely in agreement with similar studies. 

Ivnitsky et al. attributed the similarity of the results of diverse studies using different 

membranes to the fact that microbes and nutrients are actively transported to the membrane 

and “the membrane surface is rapidly changed once the biofouling layer starts developing 

[so that] cell-to-cell and cell-to-EPS interactions may be more crucial to the development of 

the mature biofilm than their interaction with membrane itself” [237]. Farias et al. [250, 251] 

studied combined organic and biological fouling by measuring the flux decline and foulant 

accumulation of a bench-scale MBR-RO system treating primary clarifier effluent from a 

municipal WWTP. The relative concentrations of proteins, carbohydrates, and live and dead 

cells was measured with confocal laser scanning microscopy (CLSM) [250]. However, the 

RO flux decline results were not clearly related to the measured DOC, carbohydrate 

concentration, or protein concentrations in the MBR permeate [251], showing the 

complexity of fouling in wastewater treatment.

Biofouling also occurs in electrodialysis. One serious problem is fouling of AEMs in the 

presence of negatively charged colloids in the feed water, such as humates [252]. Surface 

charge, hydrophobicity, and solubility of foulants play a large role in the severity of fouling 

[150, 253].

7.1.2 Scaling—Scaling can cause rapid deterioration of membrane processes, including 

reduced permeability and membrane damage [80]. It is not very commonly an issue on 

potable water reuse due to the low salinities used, although can be an issue with certain 

wastewater sources. Generally, scaling occurs when specific minerals are supersaturated at 

the membrane surface, and are thus near or above supersaturation in the bulk feed solution 

[1, 229]. The primary salts of concern in potable reuse are sulfates and carbonates, such as 

CaSO4 and CaCO3. As these dissolved constituents [1, 229] are benign at low 

concentrations, operating conditions are controlled to avoid supersaturation by limiting 

water recovery, reducing pH through acid addition, and pretreating with lime softening or 

NF [3, 80]. When supersaturated operation cannot be avoided, crystallization kinetics can be 

slowed using antiscalants. Addition of antiscalants and acid to the RO feed is common in 

full-scale water recycling plants [3, 80]. The low salinity of municipal wastewater limits the 

risk of scaling at moderate recovery ratios [227], but substantial mineral deposits may form 
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on the end membrane elements, where the concentration of sparingly soluble salts is highest 

[227, 243].

7.1.3 Fouling Mitigation Methods—Fouling mitigation methods include pretreatment, 

membrane modification, cleaning, and the use of fouling-resistant alternative processes. To 

reduce the potential for membrane fouling, wastewater effluents undergo a series of 

pretreatment steps before reaching MF, UF, NF, or RO membranes. Huang et al. [5] 

reviewed pretreatment strategies to enhance contaminant removal and reduce fouling in MF 

and UF. Strategies in the categories of coagulation, adsorption, preoxidation, and 

prefiltration are discussed in terms of physical, chemical, and biological pretreatment 

mechanisms. Emerging processes such as dissolved air floatation are also reviewed, and 

recommendations are made for future research in fouling prediction and assessment. Fan et 

al. [254] studied the efficacy of coagulation and anion-exchange resins (AER) on fouling of 

MF and UF membranes filtering municipal wastewater effluent. Zhang et al. [255] examined 

flux decline of RO membranes treating secondary wastewater effluent after various 

combinations of ozonation, BAC, and MF (here considered a pretreatment before RO); 

ozonation was the step with the largest impact on flux decline, but flux decline was 

minimized when all three pretreatment steps were used in combination. Continuous 

chemical addition in the form of acid and antiscalant is another strategy to reduce scaling 

[256], which is particularly important due to the high recovery ratios typical in wastewater 

reuse.

Membrane modification has been explored extensively as an avenue for preventing fouling. 

Anti-fouling modifications generally either resist foulant deposition, have anti-microbial 

properties, or facilitate cleaning. RO membrane modification strategies have been previously 

reviewed [81, 256, 257]. Hydrophilicity is generally sought to protect the membrane surface 

from biofouling [258], but membrane hydrophobicity has been shown to reduce the 

propensity for scaling [259]. Unfortunately, both biofouling and scaling occur in wastewater 

reuse [243], so the ideal surface wettability is not obvious. Modifications that control 

chemical interactions between foulants and carboxyl groups on the membrane surface have 

been shown to reduce both organic fouling and scaling. Liu et al. [260] found significant 

improvement in the resistance to organic fouling of a TFC FO membrane when it was 

modified with zwitterionic polymer brushes due to shielding of carboxyl groups on the 

membrane surface. Mi and Elimelech [261] found that hydroxyl-dominated cellulose acetate 

FO membranes resisted gypsum scaling under conditions that led to severe gypsum scaling 

of polyamide membranes, which have more surface carboxyl groups.

Most membrane modifications are targeted toward a specific type of foulant, and they may 

not have the same effects when used with real wastewater sources containing a range of 

foulants. Araújo et al. [258] tested hydrophilic membrane modifications (polydopamine, 

with and without grafted poly(ethylene glycol) polymer brushes), shown to be effective at 

preventing fouling with oil/water emulsions [262], as well as several feed spacer coatings 

and found that none were effective at preventing biofouling during filtration of un-

disinfected tap water. Araújo et al. concluded that “it is doubtful that feed spacer and 

membrane modification, in general, may be effective for biofouling control regardless of the 

type of applied coating.” In reviewing several studies of fouling with wastewater effluents, 
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Ivnitsky et al. [237] found little difference between long-term biofouling outcomes on 

different NF membranes. Even with single model foulants, membrane modification may not 

have a strong effect on fouling. As an example, Wang and Tang [242] found that foulant-

foulant interactions based on the solution composition had a much stronger impact than the 

surface chemistry of the membrane itself on BSA fouling of UF, NF, and RO membranes. 

Similarly, in a study of membrane surface chemistry on alginate fouling, Wu et al. [263] 

found that different membrane functional groups had only a short-term effect on fouling 

rate, and that at long times, the ionic composition of the feed solution had a larger effect 

than that of the membrane surface chemistry. Membrane modification to prevent foulant 

adhesion is difficult because the formation of even a thin fouling layer covers the engineered 

surface, preventing it from controlling further fouling [257].

Fouled membranes can often be cleaned, but the range of cleaning protocols available 

depends on the chemical resistance of the membrane materials. By developing clean-in-

place (CIP) protocols, membrane fouling can typically be managed to maintain water 

production levels over long times. Full scale water reuse plants routinely clean MF and UF 

membranes using a combination of chemicals that depends on the membrane manufacturer’s 

recommendations (CIP approximately monthly, with additional smaller “maintenance” 

cleans as often as daily) and routinely clean RO membranes every few months or so [30]. In 

the case of severe fouling event, more aggressive cleaning conditions may be created using, 

e.g., biocides or higher temperatures. For MF and UF, backwashing and air scouring are also 

automatically conducted in full scale plants a few times per hour to physically remove 

foulants [264]. Various cleaning chemicals, including several acids, a base, a surfactant, and 

a chelation agent have been tested for efficacy in removal of fouling from RO membranes 

used to treat wastewater [265]. Benign salt solutions have also been recently tested for the 

removal of biofouling in wastewater reclamation [266, 267]. Because biofouling is so 

common in wastewater reuse, development of more chlorine-tolerant membranes is desirable 

[266, 267].

Lastly, alternative membrane processes may be desirable for their superior fouling 

resistance. For example, forward osmosis (FO) has been shown to exhibit fouling that is 

more easily reversible by mechanical cleaning than RO, even when operated at the same 

initial flux [48]. In another example, the semi-batch or “closed-circuit” RO process is 

reported to minimize scaling compared to conventional RO due to the non-steady state 

composition of the RO feed disrupting the kinetics of crystallization [48, 268]. One potable 

reuse plant in Windhoek, Namibia reduces membrane fouling by reducing the need to 

remove micropollutants by controlling the sources of wastewater intake and using a complex 

treatment train that involves UF but not NF or RO. Several alternative processes are 

discussed in Section 5.

7.2 Contaminant Removal

The removal of harmful pathogens and contaminants is one of the primary goals for the 

design of potable reuse treatment trains. The objective of treatment is to ensure safety of 

potable reuse via contaminant removal, which requires a treatment train (multi-barrier) 

approach of which membranes are just one part. Other barriers include non-membrane 
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treatment units such as the upstream wastewater process and related source control, post-

membrane water quality “polishing” such as UV/AOP, treatment system performance 

monitoring, and response protocols for when issues arise [15]. In design of treatment trains 

for potable reuse, several criteria are key: reliability (by product water testing), redundancy 

(in case of failure), robustness (over a range of contaminants), and resilience (to failure) 

[269]).

Recommendations for pathogen log reduction are typically relatively stringent, e.g., a 

12-10-9 log reduction of viruses, Cryptosporidium, and total coliform bacteria, respectively, 

depending on site specific regulations [1]. Recently promulgated California potable reuse 

regulations which have been adopted by other States, require log reductions of 12-10-10 for 

enteric viruses, Cryptosporidium, and Giardia, respectively [2]. In California, log reduction 

credits for a potable reuse treatment train depend on various factors including the unit 

processes implemented (at least three separate processes), pathogen surrogate removal by 

unit processes, process integrity monitoring methods, and in the context of IPR, residence 

time in the environment after treatment. For FAT systems, log pathogen removal credits are 

awarded separately for the MF/UF, RO, and UV-AOP systems as well as any disinfection 

steps [3]. For pressurized MF and UF systems, direct integrity testing (i.e., pressure decay 

testing) over prescribed intervals (usually once per day) is generally required to obtain up to 

4-log reduction credits for viruses (for UF only), Cryptosporidium and Giardia (both MF 

and UF). For the pressure decay test (PDT), a MF or UF module is isolated and pressurized 

on one side with air at approximately 10 psi. Once the pressure has stabilized, the air is shut 

off and the pressure is monitored over time [4]. The PDT is considered to have resolution to 

detect integrity breaches less than 3 µm, which is smaller than the nominal size of 

Cryptosporidium and Giardia oocysts and required by the USEPA to validate low-pressure 

membranes based on Surface Water Treatment Rules [4]. Typically PDTs are used in 

conjunction with effluent turbidity measurements to semi-continuously verify membrane 

integrity [1]. It is worth noting that other direct integrity testing methods can be applied 

including challenge or marker tests. One major caveat with the PDT is that, in most cases, it 

cannot be applied to submerged membrane systems, which makes giving pathogen removal 

credits to common MBR systems challenging with regards to potable reuse applications.

An additional significant challenge for potable reuse is the presence of wastewater-derived 

organic contaminants, although these can largely be addressed (with some exceptions) 

through membrane treatment. These exceptions may be referred to as contaminants of 

emerging concern (CECs), denoting a lack of formal regulation (i.e., no drinking water 

MCLs). Challenging emerging contaminants include pharmaceuticals, ingredients from 

personal care or commercial products, and endocrine disrupting compounds (EDCs), as well 

as disinfection byproducts (DBPs) from treatmento [270, 271]. Risk assessments conducted 

over the last 15 years have found no adverse human health effects or significant risks from 

the presence of wastewater-derived organic contaminants in potable and non-potable water 

reuse, which if present, occur at trace levels [24, 272]. However, some uncertainty with 

respect to risk stems from the fact that risk assessments must focus on a subset of the 

potentially present compounds, requiring prioritization; new chemicals are constantly 

introduced into commerce and ultimately enter water supplies; effects on more sensitive 

populations (e.g., pregnant women, fetuses) are unclear; and potential cumulative (additive 
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or synergistic) effects due to mixtures of CECs are not well understood [270, 272, 273] 

Thus, advanced treatment for water reuse is desirable to minimize the concentrations of 

these compounds in finished water and therefore any potential for risk (precautionary 

principle) and to help alleviate public concern. In fact, it is likely that water (reuse) agencies 

will continue to seek the water treatment technologies that allow the lowest, non-detectable 

levels of CECs in finished water, for as long as our understanding of risk at these low 

concentrations is incomplete.

To that end, it appears that one of the most effective; if not the most effective, single unit 

process for removal of CECs during water treatment is RO [271, 272, 274, 275] RO typically 

removes >90% (often >99%, depending on the compound) of organic, wastewater-derived 

compounds. However, RO is not a complete barrier for all wastewater-derived organics. In 

general, relying on only membrane-based processes is not recommend for wastewater 

treatment when the waters have a high content of boron, formic acid, methanol, 

formaldehyde, or urea because membrane-based processes are inefficient at removing these 

and certain other low molecular weight contaminants. Removal of these contaminants can be 

completed using physicochemical and biological processes in the pretreatment stages [16, 

167].

A recent human health risk evaluation based on published CEC occurrence in U.S. point 

sources and watersheds identified that, among CECs, perfluorooctanoate (PFOA), N-

nitrosodimethylamine (NDMA), 1,4-dioxane, chloroform, low molecular weight aldehydes, 

and certain hormones are of the most significance based on a conservative comparison of 

environmental concentrations with the levels potentially associated with human health risk 

[276] In other words, these are the compounds that occur in water sources at concentrations 

closest to levels of concern, in addition to DBPs in reuse waters, as noted by the NRC [6] Of 

these compounds, poly- and perfluorinated compounds (e.g., PFOA) and hormones are well 

rejected by RO, but NDMA, certain other DBPs, and 1,4-dioxane are not [277–279]. Hence, 

for potable reuse, treatment train designs often include the advanced oxidation process 

(AOP), e.g., ultraviolet light with hydrogen peroxide (UV/H2O2), after RO as a final 

polishing step for CECs removal. UV/AOP is effective for NDMA and 1,4-dioxane 

destruction [222, 226, 280]. As seen in Figure 18, the example potable reuse treatment train 

shown provides effective removal of most compounds in the feed. However, removal is 

incomplete for some compounds, even though the RO membranes. These compounds 

typically have small molecular weight, are polar, and are uncharged [277, 278].

Related to CECs removal, an important advantage of membrane-based technologies for 

water reuse is the high removal of total organic carbon (TOC). TOC is a measure of bulk 

organic matter present in the water, and has been a key parameter in the history of reuse (see 

[274]) in part due to the ease of measurement. It has been used as a surrogate for organic 

contaminants, i.e., as a sum parameter for potentially present organic CECs, given the 

difficulty of measuring CECs and the impossibility of identifying all unknown CECs in a 

water sample. RO can produce a product water quality with < 0.2 mg/L TOC for reuse 

applications. Membrane-free alternative treatment trains for potable reuse are currently 

unable to reach an equivalently low TOC level. This may be acceptable depending on local 

reuse water quality requirements
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Despite the high rejection of RO membranes for most wastewater-derived organics and 

CECs, numerous individual compounds have been detected in the RO permeate in various 

studies of potable reuse, owing to the high sensitivity (low detection limit) of available 

chemical analysis methods. One study reported the following, summarized here with one 

example of each: fuel (benzyl alcohol), cosmetics (1-nonanol octanol), perfume solvents 

(alpha-terpineol), flame retardants (tributyl phosphate), insecticide (diethyltoluamide), 

detergent byproducts (4-tert-octylphenol), pharmaceutical products (L-menthol), citrizine, 

sulphamide, animal byproducts (cholesterol), plasticizers (dimethyl phthalate), and resins 

(bisphenol A or BPA, a known endocrine disruptor) [56]. This plant in particular was 

designed for remote locations, and thus needed minimal energy and chemical consumption 

[112].

Importantly, in addition to the ability to remove contaminants, in situ monitoring measuring 

contaminant removal is important to ensure consistent removal in real systems [281]. Such 

measurements, which enable direct integrity testing (DIT), are critical for demonstrating 

continuous membrane performance. Better monitoring parameters or equipment is another 

useful research area itself, for both MF/UF and RO. Such measurements are also critical for 

obtaining pathogen removal credits [7].

7.3 Public Perception

Public perception can be a larger challenge for potable reuse thantechnical issues. The 

history of a water source strongly impacts opinions: many people prefer lower quality water 

that comes from a “natural” source (aquifer or river) over a higher quality, advanced treated 

wastewater. People’s risk perceptions of recycled water are influenced by their sources of 

information, prior experience with the water, and other factors; generally, people are more 

supportive of non-potable uses (e.g., landscape and agricultural irrigation, industrial uses) 

over potable use [6, 7].

Public perception of the risks and benefits of water reuse is an area of active research, as 

well as methods for public communication that establish project understanding and support 

(e.g. [282, 283]). This work began in earnest in the mid-1990s in Australia, Singapore, and 

the United States and internationally since the early 2000s. Beyond communication and 

marketing strategies, recent research on social legitimacy of water reuse leverages 

information from the social sciences to provide recommendations for actively establishing 

the legitimacy of potable reuse [277, 284]. Recommendations from this work include the 

need to establish standards, procedures, and possibly new institutions. Public outreach is 

generally recommended early in the project planning phase to increase community 

knowledge of the water cycle and water reuse [7], since improved understanding generally 

increases the public’s acceptance of reuse [285]. This requires ensuring access to credible 

scientific information for the public, decision makers, and the local media, toward improved 

understanding of water supplies in the region and the costs/benefits analysis of water supply 

options.

Indirect potable reuse (via environmental buffers) still encounters public perception 

challenges, but perhaps less so than direct potable reuse. These buffers (storage in 

groundwater aquifers or surface water reservoirs) are characterized by retention time, 
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attenuation of contaminants, and blending (dilution), but their benefits can be reached 

through engineered means [6] In a recent review, Trussell et al. describe these aesthetic 

concerns and new approaches for evaluating, and tracking the elimination of, “wastewater 

character” [274] or “wastewater identity”. While there is no standard of wastewater identity, 

metrics that have been proposed are organic matter concentration, color, absorbance, 

fluorescence, solids concentration, odor, and mineralization, with corresponding measurable 

parameters [274] e.g., total organic carbon (TOC), UV254 absorbance, BDOC [286], 

indicator compounds [274, 286, 287], etc. For the membrane designer, improving these 

metrics centers around rejection of specific (mostly organic) contaminants, and increases the 

need for more reliable and high integrity membranes [274].

Recent studies have used absorbance and fluorescence to characterize the removal or 

transformations of organic matter during water treatment for reuse. Fluorescence 

measurements via a three-dimensional excitation-emission matrix spectra (EEMS) establish 

a fingerprint of the water (e.g., secondary effluent) that changes with increasing treatment 

(Figure 19) Membrane treatment via RO results in substantial loss of the wastewater 

character, producing fluorescence spectra for the finished water that are very similar to a 

“pristine” source water. Further research is needed to address limitations and understand the 

potential applications of this and related tools [274].

7.4 Law and Policy

Regulations and stringent facility requirements are often a larger constraint and even barrier 

to the implementation of potable water reuse than the technologies themselves. These rules 

tend to be complex and multilayered, and often place requirements on which technologies 

are permitted, siting, who may acquire and purchase water, specific contaminant removal 

measures, quality metrics, and oversight [6, 7, 274, 288]. They also may mandate certain 

treatment processes, such as requiring RO for potable reuse [6, 24]. From a membrane 

design perspective, these rules put pressure on increasing contaminant specific rejection (e.g. 

for Boron or NDMA), disinfection ability, reliability, and required process chains. An 

important milestone from such rules is improving and proving RO reliability to ensure it 

more realistic log removal credits [6,24, 274].

8. Conclusions

Potable water reuse is emerging as one of the fastest growing practices for combating water 

scarcity and one of the most energy efficient options for augmenting municipal water 

supplies. Membranes, especially as used in the MF-RO-UV/H2O2 treatment train (IMS), 

have emerged as the core potable water reuse technology. Several challenges remain, each of 

which points to an objective for future innovation:

• Improving rejection (or destruction) of emerging contaminants

• Improving membrane permeability

• Improving permanence and degree of membrane hydrophilicity

• Demonstrating RO membrane integrity for increase log-removal credits for 

pathogens
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• Predicting and preventing membrane fouling, developing antifouling membrane 

materials, and optimizing cleaning processes

• Increasing membrane resistance to cleaning and antibacterial agents

• Reducing the cost and environmental impact of pretreatment technologies

• Reducing energy use through new membrane, module, and process designs

• Improving public perception of water reuse and navigating resulting regulations

To achieve these improvements in potable reuse, polymer membrane technology will be 

crucial. Enhancements may center on improved membrane materials, better composite and 

multilayer membranes, novel coatings and modifications, and improved fabrication 

processes. Research aimed at enhancing understanding of fouling mechanisms, transport 

phenomena in membranes, and health impacts of trace contaminants will further accelerate 

progress in membrane development for potable reuse.
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Nomenclature

AOP Advanced oxidation process

BAC Biologically activated carbon

BAF Biological active filtration

DIT Direct Integrity Testing

ED Electrodialysis

EDR Electrodialysis reversal

FAT Full advanced treatment

FO Forward osmosis

GAC Granular activated carbon

IMS Integrated membrane system

MBR Membrane bioreactor
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MD Membrane distillation

MF Microfiltration

UF Ultrafiltration

NF Nanofiltration

OMBR Osmotic membrane bioreactor

PAC Powdered activated carbon

RO Reverse osmosis

SAT Soil-aquifer treatment

AEM Anion exchange membrane

AOC Assimilable organic carbon

BOD Biochemical oxygen demand

BDOC Biodegradable dissolved organic carbon

CA Cellulose acetate

CEC Contaminants of emerging concern

CEM Cation exchange membrane

COD Chemical oxygen demand

DBP Disinfection byproducts

DOC Dissolved organic carbon

EDC Endocrine disrupting contaminants

EEMS Excitation-emission matrix spectra

EfOM Effluent organic matter

EPS Extracellular polymeric substances

ICP Internal concentration polarization

IPR Indirect potable reuse

MEC Maximum environmental concentration

MLD Million liters per day

MWCNT Multi-walled carbon nanotubes

NDMA N-nitrosodimethylamine

NOM Natural organic matter
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NTU Nephelometric turbidity units

PAN Polyacrilonitrile

PE Polyethylene

PEO Photoelectrochemical oxidation

PES Polyether sulfone

PNEC Probable no effect concentration

POC Particulate organic carbon

PP Polypropylene

PPCP Pharmaceuticals and personal care products

PS Polysulfone

PTFE Polytetrafluoroethylene

PVC Polyvinyl chloride

PVDF Polyvinylidene fluoride

TDS Total dissolved solids

TFCs Thin-film composites

TOC Total organic carbon

TSS Total suspended solids

WWTP Wastewater treatment plant
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Figure 1. 
a. Schematic diagram of direct potable reuse (DPR). Treated water is sent directly back into 

the distribution system.

b. Schematic diagram of indirect potable reuse (IPR). An intermediate potable water source 

(bottom right, in red circle) acts as an environmental buffer and makes the process indirect.

c. Schematic diagram of de facto potable reuse (unplanned potable reuse). Note the 

discharge into a water source without as thorough treatment.
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Figure 2. 
Planned water reuse share of market. Data from [10].
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Figure 3. 
Schematic diagram of an industry standard potable reuse plant with MF-RO-UV-AOP, which 

employs low-pressure filtration (MF) followed by RO and UV advanced oxidation. To 

represent other conventional wastewater treatment processes, before the membrane steps, are 

settling tanks (primary treatment), aeration followed by settling for biological activated 

sludge (secondary treatment), and sand filtration (tertiary). The step UV-AOP (ultraviolet 

and advanced oxygenation processes) includes hydrogen peroxide or alternative oxidants, 

and the final step for water stabilization includes processes such as degassing and lime 

dosing (shown) intended to increase the water’s pH and alkalinity.
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Figure 4. 
Membrane separation processes, pore sizes, molecular weight cut-off (MWCO) and 

examples of sizes of solutes and particles. (modified from [20], Copyright 2009 Reproduced 

with permission from Elsevier)
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Figure 5. 
Layers of typical TFC (thin film composite) RO membranes. The chemical structure of the 

polyamide active layer creates selectivity, from [59], Copyright 2015, reproduced with 

permission from Elsevier.
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Figure 6. 
SEM of a thin film composite RO membrane, showing the larger scale roughness of the 

ESPA2 membrane by Hydranautics/Nitto, with a typical active layer pore radius of 0.267 

nm. Modified from [59, 91], Copyright 2015, reproduced with permission from Elsevier.
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Figure 7. 
SEM of polypropylene MF membrane showing a highly porous structure (Advanced Water 

Purification Facility membranes imaged by the Orange County Water District at University 

of California-Irvine Materials Characterization Center).
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Figure 8. 
Schematic diagrams of module types for most membrane applications
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Figure 9. 
SEM cross section image of hollow fiber polypropylene MF membrane (Advanced Water 

Purification Facility membranes imaged by the Orange County Water District at University 

of California-Irvine Materials Characterization Center).
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Figure 10. 
Spiral wound RO module design, Copyright 2016, reproduced with permission from 

Aquanext [143].
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Figure 11. 
Spiral wound RO membranes installed in Groundwater Replenishment System (GWRS) 

Advanced Water Purification Facility (Fountain Valley, California), taken at the Orange 

County Water District.
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Figure 12. 
Schematic drawing of an electrodialysis stack. An applied voltage causes ions to move 

between electrodes, and membranes that either block negative or positive ions cause the ions 

to be trapped in concentrate channels.
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Figure 13. 
Schematic diagram of the structure of a) a cation exchange membrane and b) an anion 

exchange membrane.
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Figure 14. 
Schematic drawing of an OMBR system comprising a bioreactor containing submerged FO 

membranes and an RO unit that re-concentrates the draw solution and produces water.
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Figure 15. 
Schematic diagram of an FO-RO system for integrated SWRO and wastewater recovery. 

Water from the wastewater is extracted by osmosis through the FO process and dilutes the 

seawater before entering the RO process.
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Figure 16. 
Granular activated carbon with their pore structure and distributions.
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Figure 17. 
Ozonation coupled with biologically active filtration (BAF)
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Figure 18. 
Chemical detection after different stages of the potable reuse AWTP treatment train, adapted 

from [56], Copyright 2015, reproduced with permission from the Australian Water 

Recycling Centre of Excellence.
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Figure 19. 
Fluorescence excitation-emission matrix spectra for conventional drinking water treatment 

(top) compared to advanced water treatment for potable reuse (bottom), modified from 

[274]. TOC = total organic carbon; UV254A = UV254 absorbance; TF = total fluorescence. 

Reproduced with permission from the Water Environment & Reuse Foundation, Copyright 

2013.
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Table 2

Tertiary effluent water quality and rejection characteristics of microfiltration and ultrafiltration membranes 

[26].

Constituent Concentrationa MF
rejection %

UF
rejection %

TSS (mg/L) 2–8 95–98 96–99.9

BOD5 (mg/L) < 5–20 75–90 80–90

COD (mg/L) 30–70 70–85 75–90

TOC (mg/L) 8–30 45–65 50–75

NH3-N (mg/L) 1–6 5–15 5–15

NO3-N (mg/L) 0-trace 0–2 0–2

TDS 500–700 0–2 0–2

Total coliform (no./100 mL) 103–105 2–5b 3–6b

Protozoan cysts and oocysts (no./100 mL) 0–10 2–5b > 6b

Viruses (PFU/100 mL) 101–103 0–2b 2–7b

a
. Conventional activated sludge system with nitrification

b
. Log removal
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Table 3

Expected rejection values of nanofiltration and reverse osmosis membranes on tertiary effluent [37].

Constituent Nanofiltration
rejection rate (%)

Reverse osmosis
rejection rate (%)

TDS 40–60 90–98

TOC 90–98 90–98

Hardness 80–85 90–98

NaCl 10–50 90–99

NaSO4 80–95 90–99

CaCl2 10–50 90–99

MgSO4 80–95 95–99

NO3
− 80–85 84–96

Fluoride 10–50 90–98

Atrazine 85–90 90–96

Proteinsb log 3–5 log 4–7

Bacteriaa,b log 3–6 log 4–7

Protozoaa,b log >6 log >7

Virusesa,b log 3–5 log 4–7

a
Theoretically, all microorganisms should be removed. The presented values reflect integrity concerns.

b
Refers to log removal, where log 2 is 99%, log 3 is 99.9% etc.
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