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Introduction
Acute respiratory distress syndrome (ARDS) is present in 10.4% of  all patients admitted to an intensive 
care unit worldwide (1). Despite advances in supportive care that have improved 28-day mortality to 33% 
(2–4), the identification of  effective therapies remains elusive. Alveolar macrophages (AMs) are the most 
abundant leukocyte in the homeostatic human lung and are thought to possess significant phenotypic plas-
ticity and functional heterogeneity. As a result, recently proposed models of  ARDS pathogenesis have 
described a key role for AMs in coordinating many of  the inflammatory and reparative processes that occur 
in the alveolar space after lung injury (5, 6).

In murine models of  acute lung injury, AMs exhibit a wide spectrum of phenotypes (7, 8). However, very 
little is currently known about human AM phenotypes in both health and ARDS. This is partly due to the 
limited availability of  human alveolar cells, given the need for invasive bronchoscopic sampling (5). Analytic 
constraints have also hampered the resolution of  AM subtypes. Until recently, multicolor flow cytometry 
has been the analytic modality of  choice, but it has been limited to measuring approximately 8 parameters 
because of  the need to account for spectral overlap (9). Furthermore, the intensity of  autofluorescence in 
lung macrophages can interfere with spectral analysis. These inherent limitations of  studying human AMs 
by flow cytometry have led to contradictory reports regarding the identity of  AM subtypes in ARDS. For 
instance, Rosseau et al. used a 7-parameter flow cytometry panel to examine bronchoalveolar lavage (BAL) 
samples from subjects with and without ARDS (10). They found increased BAL cell counts of  HLA-DRhi 
AMs in non-ARDS subjects compared with ARDS patients, whereas ARDS subjects had increased BAL cell 
counts of  HLA-DRlo monocytes (MONOs). Alternatively, Brittan et al. used an 8-parameter flow cytometry 

Studies in human peripheral blood monocyte–derived macrophages in vitro have shown clear 
evidence that multiple macrophage polarization states exist. The extent to which different alveolar 
macrophage (AM) polarization states exist in homeostasis or in the setting of severe injury 
such as acute respiratory distress syndrome (ARDS) is largely unknown. We applied single-cell 
cytometry TOF (CyTOF) to simultaneously measure 36 cell-surface markers on CD45+ cells present 
in bronchoalveolar lavage from healthy volunteers, as well as mechanically ventilated subjects with 
and without ARDS. Visualization of the high-dimensional data with the t-distributed stochastic 
neighbor embedding algorithm demonstrated wide diversity of cell-surface marker profiles among 
CD33+CD71+CD163+ AMs. We then used a κ-nearest neighbor density estimation algorithm to 
statistically identify distinct alveolar myeloid subtypes, and we discerned 3 AM subtypes defined 
by CD169 and PD-L1 surface expression. The percentage of AMs that were classified into one of the 
3 AM subtypes was significantly different between healthy and mechanically ventilated subjects. 
In an independent cohort of subjects with ARDS, PD-L1 gene expression and PD-L1/PD-1 pathway–
associated gene sets were significantly decreased in AMs from patients who experienced prolonged 
mechanical ventilation or death. Unsupervised CyTOF analysis of alveolar leukocytes from human 
subjects has potential to identify expected and potentially novel myeloid populations that may be 
linked with clinical outcomes.
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panel on human BAL samples collected from healthy volunteers and reported that inhaled LPS promoted an 
increase in HLR-DRhi MONOs in exposed subjects compared with subjects exposed to inhaled saline (11). 
The use of  a broader array of  AM markers might resolve conflicting reports such as these that arise due to the 
merging of  distinct cell types into single populations when insufficient phenotyping parameters are available.

Cytometry TOF (CyTOF) is an emerging technology that combines elements of  flow cytometry 
with elemental mass spectrometry (12). Cellular proteins are first labeled with antibodies that are con-
jugated with heavy metals, and the identity of  each labeled protein is then resolved through TOF mass 
spectrometry on each individual cell. CyTOF provides a highly parameterized single-cell immunophe-
notyping platform that circumvents some of  the inherent limitations of  multicolor flow cytometry of  
AMs, including spectral overlap and autofluorescence. The identification of  granular AM subtypes 
could clarify our understanding of  ARDS pathogenesis and may ultimately lead to the identification of  
novel AM molecular targets that might be used to improve ARDS outcomes. Here, we report the first 
application of  CyTOF to our knowledge to identify extensive immunophenotypic profiles of  human 
alveolar myeloid cells in critical illness. We hypothesized that multiple and distinct human AM sub-
types exist and that these subtypes would be associated with the clinical condition of  the subject from 
which they were obtained.

Results
Subject characteristics. Characteristics of  subjects from our Harborview Medical Center BAL (HMC-BAL) 
and ARDS AM Gene Expression (ARDS-AMGE) study cohorts are shown in Table 1. Non-ARDS sub-
jects in HMC-BAL were intubated and supported with mechanical ventilation due to respiratory failure 
from congestive heart failure or an inability to protect their airway. Samples in HMC-BAL were excluded if  
there was microbiologic evidence of  pulmonary infection. One ARDS subject in HMC-BAL had a clinical 
diagnosis of  pneumonia and was actively receiving antibiotics; however, collected BAL fluid did not meet 
microbiologic criteria for infection (less than 1 × 104 CFUs per milliliter of  BAL fluid of  a known patho-
gen) (13). ARDS-AMGE included any subject with ARDS, irrespective of  infection status, and pneumonia 
was an ARDS risk factor in 30% of  subjects.

Conventional gating of  CyTOF data can resolve alveolar leukocyte populations. To identify subtypes of  alveo-
lar leukocytes in health and critical illness, we developed a CyTOF antibody panel containing 36 cell-sur-
face markers (Supplemental Table 1; supplemental material available online with this article; https://doi.
org/10.1172/jci.insight.99281DS1), stained human alveolar samples with this panel, and analyzed the 
samples with CyTOF. We first distinguished common alveolar leukocyte populations within intact, singlet, 
live, and CD45+ cells (Supplemental Figure 1) using a conventional biaxial gating strategy proposed for 
flow cytometry–based identification of  alveolar cells (9, 10). By applying this gating strategy to our CyTOF 
data, we categorized multiple alveolar leukocyte populations, including CD3+ T cells, CD206loCD14+ 
MONOs, CD33+FceR1ahi IgE–receptor positive myeloid cells, and CD33+CD71+CD163+ AMs (Figure 
1A). We removed neutrophils (PMNs) from each lavage sample as part of  our cryopreservation protocol, 
which explains the low frequency of  CD15+ alveolar PMNs in our CyTOF analyses compared with percent 
PMN counts identified at the time of  sample acquisition by cytospin examination (Table 1). These findings 
demonstrated that our supervised low-parameter approach was sufficient to identify common, well-de-
scribed alveolar cell populations.

viSNE identifies phenotypic diversity among CD33+CD71+CD163+ AMs. We next wanted to determine 
whether the use of  all the markers in our panel could elucidate phenotypic heterogeneity within the con-
ventionally defined populations outlined in Figure 1A. It is challenging to meaningfully interpret 36 simul-
taneously measured parameters on individual cells by using conventional biaxial gating. Therefore, we 
performed complexity reduction and visualization of  our CyTOF data using viSNE (14). viSNE uses a 
computational algorithm based on the Barnes-Hut implementation of  the t-distributed stochastic neighbor 
embedding (t-SNE) technique, reducing high-dimensional data into a single 2-dimensional biaxial plot 
for visualization. Each dot in the viSNE plot represents an individual cell, and the position of  each dot is 
determined by the expression of  all markers measured on that cell.

Unsupervised clustering of  our CyTOF data with viSNE identified cell populations that were 
consistent with the conventionally gated populations shown in Figure 1A, such as T cell subsets, 
CD206loCD14+ MONOs, and CD33+CD71+CD163+ AMs (Figure 1B). We then created sample over-
lays of  our viSNE plots to determine whether CD33+CD71+CD163+ AMs from each of  the 3 clinical 
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populations (heathy, non-ARDS, and ARDS) were phenotypically distinct. We found that the CD33+C-
D71+CD163+ AMs from each of  the 3 clinical populations formed distinct clusters (Figure 1C), sug-
gesting that AM subtypes might be influenced by the environment (clinical condition) to which the cells 
were exposed.

The addition of  CyTOF data from 2 peripheral blood mononuclear cell (PBMC) samples from healthy 
volunteers to our 16 alveolar samples did not modify the number of  clusters identified by viSNE, implying 
that the major leukocyte populations present in the peripheral circulation were represented in the alveolar 
space (Supplemental Figure 2, A and B). T cells identified from the alveolar space and peripheral blood 
phenotypically overlapped (Supplemental Figure 2, C and D). We also found that alveolar MONO popula-
tions were phenotypically similar to MONOs isolated from the peripheral blood based on their cluster des-
ignation within the overall viSNE plot and were only present in the BAL fluid from subjects with ARDS. 
There were no CD33+CD71+CD163+ AM-like cells present in the peripheral blood.

X-Shift defines expected and potentially novel alveolar myeloid cell populations. The application of  viSNE to 
our HMC CyTOF dataset identified extensive phenotypic heterogeneity within the CD33+CD71+CD163+ 
AM population (Figure 1C). Next, we sought to more rigorously discern AM subtypes using X-Shift (15). 
X-Shift is a clustering algorithm that employs a computationally robust approach to cluster assignment that 
is based on a modified weighted κ-nearest neighbor density estimation (κNN-DE). We first removed CD3+ 
T cells and MONOs (CD206loCD14+) from our HMC-BAL dataset by manual gating (Figure 1A) and then 
applied X-Shift to all remaining alveolar leukocytes. κNN-DE cluster analysis of  the remaining alveolar 
leukocytes identified 8 distinct myeloid clusters that are displayed in the Divisive Marker Tree (DMT) (Fig-
ure 2). The DMT starts with a Root node encompassing all clusters and then progresses through successive 
binary divisions that resemble manual gating hierarchies. For each division, the marker that has the largest 
variance-normalized difference between the 2 sister clusters is identified.

Table 1. Subject characteristics

HMC-BAL ARDS-AMGE
Healthy 
(n = 4)

Non-ARDS 
(n = 6)

ARDS 
(n = 6)

ARDS 
(n = 30)

Demographic
Age 22 ± 3 46 ± 11 50 ± 17 44 ± 6
Sex (M/F) 1/3 5/1 3/3 18/12
Mechanically ventilated No Yes Yes Yes
Days of mechanical 
ventilation prior to BAL

N/A 6.2 ± 2.4 3.5 ± 1.7 <2.0

Clinical diagnosis, n (%)
ARDS N/A – 6 (100%) 30 (100%)
Heart failure N/A 2 (33%) – –
Airway protection N/A 4 (66%) – –
ARDS risk, n (%)A

Trauma N/A 1 3 (50%) 14 (47%)
Sepsis N/A – – 17 (57%)
Pneumonia N/A – 1 (17%) 9 (30%)
Aspiration N/A – 2 (33%) 4 (13%)
Physiologic
P/F ratio N/A 256 ± 139 107 ± 23 198 ± 61
APACHE II N/A – – 21 ± 6
APACHE III N/A 75 ± 17 91 ± 40 –
Cellular (cytospin)
% AM 90% ± 4% 94% ± 5% 43% ± 26% 54% ± 31%
% Neutrophil 1% ± 0% 2% ± 4% 54% ± 27% 41% ± 33%

All values are expressed as mean ± SD. Days of mechanical ventilation: number of days elapsed from initiation of mechanical ventilation to sample 
acquisition by bronchoalveolar lavage (BAL). AM, alveolar macrophage; APACHE, acute physiologic and chronic health evaluation; ARDS, acute respiratory 
distress syndrome; ARDS-AMGE, ARDS AM Gene Expression Cohort; HMC-BAL, Harborview Medical Center BAL Cohort; P/F ratio, PaO2/FiO2 ratio. ARisk 
factors for ARDS are not mutually exclusive.
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We identified 8 clusters (e.g., AM-1) based on the 
marker intensity distribution of  each cluster interpreted 
within the context of  prior literature (5). For example, 
we labeled the PMN cluster given its high expression of  
CD15 and low expression of  CD206 (Figure 3). Supple-
mental Table 2 shows the marker intensities for all 36 
markers. The UNK subtype represented a cluster that did 
not have high expression of  any of  the myeloid markers 
except CD45, suggesting that it is a population defined 
by markers that were not included in our panel.

DMT identified 3 distinct clusters that contained 
CD45RAloCD15loCD33hi alveolar myeloid cells (after 
excluding CD3+ T cells and CD206loCD14+ MONOs), 
which we classified as AMs based on our interpretation 
of  the cluster marker intensities (Figure 3). The mark-
ers that had the largest variance-normalized difference 
among these 3 AM subtypes were CD169 and PD-L1 
(Figures 2 and 3, Supplemental Figure 3). To confirm 
that CD169 and PD-L1 are discriminating AM sub-
type markers that are robust to small variations in how 
AMs are defined, we applied X-Shift to manually gated 
CD33+CD71+CD163+ AMs from our HMC-BAL data. 
X-Shift again identified 3 AM subtypes that were best 

distinguished from each other by CD169 and PD-L1 expression (Supplemental Figure 4).
CD169 and PD-L1 distinguish AM subtypes. To facilitate the translation of  our high-parameter CyTOF 

findings into low-parameter flow cytometry workflows, we applied the DMT-derived gating hierarchy in 
Figure 2 to conventional biaxial plots of  our HMC-BAL data (Figure 4A). We then manually divided 
the CD45RAloCD15loCD33hi AM population based on CD169 and PD-L1 expression (Figure 4B). The 
percentage of  AMs that were classified into one of  the 3 AM subtypes was significantly different between 
nonmechanically ventilated and mechanically ventilated critically ill subjects (Figure 4C). Differences in 
these subtypes among the mechanically ventilated patients suggested a difference between those with and 
without ARDS; however, this difference did not meet our predetermined threshold for statistical signifi-
cance (Figure 4D).

AM PD-L1 gene expression and PD-L1/PD-1 pathway–associated gene sets are associated with ventilator-free days in 
ARDS. Our CyTOF analyses demonstrated a clear difference in the prevalence of AM subtypes defined by 
CD169 and PD-L1 in healthy controls as opposed to critically ill patients with respiratory failure on mechanical 
ventilation. There was a numerical trend suggesting a difference between these AM subtypes among patients 
with and without ARDS. Next, we sought evidence of links between AM expression of markers defining these 
AM subtypes (CD169, PD-L1, CD71, CD86, and CD14) and severity of ARDS using previously obtained 
genome-wide expression measurements from AMs purified from the BAL fluid of patients (n = 30) with early 
ARDS (<48 hours after mechanical ventilation was initiated). These patients had been enrolled in a randomized 
clinical trial of fish oil for treatment of ARDS (16). These 5 genes were selected based on our CyTOF analyses 

Figure 1. CyTOF analysis of leukocytes from bronchoalveo-
lar lavage (BAL) fluid identifies common populations in an 
unsupervised fashion. (A) Biaxial gating of intact, singlet, live, 
and CD45+ cells from 16 alveolar samples analyzed by CyTOF 
identifies common alveolar leukocyte populations. (B) Concat-
enated viSNE plot generated from the same data represented 
in A. The color of each dot represents its immune cell subset, 
as designated by manual gating shown in A. (C) Concatenated 
viSNE plot of all CD33+CD71+CD163+ AMs colored per the clinical 
population from which each sample was procured. AM, alveolar 
macrophage; IgE, IgE-expressing cells (eosinophil, basophil, 
and mast cells); MONO, monocyte; PMN, neutrophil.
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showing a wide variance in median intensity between each of the 3 AM subtypes (Figure 3, red). We tested 
for associations between the expression level of each gene and the ARDS-related outcome, ventilator-free days 
(VFDs). VFDs is a composite endpoint used in ARDS clinical trials that measures the duration of need for 
mechanical ventilation while accounting for patient survival (17). VFDs were dichotomized about the median 
and classified as high VFDs (VFD ≥ 18, n = 15) versus low VFDs (VFD < 18, n = 15).

We found that AMs from individuals who experienced high VFDs had significantly higher PD-L1 gene 
expression than subjects who experienced low VFDs (P = 0.0005) (Figure 5). The difference between the 
2 groups persisted when we analyzed subjects in the active drug (fish oil) and placebo groups separately 
(Supplemental Figure 5, A and B). We also had gene expression measurements for a subset of  patients at 
day 4 after enrollment, and we found no significant difference in AM PD-L1 gene expression between the 
high and low VFD groups at this time point (Supplemental Figure 6). None of  the transcripts for the 4 other 
AM-subtype markers differed between the high and low VFD groups (Figure 5).

We then expanded our analysis to genome-wide AM expression measurements. We tested whether AM 
PD-L1/PD-1 or CD86/CTLA-4 transcriptional pathways were associated with VFDs in ARDS-AMGE in sam-
ples obtained <48 hours after ARDS onset. We compiled PD-1 and CTLA-4 pathway signaling gene sets 
from the Molecular Signatures Database (MSigDB; http://software.broadinstitute.org/gsea/msigdb/gene-
sets.jsp), and applied Gene Set Enrichment Analysis (GSEA; http://software.broadinstitute.org/gsea/index.
jsp) to our ARDS-AMGE cohort to determine whether there was significant enrichment of  these gene sets in 
our high versus low VFD groups (18). We found significant enrichment of  the PD-L1/PD-1 pathway gene set 
in high VFD versus low VFD subjects in ARDS-AMGE (P < 0.001) (Table 2 and Supplemental Figure 7).

Discussion
A more precise assessment of  alveolar cell subtypes in human health and disease is needed to more com-
pletely understand pathophysiology and develop better therapeutics. To this end, we report the first study 
to our knowledge to employ CyTOF to phenotype human alveolar myeloid cells. Using clinical samples 
obtained by bronchoscopic sampling of  healthy volunteers breathing spontaneously and critically ill 
mechanically ventilated subjects with and without ARDS, we have shown that human AMs possess consid-
erable phenotypic diversity, as measured by a broad panel of  cell-surface markers (Figure 1). Furthermore, 
we have shown that the prevalence of  certain AM subtypes differs according to whether a subject is spon-
taneously breathing or is critically ill and supported on mechanical ventilation (Figure 4). Specifically, we 
identified expected (CD33+CD71+CD163+) and potentially novel AM populations (CD169hiPD-L1hi) in an 
unsupervised fashion using high-parameter analysis of  CyTOF data derived from alveolar leukocytes (Fig-
ure 2). In an independent cohort of  subjects with ARDS, we showed that PD-L1 gene expression and PD-
L1/PD-1 pathway–associated gene sets were significantly decreased in AMs from patients who experienced 

Figure 2. Unsupervised clustering by X-Shift identifies 
alveolar macrophage (AM) subtypes. The Divisive 
Marker Tree (DMT) dendrogram displays the 8 myeloid 
clusters derived by κNN-DE clustering (κ-nearest 
neighbors = 30) of alveolar myeloid cells after exclusion 
of CD3+ T cells and CD206loCD14+ MONOs. The DMT 
starts with the Root node encompassing all clus-
ters and then progresses through successive binary 
divisions that are chosen to maximize the average 
uncentered Pearson correlation of each of the cluster 
expression profiles. For each division, the marker 
that has the largest variance-normalized difference 
between the 2 sister clusters is labeled (Supplemental 
Figure 3 displays the cut-off values). X-Shift performed 
the κNN-DE clustering and DMT tree derivation (15). 
cDC, conventional dendritic cell; pDC, plasmacytoid DC; 
PMN, neutrophil; UNK, unclassified.
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prolonged mechanical ventilation or death, suggesting that AM expression of  this protein might be linked 
with clinical outcomes (Figure 5 and Table 2). Taken together, our findings are consistent with a model in 
which critical illness and ARDS lead to development of  specific AM subtypes (5, 6). We hypothesize that 
these AM subtypes may help to regulate injury and repair pathways in the lungs of  these patients. This 
model is supported by findings in murine models of  acute lung injury and infection (7, 8) and suggests that 
distinct AM subtypes might be differentially targeted in critical illness and ARDS as a novel therapeutic 
approach.

Our findings add significant clarity to a prior AM phenotyping study in ARDS performed using flow 
cytometry that classified nonlymphocytic alveolar mononuclear cells as being either AMs or MONOs, 
respectively (10). Rosseau et al. compared cells obtained from serial BALs from patients with and without 
ARDS controls (10). They showed that persistence of  MONOs in the alveolar space was associated with 
worse clinical outcomes compared with subjects whose BAL showed higher numbers of  CD71+CD163+ 
AMs over the course of  ARDS (10). We likewise found increased percentages of  pure MONOs in our 
ARDS (11.5% of  non-CD3+ cells) versus healthy and non-ARDS subjects (0.41% of  non-CD3+ cells). How-
ever, even after gating out pure MONOs from our samples based upon a recently validated flow cytometry 
gating strategy (Figure 4A) (9), we still identified 3 distinct AM subtypes among either CD45RAloCD-
15loCD33hi (Figure 2) or CD33+CD71+CD163+ cells (Supplemental Figure 4). Our findings suggest that 
Rosseau’s flow cytometry study (10) may have consolidated distinct AM subtypes into either mature 
CD33+CD71+CD163+ AM or MONO populations. Moreover, our identification of  CD169 and PD-L1 as 
discriminating AM subtype markers (Figure 2) provides a basis for larger studies in humans testing whether 
nonmonocytic AM subtypes are associated with clinical outcomes in ARDS.

Limited data exists regarding cell-surface expression of  PD-L1 or CD169 on human AMs in ARDS; 
however, studies have characterized an important role for these molecules in other pulmonary disease states 
and cell types. PD-L1 is present on most antigen presenting cells and associates with PD-1 on lymphocytes 
(19). PD-L1 inhibits the pro-inflammatory activity of  CD4+ and CD8+ T cells, and lung tissue macrophage 
PD-L1 cell surface expression is decreased in inflammatory conditions, such as chronic obstructive pulmo-
nary disease (20). The strong constitutive expression of  PD-L1 is consistent with the role that quiescent 
AMs may play in suppressing inappropriate inflammation in the homeostatic human lung. Notably, PD-L1 
blockade is associated with the development of  an ARDS-like pneumonitis in cancer patients who are 

Figure 3. Most informative median myeloid marker intensities for each subtype identified by κNN-DE in HMC-BAL. All values are expressed on 
the arcsinh (raw intensity/5) scale. Alveolar macrophage (AM) markers colored in red were carried forward for further analysis. Figure expresses data 
derived from n = 16 total alvoelar samples (HMC-BAL). κNN-DE, κ-nearest neighbor density estimation; cDC, conventional DC; pDC, plasmacytoid DC; 
PMN, neutrophil; UNK, unclassified.
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treated with PD-L1 checkpoint inhibitors (21, 22), suggesting that this pathway may be important to ARDS 
pathogenesis. Our findings in an independent cohort of  patients with ARDS demonstrating decreased AM 
PD-L1 gene expression and PD-L1/PD-1 AM gene set enrichment in subjects with more severe forms of  
ARDS extends our CyTOF findings (Figure 5 and Table 2). Taken together, these findings suggest that AM 
subtypes defined by PD-L1 may be involved in the development and severity of  ARDS.

Our identification of  a CD169loPD-L1lo AM subtype that is markedly enriched among patients with 
acute respiratory failure being supported by mechanical ventilation is potentially novel. However, based on 
prior studies, we hypothesize that the CD169loPD-L1lo AM subtype is similar to a recently described pul-
monary macrophage subtype. Yu et al. identified the macrophage subtype in the interstitial space of  healthy 
human lungs (9). This CD169lo interstitial-associated macrophage was strongly CD206+ and CD14+, and it 
interdigitated with alveolar epithelial cells. Our CD169loPD-L1lo AM-3 subtype is likewise strongly CD206+ 

Figure 4. CD169 and PD-L1 distinguish alveolar macrophages (AMs) procured from different clinical populations. (A) The hierarchical gating strategy 
used to identify AMs is based on the Divisive Marker Tree (DMT) shown in Figure 2. (B) Contour plot demonstrating the manually drawn gates for CD169 
and PD-L1 AM subtypes within all CD45RAloCD15loCD33hi events from all 16 alveolar samples in the HMC-BAL cohort. (C) The population frequency of each 
CD169/PD-L1 AM subtype was different between nonmechanically ventilated healthy subjects and mechanically ventilated critically ill subjects (n = 4 not 
mechanically ventilated, n = 12 mechanically ventilated). (D) The population frequency of each CD169/PD-L1 AM subtype suggested a difference between 
non-ARDS and ARDS subjects (n = 6 non-ARDS, n = 6 ARDS). Shown are the individual values and median ± interquartile range (IQR) population frequen-
cies of each AM subtype among total CD45RAloCD15loCD33hi AMs. Each comparison was made with a Mann-Whitney U test. **P ≤ 0.01.
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and CD14+ (Figure 3), was not present in the BAL fluid from healthy subjects, and was increasingly found 
in ARDS versus non-ARDS BAL fluid (Figure 4D). It is possible that this macrophage subtype is present 
exclusively in the subepithelial compartment during homeostasis but then leaks into the alveolar space after 
epithelial damage that might occur with ventilator-induced lung injury or in ARDS. Alternatively, this mac-
rophage subtype may play a specific role in acute lung immunity and inflammation, as suggested in studies 
performed in macaques (23).

This study has several limitations. First, our sample size for the CyTOF studies is relatively small and 
will need to be verified. However, our findings using gene expression in the larger ARDS-AMGE cohort 
support the importance of  our CyTOF results. Second, our CyTOF analyses were limited to a single time 
point that varied in its relation to the initiation of  mechanical ventilation and the onset of  ARDS. AM 
phenotype and function can change over time on mechanical ventilation and over the course of  ARDS 
(10, 24). Indeed, the lack of  a statistically robust difference in the AM subtype prevalence between ARDS 
and non-ARDS patients was likely influenced by the experimental noise introduced by the sampling time 
differences. Further evidence for the time-dependent changes were seen in the differences in AM PD-L1 
gene expression between ARDS subjects with high versus low VFDs at ARDS onset but lost by day 4 after 

Figure 5. PD-L1 gene expression is associated with ventilator-free days (VFDs) in subjects with acute respiratory distress syndrome (ARDS). Alveolar 
macrophages (AMs) were isolated <48 hours after the development of ARDS by negative selection in the ARDS-AMGE sample set. High VFDs indicate 
VFD ≥ 18 (n = 15) and Low VFDs indicate VFD < 18 (n = 15). mRNA normalized log2 probe intensity for each transcript is expressed as individual values and 
median ± interquartile range (IQR) for each group. For each gene, comparisons were made with a Mann-Whitney U test. ***P < 0.001.

Table 2. Alveolar Macrophage (AM) PD-1 pathway associated gene sets are enriched in high ventilator-free day (VFD) versus low VFD 
subjects with ARDS

Gene Set NES P value
REACTOME_PD1_SIGNALING 1.80 <0.001
BIOCARTA_CTLA4_PATHWAY 1.33 0.13

NES, normalized enrichment score. The NES is expressed in High VFD subjects (High VFDs = VFD ≥ 18, n = 15) versus Low VFD subjects (Low VFDs 
= VFD < 18, n = 15). The gene sets tested were obtained from the Broad Molecular Signatures Database (http://software.broadinstitute.org/gsea/
msigdb/genesets.jsp).
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mechanical ventilation (Supplemental Figure 6). Longitudinal studies will be required to further delineate 
the relationships between AM subtypes and ARDS onset and progression. Third, our findings linking dif-
ferences in PD-L1 gene expression and VFDs was only performed in patients with ARDS; thus, we cannot 
say to what extent this relationship is exclusive to patients with ARDS as opposed to patients with acute 
respiratory failure in general. Fourth, the cells obtained by BAL are not necessarily fully representative of  
all cells in the alveolar or interstitial space. Finally, we used cryopreserved samples to allow for batched pro-
cessing of  our samples to limit experimental noise from day-to-day technical variation. Our protocol was 
standardized across all samples collected, but it remains possible that cryopreservation may have altered 
measurements relative to freshly processed cells.

In summary, we have identified expected and potentially novel human AM subtypes present in ARDS 
that may be related to salient clinical outcomes. We suggest that there is an inflammatory AM subtype 
characterized by low expression of  PD-L1 and CD169 in human CD45RAloCD15loCD33hi AMs procured 
from subjects with ARDS. Our study clearly demonstrates the feasibility and utility of  high-dimensional 
single-cell analysis of  alveolar samples from critically ill patients. It is likely that this approach will reveal 
important insights on the alveolar cells that play a key role in the development and resolution of  ARDS and 
other forms of  acute inflammatory lung disease.

Methods
Study populations. For CyTOF experiments, intubated and mechanically ventilated patients undergoing 
BAL for clinical suspicion of  ventilator-associated pneumonia (VAP) were recruited from multiple ICUs 
at Harborview Medical Center in Seattle, Washington, USA. The indications and protocols for performing 
VAP BALs are standardized at Harborview (25). Specifically, bronchoscopy with BAL is performed to eval-
uate for VAP if  a patient meets the following 3 criteria: (a) radiographic abnormalities; (b) 1 or more of  the 
following clinical signs: fever, purulent endotracheal secretions, or leukocytosis; and (c) no new antimicro-
bial drugs for ≥72 hours. All samples from mechanically ventilated patients in HMC-BAL were obtained by 
bronchoscopies that were performed by a member of  the clinical team caring for the patient. Our research 
samples were obtained from the excess total BAL fluid not needed for clinical care and processed within 1 
hour of  the procedure. ARDS was defined using the 2012 Berlin Definition for ARDS (26). We excluded 
samples if: (a) there was any microbiologic evidence of  pulmonary infection (defined as ≥ 1 × 104 CFUs 
of  a respiratory pathogen), (b) the sample did not contain >1 million alveolar cells, (c) the sample was col-
lected >10 days after the initiation of  mechanical ventilation, or (d) the sample was procured from a subject 
with burns, prior solid organ/stem cell transplant, active malignancy, or human immunodeficiency virus.

Healthy subjects were recruited from the Seattle metropolitan area with the following exclusion crite-
ria: (a) age <18 or >50, (b) active tobacco use, (c) prescription medication use, or (d) any history of  pulmo-
nary, immune, or chronic illness. All healthy subjects were spontaneously breathing, BAL was performed 
with local anesthesia, and no sedation was administered. Frozen PBMCs were obtained from the Benaroya 
Research Institute Immune Mediated Disease Registry and Repository.

For gene expression experiments, data was derived from subjects with ARDS enrolled in the Fish 
Oil Phase-II Randomized Placebo-Controlled Trial (16). Full inclusion and exclusion criteria are 
described in the original manuscript. Patients randomized to both the fish oil treatment (n = 10) and 
placebo (n = 20) were included in our analysis. There were no differences in any of  the plasma biomark-
er levels, BAL fluid biomarker levels, or clinical outcomes between the placebo and treatment groups in 
this trial (16). VFDs were defined as the number of  days a subject was alive and free from mechanical 
ventilation between day 1 and day 28 after enrollment (17). If  a subject died before day 28, he or she 
was considered to have VFDs of  0.

CyTOF sample processing. Alveolar samples were filtered through a 70-μm cell strainer and then centri-
fuged at 400 g for 5 minutes. The supernatant was removed and stored, and red blood cells were eliminated 
using a lysis buffer (BioLegend). Alveolar leukocytes were washed and resuspended in 2% FBS, and an 
aliquot was processed for a cytospin. The cells were washed again and then cryopreserved in 7% DMSO 
(Thermo Fisher Scientific).

All samples were thawed on the day of  processing, incubated in 50 units/ml DNase (Benzonase Nucle-
ase, MilliporeSigma) for 5 minutes, washed ×2 in PBS, and then stained with cisplatin (viability stain; Enzo 
Life Sciences) for 1 minute at room temperature. The cells were then washed and resuspended with human 
Fc blocker for 5 minutes (TruStain FcX, BioLegend). Samples were stained with the 36-antibody cocktai 
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(Supplemental Table 1) in cell staining buffer (Fluidigm) for 30 minutes at room temperature. Following 
incubation, cells were washed ×2 and then resuspended with MaxPar Intercalator-Ir (intact stain) in Fix 
and Perm Buffer (Fluidigm). Cells were washed, and then resuspended in ultrapure water to be run on the 
CyTOF. Stained cells were analyzed on a CyTOF (Fluidigm) at an event rate of  300–400 cells per second. 
We processed the samples in 2 separate batches.

Gene expression sample processing. Negative selection for AMs was achieved by incubating cells col-
lected from BAL fluid of  subjects with ARDS with antibody-labeled microbeads as previously described 
(27). RNA was purified using ABI Isolation of  Total RNA from Cells protocol (Applied Biosciences 
Inc.) using the ABI Prism 6100 Nucleic Acid PrepStation. RNA purity was qualitatively assessed by an 
automated RNA electrophoresis chip (Bio-Rad). After RNA isolation, total RNA from each sample was 
amplified by performing a 2-cycle amplification process (Applied Biosciences Inc.). After amplification, 
biotin-labeled anti-sense complementary DNA (cDNA) was synthesized, fragmented, and hybridized 
to an Illumina HumanRef-8 BeadChip (Illumina Inc.) containing 24,526 unique probes (inclusive of  
18,415 unique genes).

CyTOF data analysis. Prior to data analysis, all events were preprocessed in FlowJo v10 by manually 
gating on intact, singlet, live, and CD45+ cells. All analyses after preprocessing were performed on inverse 
hyperbolic sine transformed data. All viSNE plots (14) were generated on equally downsampled events in 
Cytobank Premium (Cytobank Inc.) with the following parameters: perplexity = 30; θ = 0.5; iterations = 
1,000. The viSNE plots shown in Figure 1 and Supplemental Figure 2 were edited in FlowJo, and all man-
ual gating was performed in FlowJo.

Automated clustering was performed in X-Shift (http://web.stanford.edu/~samusik/vortex) (15) 
on all cells remaining after CD3+ T cells and CD206loCD14+ MONOs were removed (Figure 2) or on 
all CD33+CD71+CD163+ cells (Supplemental Figure 4) with the following parameters: minimal euclid-
ean length of  the profile = 1.0; distance measure = euclidean distance; clustering algorithm = X-Shift; 
density estimate = n nearest neighbors, κ (nearest neighbors) = 30.

Microarray data analysis. We performed variance stabilization and quantile normalization of  the Illu-
mina HumanRef-8 microarray data using the Bioconductor package lumi (28). Individual probe intensities 
were log2 transformed. We complied the REACTOME_PD1_SIGNALING and BIOCARTA_CTLA4_
PATHWAY gene set lists from the MSigDB (http://software.broadinstitute.org/gsea/msigdb/genesets.jsp) 
and applied these gene sets to ARDS-AMGE using GSEA (18).

Statistics. Continuous percentages and normalized log2 probe intensities are presented as median values 
± interquartile range (IQR). Comparisons between 2 groups were performed with a Mann-Whitney U test. 
A 2-tailed P ≤ 0.05 was considered statistically significant. Statistics were performed with GraphPad Prism 
7.0 (GraphPad Software Inc.).

Study approval. All studies were approved by the Human Subjects Division at the University of  Wash-
ington. Samples obtained from critically ill patients on mechanical ventilation were obtained from discard-
ed excess samples from clinically indicated bronchoscopies under a waiver of  consent. Written informed 
consent was obtained from all subjects enrolled in ARDS-AMGE and healthy subjects undergoing research 
bronchoscopy or blood draw.
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