
..

..

..

..

..

..

..

..

..

..

..

..

Predicting deterioration of ventricular function

in patients with repaired tetralogy of Fallot

using machine learning

Manar D. Samad1†, Gregory J. Wehner2†, Mohammad R. Arbabshirani1,

Linyuan Jing1, Andrew J. Powell3, Tal Geva3, Christopher M. Haggerty1, and

Brandon K. Fornwalt1,4*

1Department of Imaging Science and Innovation, Center for Health Research, Geisinger Clinic, 100 North Academy Avenue, Danville, 17822-4400 PA, USA; 2Department of
Biomedical Engineering, University of Kentucky, 522 Robotics and Manufacturing Building, Lexington, 40506-0108 KY, USA; 3Department of Cardiology, Boston Children’s
Hospital, 300 Longwood Ave, Boston, 02115 MA, USA; and 4Department of Radiology, Geisinger, 100 North Academy Ave, Danville, 17822 PA, USA

Received 25 October 2017; editorial decision 30 December 2017; accepted 5 January 2018; online publish-ahead-of-print 12 March 2018

Aims Previous studies using regression analyses have failed to identify which patients with repaired tetralogy of Fallot
(rTOF) are at risk for deterioration in ventricular size and function despite using common clinical and cardiac func-
tion parameters as well as cardiac mechanics (strain and dyssynchrony). This study used a machine learning pipeline
to comprehensively investigate the predictive value of the baseline variables derived from cardiac magnetic reson-
ance (CMR) imaging and provide models for identifying patients at risk for deterioration.

...................................................................................................................................................................................................
Methods
and results

Longitudinal deterioration for 153 patients with rTOF was categorized as ‘none’, ‘minor’, or ‘major’ based on
changes in ventricular size and ejection fraction between two CMR scans at least 6 months apart (median 2.7 years).
Baseline variables were measured at the time of the first CMR. An exhaustive variable search with a support vector
machine classifier and five-fold cross-validation was used to predict deterioration and identify the most useful vari-
ables. For predicting any deterioration (minor or major) vs. no deterioration, the mean area under the curve
(AUC) was 0.82 ± 0.06. For predicting major deterioration vs. minor or no deterioration, the AUC was 0.77 ± 0.07.
Baseline left ventricular (LV) ejection fraction, LV circumferential strain, and pulmonary regurgitation were most
useful for achieving accurate predictions.

...................................................................................................................................................................................................
Conclusion For the prediction of deterioration in patients with rTOF, a machine learning pipeline uncovered the utility of base-

line variables that was previously lost to regression analyses. The predictive models may be useful for planning early
interventions in patients with high risk.
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Introduction

Tetralogy of Fallot (TOF) is a congenital abnormality of the heart that
typically requires surgical repair in early childhood.1 Advancements in
surgical techniques have reduced the early mortality rate to less than
3%.2 However, the annual mortality rate more than triples, from
0.24%/year to 0.94%/year, 20–30 years after the initial surgical repair
largely due to adverse cardiac events, such as sudden cardiac death

or worsening heart failure.2 The increasing mortality risk generally
coincides with progressive dilation and dysfunction of both the left
and right ventricles (LV and RV, respectively),3,4 and there is growing
evidence of a link between dysfunction and poor outcomes, such as
death or sustained ventricular tachycardia.5,6

Fortunately, many patients with repaired TOF (rTOF) do not de-
velop progressive ventricular dilation and dysfunction. However, this
creates the challenge of predicting which patients are at risk, and the
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current predictive ability is poor despite several recent efforts. Wald
et al.7 investigated whether baseline variables, including clinical par-
ameters and functional measurements derived from routine cardiac
magnetic resonance (CMR) imaging, could predict subsequent deteri-
oration in ventricular size and function. They found that no baseline
parameters could differentiate between patients whose ventricular
function deteriorated over a median 2.2-year follow-up and those
whose function remained unchanged. In a subsequent study, Jing et al.
performed a similar analysis that included baseline measures of car-
diac mechanics such as strain and mechanical dyssynchrony, which
have been touted as more sensitive measures of cardiac function.8,9

However, they reported that baseline cardiac mechanics were also
not predictive of subsequent ventricular deterioration.10

A common limitation of prior studies is the reliance on regression
models for assessing the relationship between baseline variables and
outcomes. In reality, the interactions mediating physiologic processes
may be too complex to be captured using common regression tech-
niques. Fortunately, machine learning, a field of computer science, has
emerged with the necessary tools for both identifying complex pat-
terns within data sets and using those patterns to make better predic-
tions.11 Previously, machine learning has been used in cardiology for
the classification of arrhythmias,12 the classification of constrictive vs.
restrictive pericarditis,13 and the prediction of 1-year mortality in pa-
tients with heart failure.14 Most recently, machine learning has been
employed on speckle-tracking echocardiographic data sets to distin-
guish hypertrophic cardiomyopathy from the physiologic hypertro-
phy seen in athletes15 and on coronary angiography data sets to
predict 5-year mortality in patients with suspected coronary artery
disease.16 In both cases, machine learning techniques performed bet-
ter than standard models (e.g. Framingham). Therefore, we propose
the use of machine learning to predict deterioration in ventricular
size and function in patients with rTOF. Contrary to the results of
previous regression techniques, we hypothesize that baseline clinical
variables and cardiac mechanics can be used to predict deterioration.

Methods

A database search at Boston Children’s Hospital identified patients who
fulfilled the following criteria: (i) diagnosis of rTOF; (ii) two clinical CMR
scans performed at least 6 months apart from May 2005 to March 2012;
(iii) no surgical- or catheter-based interventions between CMR scans; and
(iv) a 12-lead electrocardiogram (ECG) at the time of first CMR. The
search yielded 164 patients, among which 11 were excluded due to in-
complete or poor quality imaging. Subsequently, 153 patients (mean age at
baseline CMR: 23± 14 years, 76 males) were included. The follow-up dur-
ation was between 6 months and 5.9 years with a median of 2.7 years
(interquartile range 1.9–3.8). Note that this data set is identical to that pre-
viously used by Jing et al.10 Using thresholds published by Wald et al. that
were based on the reproducibility of volumetric and ejection fraction
measurements,7,17,18 patients were categorized into three groups: (i) ‘no’
deterioration (n = 38), (ii) ‘minor’ deterioration (n = 78), or (iii) ‘major’ de-
terioration (n = 37) according to their change in ventricular size and func-
tion between CMR scans (Table 1). Eight patients with major deterioration
satisfied two of the three criteria while the rest satisfied only one criterion.

We used the same 22 baseline variables as Jing et al.,10 with 2 additional
variables: indexed RV mass and age at the first CMR (Table 2). A detailed
description of the CMR imaging protocol and measurement techniques of
CMR variables has been reported.9,10 A custom feature tracking algorithm

.................................................................................................

Table 1 Criteria for categorizing patients based on
change in ventricular size and function

Deterioration Increase in

RVEDVi

(mL/m2)

Decrease

in RVEF

(%)

Decrease

in LVEF

(%)

Selection

criterion

None <_5 <_3 <_3 All

Minor Not in ‘None’ or ‘Major’ group

Major >_30 >_10 >_10 Any

Major deterioration was defined as patients who fulfilled any of the three given
criteria while no deterioration (none) was defined as patients who fulfilled all
three given criteria. The remaining patients were placed into the minor deterior-
ation group. Change in RVEF and LVEF are absolute percent changes.
LVEF, left ventricular ejection fraction; RVEDVi, indexed right ventricular end-
diastolic volume; RVEF, right ventricular ejection fraction.

.................................................................................................

Table 2 Baseline variables used to predict
deterioration

Variables Mean 6 SD

or n (%)

Demographics Sex (male) 76 (50%)

Age at surgical repair (years) 3.5 ± 6.7

Age at first CMR (years) 23.4 ± 14

Surgical repair

procedurea

Transannular patch 97 (63%)

RV-PA conduit 11 (7%)

RVOT patch 30 (20%)

Infundibular resection 2 (1%)

Pulmonary valvotomy 11 (7%)

Commissurotomy 9 (6%)

Electrocardiogram QRS duration (ms) 136 ± 27

Heart rate (HR, beats/min) 80 ± 17

CMR variables LV dyssynchrony (LV-dyss, ms) 19 ± 11

RV dyssynchrony (RV-dyss, ms) 57 ± 29

Interventricular dyssynchrony

(Inter-dyss, ms)b

-40 ± 20

LV circumferential strain

(LV-Ecc, %)

27 ± 3

RV circumferential strain

(RV-Ecc, %)

18 ± 3

LV longitudinal strain (LV-Ell, %) 19 ± 3

RV longitudinal strain (RV-Ell, %) 23 ± 3

RV end-diastolic volume index

(RVEDVi, mL/m2)

143 ± 36

RV end-systolic volume index

(RVESVi, mL/m2)

67 ± 23

LV ejection fraction (LVEF, %) 59 ± 6

RV ejection fraction (RVEF, %) 53 ± 8

Pulmonary regurgitation fraction

(PR fraction, %)

36 ± 15

RV mass index (RVMASSi, g/m2) 33.8 ± 12.5

CMR, cardiac magnetic resonance; LV, left ventricular; RV, right ventricular;
RVOT, right ventricular outflow tract; RV-PA, right ventricle-to-pulmonary artery;
SD, standard deviation.
aSome patients had more than one type of surgical repair.
bNegative values indicate delayed contraction of the RV relative to the LV.
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was used to extract both LV and RV strains and dyssynchrony from base-
line CMR.9 Briefly, 48–96 segmental strain vs. time curves were generated
from 4 to 8 short-axis images covering the ventricles. Peak strains were
calculated as the peak of the average strain curve. Cross-correlational
delays were calculated for each segmental strain curve when compared to
a patient-specific reference curve. The standard deviation of the cross-
correlational delays within each ventricle was reported as LV/RV dyssyn-
chrony. The difference between median delays of the two ventricles was
defined as inter-ventricular dyssynchrony. Heart rate and QRS duration
were obtained from the baseline ECG. Sex and surgical repair procedures
were categorical. The remaining variables were continuous.

Machine learning framework
We developed a machine learning pipeline using the Python-based library
scikit-learn (Central illustration).19 Specifically, five-fold cross-validation
was used with a linear support vector machine (linear-SVM) classifier.
SVM is a popular supervised machine learning algorithm used to classify
individual samples into two groups. The algorithm uses a set of training
examples (e.g. a cohort of volunteers, each represented by a number of
variables) with the supervision of known group labels (e.g. patient vs. con-
trol) of individual examples. A linear-SVM results in a linear equation of
many input variables, which serves as a ‘decision boundary’ to determine
the group label of a test sample. Among many choices of ‘decision bound-
ary’ separating the two groups, linear-SVM optimally determines the one
that ensures maximum separation between the groups in terms of input
variables. This maximum separation criterion during training yields im-
proved classification performance compared to other predictive models.

The mean area under the receiver operating characteristic curve
(AUC) over the five-fold cross-validations was used as the performance
metric. We used an exhaustive search algorithm to find the optimal com-
bination of baseline variables.20 In an exhaustive variable search, there are
nCr unique combinations of r variables,

nCr =
n!

r! n� rð Þ! (1)

where n is 24 variables in our case. For each experimental scenario
below, a total of 16 777 215 variable combinations (ranging from r = 1 to
r = 24) were assessed with the expectation that performance would ini-
tially increase with the inclusion of more informative variables and even-
tually decrease as high numbers of less informative variables would lead
to overfitting. The variable combinations were ranked according to their
cross-validated mean AUC in order to reveal the optimal variable com-
bination. In addition to reporting the best performing variable combin-
ation, the top 100 combinations were inspected to determine the
prevalence of the different baseline variables within those high-
performing combinations as a measure of variable importance. Finally,
Platt scaling was used to convert the discrete predictions of the linear-
SVMs into probabilities,21 which allows a new patient to be linked to the
probability of experiencing no, minor, or major deterioration.

Experimental scenarios
Four experimental scenarios were considered for predicting deterioration
(Table 3). Scenario 1 sought to distinguish those with major deterioration
from those without deterioration, which were the two groups analysed in
previous subgroup analyses.10 Scenario 2 sought to distinguish patients
with any deterioration (major or minor) from those without deterioration
while Scenario 3 attempted to distinguish patients with major deterioration
from patients with either minor or no deterioration. Scenario 4 attempted
a three-group classification where each group was predicted separately
using a one-vs.-all binary classification model, and the average AUC over 3
one-vs.-all binary classification models was reported.

RESULTS

Overall predictive performance
All experimental scenarios yielded AUCs above the random chance
level of 0.5 (Figure 1). Scenario 1 obtained the highest mean AUC
(0.87 ± 0.07) was obtained using six variables (Table 4). The remaining
Scenarios 2, 3, and 4 achieved mean AUCs of 0.82± 0.06, 0.77 ± 0.07,
and 0.70 ± 0.06 by using an optimum of 6, 5, and 10 variables,
respectively.

Scenario 1: major vs. no deterioration
While the best performance was achieved with six variables, results
from the best two variables are presented first for visualization. The
mean AUC (0.77 ± 0.12) for the best single predictor (LVEF) im-
proved to 0.84± 0.08 after adding pulmonary regurgitation (PR) frac-
tion. In PR fraction vs. LVEF variable space, a linear-SVM obtains the
decision boundary for the binary classification of patients into either
major or no deterioration (Figure 2A). The contour lines in Figure 2B

Cohort of Patients with Repaired Tetralogy of Fallot (n = 153)

4 Prediction Scenarios

“Major”
vs

“No”

“Major”
or

“Minor”
vs

“No”

“Major”
vs

“Minor”
or

“No”

“Major”
vs

“Minor”
vs

“No”

Support Vector Machine Models using 5-Fold Cross-Validation

Area Under the Curve (AUC) and Variable Importance

Scenario AUC

“Major” vs “No” 0.87

“Major” or “Minor” vs “No” 0.82

“Major” vs “Minor” or “No” 0.77

“Major” vs “Minor” vs “No” 0.70

Rank Variable

1 LV Ejection Fraction

2 LV Circumferential Strain

3 Pulmonary Regurgitation Fraction

4 RV End-Systolic Volume Index

Model Performance Most Informative Baseline Variables

Follow-up CMRDemographics

Electrocardiography

CMR

Baseline Variables
Compare

Ventricular Deterioration

“No”
(n = 38)

“Minor”
(n = 78)

“Major”
(n = 37)

Central illustration Machine-learning pipeline for predicting
deterioration in patients with rTOF. A machine-learning pipeline
was designed to evaluate four predictive models and identify the
most important baseline variables to predict deterioration in ven-
tricular size and function in patients with repaired tetralogy of Fallot
(rTOF). The patients with rTOF were categorized into three deteri-
oration groups using measures from follow-up cardiac magnetic res-
onance (CMR) scans and then the deterioration was predicted
using baseline measurements. The predictive performance was re-
ported using area under the curve (AUC). LV, left ventricular; RV,
right ventricular.
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indicate the probability that a new patient would be expected to ex-
perience major deterioration depending on their baseline LVEF and
PR fraction.

The parametric formulation of the decision boundary below can
be used to classify a new patient using baseline LVEF and PR fraction.

f LVEF; PRð Þ= a � LVEFþ b � PRþ C = 0 (2)

where, a = -0.1936, b = -0.0457, and c = 13.317 are the coefficients
and LVEF and PR fraction are the values of the baseline variables.
Using Eq. (2), the binary decision about a given patient with rTOF can
be made using the following criteria:

f(LVEF, PR) > 0 Patient without deterioration

f(LVEF, PR) < 0 Patient with major deterioration.

The negative coefficients indicate that lower values for both LVEF
and PR fraction are favourable for no deterioration. Equivalent para-
metric formulations of the binary decision as well as the probabilities
shown in Figure 2B, which can be used to predict the deterioration of
a new patient, are easily calculated from the 6D variable combination
that yielded the best AUC; however, the 6D decision boundary is im-
possible to visualize. In addition to LVEF and PR fraction, the optimal
combination of variables included heart rate, interventricular dyssyn-
chrony, RV longitudinal strain, and RVEF.

Scenario 2: major or minor vs. no
deterioration
For the prediction of any deterioration vs. no deterioration, the best
variable combination (mean AUC of 0.82± 0.06) included LVEF, LV

Figure 1 Performance of the predictive models. The best mean cross-validated AUC obtained from exhaustive variable search across the different
numbers of baseline predictor variables for each scenario.

....................................................................................................................................................................................................................

Table 3 Experimental scenarios for predicting deterioration

Scenarios Classification

type

Patient grouping Goal

Scenario 1 Binary Major (n = 37) and no

deterioration (n = 38)

Predicting major vs. no

deterioration

Scenario 2 Binary Patients with (n = 115) and

without (n = 38) deterioration

Predicting major or minor

deterioration vs. no deterioration

Scenario 3 Binary Patients with (n = 37) and without

major deterioration (n = 116)

Predicting major deterioration vs.

minor or no deterioration

Scenario 4 Three-group Major (n = 37), minor (n = 78), no

deterioration (n = 38)

Predicting the three distinct groups:

major vs. minor vs. no deterioration

Scenarios 2–4 consider the possible ways to incorporate patients with minor deterioration. In Scenario 2, they are combined with patients with major deterioration; in Scenario
3, they are combined with patients with no deterioration; in Scenario 4 they are treated as a distinct third group.

Predicting ventricular function deterioration in rTOF 733
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circumferential strain, RVESVi, and three surgical repair variables
(transannular patch, infundibular resection, and commisurotomy).
The formula for the decision boundary indicated that lower LVEF and
RVESVi, higher LV circumferential strain, and the absence of any of the
three repair types were favourable for no deterioration (Table 4).

Scenario 3: major vs. minor or no
deterioration
For the prediction of major deterioration vs. minor or no deterior-
ation, the highest mean AUC was 0.77 ± 0.07 using five baseline

variables. Higher longitudinal strains, lower LVEF and PR fraction, and
female gender were favourable for only minor or no deterioration
(Table 4).

Scenario 4: major vs. minor vs. no
deterioration
For the three-group classification, the highest mean AUC
(0.70 ± 0.06) was obtained using 10 baseline variables (Table 4).
Because the three-group classification requires multiple one-vs.-all
decision boundaries, and, in particular, one of those decisions is for
minor deterioration vs. either no or major deterioration, it is not pos-
sible to report a favourable directionality for each variable.

Variable importance
The exhaustive variable search obtained the best performing combin-
ation of variables for each experimental scenario. Therefore, to as-
sess the importance of each baseline variable individually, their
prevalence within the top 100 variable combinations was measured.
For each scenario, the top 100 variable combinations were found to
be within 0.05 units from the best AUC.

For Scenario 1, LVEF, PR fraction, HR, and the age at surgical repair
had the highest prevalence (Figure 3). Scenario 2 demonstrated high
prevalence of LVEF, LV circumferential strain, RVESVi, and transannu-
lar patch. Scenario 3 frequently selected the right ventricular meas-
urements such as RVEDVi, RVESVi, and RVEF in addition to LVEF, PR
fraction, and age at surgical repair. The three-group classification
(Scenario 4) identified LVEF, age at surgical repair, age at the first
CMR, LV circumferential and longitudinal strains, and transannular
patch as the most predictive variables. After averaging the preva-
lences across the four scenarios, the variable ranking in Figure 4 shows
that LVEF, PR fraction, LV circumferential strain, RVESVi, and age at
surgical repair were the top five most informative baseline variables.

Discussion

This study proposed a machine learning pipeline to predict worsening
ventricular size and function in patients with rTOF using baseline

A B

Figure 2 Distinguishing patients with major vs. no deterioration. Visualization of (A) the linear decision boundary between major and no deterior-
ation, and (B) a contour plot of the probability (%) of experiencing major deterioration as a function of the two most predictive baseline variables
(LVEF and PR fraction). LVEF, left ventricular ejection fraction; PR, pulmonary regurgitation.

.................................................................................................

Table 4 Best combinations of baseline variables for
each experimental scenario

Scenario Best combination of variables Mean AUC

(standard

deviation)

1 LVEF#, PR#, HR", Inter-dyss#, RV-Ell",
RVEF#

0.87 ± 0.07

2 LVEF#, LV-Ecc", RVESVi#, transannular

patch#, infundibular resection#,
commissurotomy#

0.82 ± 0.06

3 LVEF#, PR#, LV-Ell", RV-Ell", Sexa 0.77 ± 0.07

4 LVEF, PR, LV-Ecc, LV-Ell, RV-EDV,

inter-dyss, QRS, age at surgical repair,

age at first CMR, transannular patch

0.70 ± 0.06

Scenario 1 indicates major vs. no deterioration; Scenario 2 indicates major or
minor vs. no deterioration; Scenario 3 indicates major vs. minor or no deterior-
ation; Scenario 4 indicates major vs. minor vs. no deterioration. An ‘up’ arrow in-
dicates that a higher value (or the presence of the variable if categorical) is
favourable for predicting no deterioration and vice versa.
CMR, cardiac magnetic resonance; HR, heart rate; Inter-dyss, interventricular dys-
synchrony; LV-Ecc, left ventricular circumferential strain; LVEF, left ventricular
ejection fraction; LV-Ell, left ventricular longitudinal strain; PR, pulmonary regurgi-
tation; RV-EDV, right ventricular end-diastolic volume; RVEF, right ventricular
ejection fraction; RV-Ell, right ventricular longitudinal strain; RVESVi, indexed
right ventricular end-systolic volume.
aFemale is favourable relative to male.

734 M.D. Samad et al.
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..clinical and CMR-derived variables. Our major findings included: (i)
baseline clinical parameters and measures of cardiac function and
mechanics from CMR can be used to predict deterioration in ven-
tricular size and function using machine learning (AUCs of 0.70–0.87
across four categorization scenarios); (ii) LVEF, PR fraction, LV cir-
cumferential strain, RVESVi, and age at surgical repair were the five
most informative baseline variables; and (iii) the machine learning
models provided decision boundaries and probability estimates as a
function of baseline variables that can be used to determine the likeli-
hood of deterioration for a new patient. We believe these findings
serve as an important proof-of-concept for one of the first applica-
tions of machine learning in congenital heart disease and provide new
insights with relevance to clinical decision-making.

Deterioration in ventricular size and
function in patients with rTOF
Patients with rTOF may experience progressive ventricular dilation
and dysfunction, which are independent predictors of adverse events
such as sudden cardiac death and sustained ventricular tachycar-
dia.4,5,22 Therefore, identifying patients at risk for ventricular deteri-
oration may be useful for guiding the frequency of clinical follow-up
as well as the timing of interventions. While several studies have
explored potential predictors of deterioration, such as clinical

history, ECG, and CMR parameters, none have resulted in robust
and accurate prediction models.7,23,24 These studies relied on trad-
itional statistics such as regression and subgroup analyses.

Success of machine learning compared
to traditional models
There is mounting evidence that traditional statistical modelling, which
is common in cardiology,25–27 is not as useful as machine learning for
patient risk stratification.11,16 Pertinent examples include the previous
multivariate regression models that were unable to predict deterior-
ation in patients with rTOF.7,10 In addition, while subgroup analyses
may identify variables that are significantly different between patient
groups (e.g. major vs. no deterioration), these findings do not necessar-
ily help to predict outcomes for individual patients.28 Finally, statistical
analyses that ignore interactions among variables may miss useful vari-
able interactions.

In contrast, our proposed machine learning pipeline predicted de-
terioration in ventricular size and function by uncovering the predictive
ability of baseline variables that was previously lost to traditional tech-
niques. For example, Jing et al. reported no difference in PR fraction be-
tween the major and no deterioration groups.10 However, our results
demonstrated that combining PR fraction with LVEF substantially
increased the model AUC from 0.77 to 0.84 (Scenario 1, Figure 2).

Scenario 1: Major vs No Deterioration

Scenario 2: Major or Minor vs No Deterioration

Scenario 3: Major vs Minor or No Deterioration

Scenario 4: Major vs Minor vs No Deterioration
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Figure 3 Baseline variable importance for each scenario. Prevalence of individual baseline variables in the top 100 combinations for each scenario.
CMR, cardiac magnetic resonance; HR, heart rate; Inter-Dyss, interventricular dyssynchrony; LV-Dyss, left ventricular dyssynchrony; LV-Ecc, left ven-
tricular circumferential strain; LVEF, left ventricular ejection fraction; LV-Ell, left ventricular longitudinal strain; PR, pulmonary regurgitation; RV-Dyss,
right ventricular dyssynchrony; RV-Ecc, right ventricular circumferential strain; RVEDVi, indexed right ventricular end-diastolic volume; RVEF, right
ventricular ejection fraction; RV-Ell, right ventricular longitudinal strain; RVESVi, indexed right ventricular end-systolic volume; RVMASSi, right ven-
tricular mass index.
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Furthermore, PR fraction was a component of the six-variable combin-
ation that yielded the best AUC (0.87). The surgical repair of TOF
often results in PR, which can eventually lead to deterioration in ven-
tricular size and function.(3,29 Therefore, it is significant that a machine
learning-based model identified the predictive value of PR fraction
where prior statistical models were unsuccessful.

In addition, our study investigated a more comprehensive risk
stratification by incorporating the group with minor deterioration
(Scenarios 2–4), which is necessary for any future clinical applications.
The prediction performance for Scenario 2 (major or minor deteri-
oration vs. none; AUC = 0.82), when compared to Scenario 3 (major
deterioration vs. minor or none; AUC = 0.77), suggests that the
minor deterioration group is more similar to the major deterioration
group. However, the lower AUC achieved for the three-group classi-
fication (AUC = 0.70) is indicative of substantial overlap among the
three groups. Further research is needed to determine the clinical sig-
nificance of the minor deterioration group with respect to long-term
patient outcomes. Depending on the clinical need for distinguishing
the minor group from either or both of the other groups, any of
Scenarios 2–4 may be clinically useful.

Identification of the most useful
baseline variables
Baseline LVEF was invariably the best individual predictor of deterior-
ation. There was an inverse relationship between LVEF and deterior-
ation such that higher values of LVEF indicated a greater likelihood of
deterioration. This same finding was present in two previous studies
of patients with rTOF.7,10 The reason for this inverse relationship is
unknown. However, studies in other populations such as asymptom-
atic volunteers in the MESA study,30 patients with heart failure,31,32

and patients admitted to the intensive care unit33 have demonstrated
that increased LVEF (e.g. >65%) can be associated with poor out-
comes. RVEF demonstrated a similar inverse relationship with deteri-
oration in Scenario 1; however, this may be due to the presence of
PR, which was the second most important variable for predicting de-
terioration. Higher PR fractions, which may be associated with ele-
vated RVEF in compensated ventricles, were indicative of a greater
likelihood for subsequent deterioration.

Other high-ranking variables (Figure 4) included LV circumferential
strain, RVESVi, and age at surgical repair. Many of these variables
were individually identified by prior studies. For example, Orwat et al.
reported that LV circumferential strain was the strongest predictor
of mortality among other cardiac strain measures in patients with
rTOF.27 In addition, RVESVi has been shown to be an important de-
terminant of RV remodelling.34,35 Gatzoulis et al.36 found that older
age at surgical repair was a strong predictor of late mortality. Similar
to PR fraction, both the differences in baseline RVESVi and age at sur-
gical repair were previously reported as insignificant between patients
with major and no deterioration on subgroup analysis.10 On the
other hand, RVEF and RVEDVi were two of the five variables that did
reach significance in the previous subgroup analysis.10 However,
these variables were not in the top 10 of variable rank in the present
study (RVEF: rank 11, RVEDVi: rank 15), which demonstrates that sig-
nificant differences between subgroups do not necessarily correlate
with a variable’s utility to predict outcomes.

Implications
Several features of our machine learning pipeline have implications
for future clinical applications and prediction studies. First, linear-
SVM provides intuitive decision boundaries for binary classifications
of new patients (Figure 2). Even with higher numbers of variables, the
directionality is readily observed from the coefficients of the decision
boundary formula. Furthermore, the categorical decisions are easily
converted to probabilities, which could be used to guide manage-
ment decisions. Similar to predicting deterioration in patients with
rTOF, the proposed pipeline could be applied in other clinical scen-
arios to predict future status by baseline variables. Importantly, our
methodology to rank order the importance of clinical variables in
predicting outcomes could be applied in many other scenarios to gar-
ner new insights into disease pathophysiology.

Limitations
The proposed exhaustive variable search may not be computationally
efficient with a large number of baseline variables. Hence, a limited
number of variables were selected based on previous knowledge
about relevant predictors of adverse outcomes in rTOF to avoid
overfitting and impractical computational cost. However, exhaustive

Mean Prevalence in Top 100 
Variable Combinations (%)
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Figure 4 Rank-ordering of the individual baseline variables.
Ranking of individual baseline variables based on their mean preva-
lence in top 100 variable combinations across the four experimental
scenarios. CMR, cardiac magnetic resonance; HR, heart rate; Inter-
Dyss, interventricular dyssynchrony; LV-Dyss, left ventricular dys-
synchrony; LV-Ecc, left ventricular circumferential strain; LVEF, left
ventricular ejection fraction; LV-Ell, left ventricular longitudinal
strain; PR, pulmonary regurgitation; RV-Dyss, right ventricular dys-
synchrony; RV-Ecc, right ventricular circumferential strain; RVEDVi,
indexed right ventricular end-diastolic volume; RVEF, right ventricu-
lar ejection fraction; RV-Ell, right ventricular longitudinal strain;
RVESVi, indexed right ventricular end-systolic volume; RVMASSi,
right ventricular mass index.
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search should be considered when feasible to guarantee identification
of optimal combinations of baseline variables, as opposed to existing
variable selection algorithms such as forward sequential search and
information gain.37

The outcome variables used in the current study were based on
changes in predefined CMR-derived parameters (RVEDVi, LVEF, and
RVEF), which reflect surrogates of progressive remodelling and dys-
function. These outcome variables are different from conventional
clinical outcomes such as death; however, multiple previous papers
have suggested that these intermediate endpoints of progressive
remodelling and dysfunction ultimately relate to adverse clinical out-
comes.4,5,22 Future studies should investigate whether interventions
targeted based on machine learning techniques to predict these inter-
mediate endpoints can ultimately improve clinical outcomes.

We performed five-fold cross-validation as an internal validation
to avoid bias in the evaluation of the models. The resulting mean
AUCs were well above random chance for all four scenarios, which
clearly showed previously unknown predictive ability of the baseline
variables. However, we used data collected from a single institution,
which can miss variations in measurements across institutions. An
external validation from a truly independent cohort would be useful
to generalize the results. The validation results could be further
improved with additional training samples. However, large data sets
in patients with repaired TOF linked to longitudinal follow-up
data are rare.

The sample size of 153 patients is generally small for machine
learning, which motivated some aspects of our pipeline. Linear-SVMs
were chosen not only for their ease of interpretation, but also for
their resistance to overfitting and paucity of hyperparameters, which
typically require large training sets to adequately tune. However,
similar sample sizes are common in machine learning studies within
the field of cardiology, [n = 139 (15); n = 94 (13)] and our sample size
is relatively large for the field of congenital heart disease.

Due to its lower frame rate compared to echocardiography, MRI
may not be optimal for assessing dyssynchrony. However, we ad-
dressed this problem by upsampling the segmental strain curves, and
using cross-correlational analysis to compare each segmental curve
to a patient-specific reference curve, to find a time shift (delay) that
best matches the pattern of the segmental strain curve to the refer-
ence curve. We have documented good inter-test reproducibility of
this method previously, and shown that patients with repaired TOF
have higher dyssynchrony compared to healthy controls.9 Moreover,
MRI is able to assess all three types of dyssynchrony: inter-
ventricular, right intra-ventricular, and left intra-ventricular,
whereas echocardiography cannot reproducibly quantify all of
these measures.

Conclusions

For the prediction of ventricular deterioration in patients with rTOF,
a machine learning pipeline uncovered the utility of baseline variables
that was previously lost to traditional statistical methods. Left ven-
tricular ejection fraction, PR fraction, feature tracking-derived left
ventricular circumferential strain, right ventricular end-systolic vol-
ume index, and age at surgical repair were the five most important
baseline variables for predicting deterioration over a median duration

of 2.7 years. The proposed pipeline may be useful for identifying pa-
tients with rTOF who are at risk for deterioration and for planning
appropriate interventions. While data from a new and larger patient
population are needed for external validation, the proposed pipeline
could be applied to any clinical scenario where it is desirable to pre-
dict future clinical status using baseline variables.
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