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Abstract

It has been known for a long time that thyroid hormones have prominent effects on hepatic fatty 

acid and cholesterol synthesis and metabolism. Indeed, hypothyroidism has been associated with 

increased serum levels of triglycerides and cholesterol as well as non-alcoholic fatty liver disease 

(NAFLD). Advances in areas such as cell imaging, autophagy and metabolomics have generated a 

more detailed and comprehensive picture of thyroid-hormone-mediated regulation of hepatic lipid 

metabolism at the molecular level. In this Review, we describe and summarize the key features of 

direct thyroid hormone regulation of lipogenesis, fatty acid β-oxidation, cholesterol synthesis and 

the reverse cholesterol transport pathway in normal and altered thyroid hormone states. Thyroid 

hormone mediates these effects at the transcriptional and post-translational levels and via 

autophagy. Given these potentially beneficial effects on lipid metabolism, it is possible that thyroid 

hormone analogues and/or mimetics might be useful for the treatment of metabolic diseases 

involving the liver, such as hypercholesterolaemia and NAFLD.

In mammals, thyroid hormones are critical regulators of metabolism, development and 

growth. Many of the metabolic activities regulated by thyroid hormones are related to the 

anabolism and/or catabolism of macromolecules that affect energy homeostasis during 

different nutritional conditions, such as proteins, lipids and carbohydrates. Indeed, it has 

long been appreciated that the thyroid hormones T3 and T4 have direct effects on both 

cholesterol and fatty acid synthesis and metabolism. Increased levels of LDL cholesterol and 

HDL cholesterol in the serum can be associated with hypothyroidism, whereas their levels 

are decreased by thyroid hormone administration and in hyperthyroidism1. Similarly, serum 

levels of triglycerides can be increased in hypothyroidism, and the reverse is observed in 

hyperthyroidism1. High-dose T3 has previously been used to promote weight loss and treat 

hypercholesterolaemia in patients with obesity2. Although beneficial effects were reported, 
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serious cardiac problems and loss of lean body mass limited any further development of T3 

as a therapy2.

Most of the effects of thyroid hormones on hepatic lipid homeostasis are controlled by 

transcriptional regulation of target genes that are involved in these homeostasis pathways. 

However, many of the enzymes, transporters, carrier proteins and cell-signalling proteins 

involved in hepatic lipid homeostasis can also be regulated by metabolite concentration, 

cellular energy status and post-translational modifications that occur downstream of the 

transcriptional effects of thyroid hormone3,4. Although much is known about lipid synthesis 

and metabolism at the biochemical and physiological levels, examination of cell-signalling 

and metabolomic changes in conjunction with transcriptional effects by thyroid hormones 

has provided a more detailed understanding of the actions of thyroid hormones on lipids in 

the liver.

In this Review, we examine the direct thyroid-hormone-mediated effects on hepatic 

lipogenesis and lipid metabolism, regulation of cholesterol biosynthesis and clearance and 

thyroid hormone receptor (THR)-independent effects of thyroid hormones on hepatic lipid 

metabolism as well as the potential application of thyroid hormones and/or thyroid hormone 

analogues for the treatment of hypercholesterolaemia and non-alcoholic fatty liver disease 

(NAFLD). Although we primarily focus on the direct effects of thyroid hormone on hepatic 

lipid metabolism, there is evidence for indirect regulation of hepatic lipid metabolism by 

thyroid hormone via the central nervous system that might have a notable physiological 

role5,6.

Hepatic lipid metabolism

Thyroid hormone receptors in hepatic lipid metabolism

The THRs are members of the nuclear hormone receptor family and function as ligand-

dependent transcription factors7. There are two THR genes (THRA and THRB) that encode 

two isoforms, α (THRα) and β (THRβ), respectively. Both isoforms are expressed in most 

tissues; however, THRβ is the major form expressed in the liver8,9, whereas THRα is highly 

expressed in heart and bone. THRs are predominantly nuclear owing to nucleo–cytoplasmic 

shuttling, although a small residual pool of THRs exists in the cytoplasm10. THRs can bind 

to the thyroid hormone response elements (TREs) of their target genes in the absence of 

ligand and recruit a co-repressor complex with histone deacetylase activity to repress the 

transcription of positively regulated genes. Upon ligand binding, co-repressors are released 

owing to conformational changes in the THR, and a co-activator complex with histone 

acetyltransferase activity is recruited to the target gene promoter to activate transcription. 

Additionally, thyroid hormones can regulate transcription by altering the function of other 

transcription factors11–13 (such as activation of forkhead box protein O1 (FOXO1) by 

thyroid hormones3,4), modulating cell-signalling cascades through protein–protein 

interactions (such as the regulation of phosphoinositide 3-kinase (PI3K) by THRβ14) or 

binding to proteins other than THRs (such as binding to αvβ3 integrin)15.

The role of THRβ in hepatic lipid metabolism was first established in studies of mice with a 

dominant negative mutation in Thrb (ThrbPV/PV). These mice develop enlarged livers with 
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hepatic steatosis by 4–5 months of age16. The ThrbPV/PV mouse phenotype is attributed to 

increased peroxisome proliferator-activated receptor-γ (PPARγ) signalling and decreased 

THR-mediated fatty acid β-oxidation, which leads to lipid accumulation in the liver16. 

Consistent with these findings, thyroid hormone and THRβ-specific ligands also reduce 

hepatic triglyceride content17,18. By contrast, mice expressing the dominant negative 

mutation in the THRα gene locus, ThraPV/PV, and THRα-null mice, all had reduced liver 

weights and decreased lipid accumulation16,19 owing to decreased lipogenesis, suggesting 

that THRα is involved in that process. Surprisingly, unlike the ThraPV/PV-mutant mice, male 

mice with a dominant negative Pro398His mutation introduced into the Thra gene locus 

exhibit hepatic steatosis20. This increase in steatosis is due to interference in PPARα 
binding to its promoter response element by the Pro398His mutant receptor, leading to 

decreased PPARα-mediated transcription of genes encoding proteins involved in fatty acid 

oxidation20.

The precise mechanism (or mechanisms) that underlies the differences in hepatic lipid 

metabolism between ThraPV/PV and ThrbPV/PV and the various THRα mutant and knockout 

mice is not known; however, differential recruitment of co-repressors could have a 

contributing role. Notably, mice with double and single knockouts of the nuclear co-

repressors silencing mediator of retinoid acid and THR (SMRT; also known as NCOR2) and 

nuclear receptor co-repressor (NCOR1) show notable changes in hepatic lipid synthesis and 

storage, especially when NCOR1 is knocked out21. In addition to THR, other important 

regulators of intracellular thyroid hormone levels (such as deiodinases22) and thyroid 

hormone transporters23 can also regulate hepatic lipid metabolism.

Thyroid hormones and hepatic fatty acid uptake

Thyroid hormones stimulate lipolysis from fat stores in white adipose tissue and from 

dietary fat sources to generate circulating free fatty acids (FFAs), which are the major source 

of lipids for the liver (Fig. 1). FFAs enter hepatocytes via protein transporters such as fatty 

acid transporter proteins (FATPs), liver fatty acid binding proteins (L-FABPs) and fatty acid 

translocase (FAT; also known as CD36)24. A study from 2009 suggests that fatty acid 

transporters are regulated by THRs25. Radiolabelled fatty acid infusion studies have shown 

that fatty acid uptake from triglyceride-rich lipoproteins is increased in the presence of 

thyroid hormones in a tissue-specific manner as hyperthyroidism increased triglyceride-

derived fatty acid uptake in oxidative tissues such as liver and muscle, whereas 

hypothyroidism increased triglyceride-derived fatty acid uptake in white adipose tissue and 

decreased its uptake in liver25. In addition, hepatic FAT and FABP expression levels are 

suppressed in animal models of postnatal hypothyroidism26,27. Although these studies 

indicate that thyroid hormones might be important in regulating FFA uptake in the liver, the 

precise mechanisms by which thyroid hormones alter FFA uptake are currently unclear.

Hepatic lipogenesis and triacylglycerol assembly

Triglyceride production can come from exogenous FFAs in the circulation or intracellular 

FFAs generated by glycolysis and lipogenesis from glucose supplied by excess dietary 

intake. The process of converting glucose to fatty acids, termed ‘de novo lipogenesis’, is 

tightly regulated by hormones and nutritional status. De novo lipogenesis and subsequent 
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triacylglycerol synthesis involve a number of key enzymatic processes, including elongation 

and desaturation of fatty acid precursors, production of fatty acids, triacylglycerol synthesis 

and VLDL assembly28. Thyroid hormones are a well-known inducer of hepatic de novo 

lipogenesis, as they stimulate the transcription of several key genes involved in lipogenesis 

in rodents such as fatty acid synthase (Fasn), acetyl-CoA carboxylase alpha (Acc1; also 

known as Acaca), malic enzyme (Me) and thyroid hormone-responsive Spot14 homologue 

(Thrsp; also known as Spot14) (Fig. 1). After their synthesis, FFAs are typically esterified to 

triacylglycerol, after which they can be packaged into VLDL, stored as fat droplets or used 

to make and/or repair cellular constituents.

Thyroid hormones regulate the expression of many of the genes involved in lipogenesis by 

binding to their specific THR29–32. However, in addition to regulating lipogenic gene 

expression directly, thyroid hormones also indirectly control the transcriptional regulation of 

hepatic lipogenesis as a result of their effects on the expression and activities of other 

transcription factors, such as sterol regulatory element-binding protein 1C (SREBP1C), liver 

X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP), which 

all have crucial roles in hepatic lipogenesis33. Thyroid hormones directly induce the gene 

expression of the LXRs34 and ChREBP35 in hepatic cells via the recruitment of THRs to 

the promoters of these genes.

The mechanism for the regulation of SREBP1C by thyroid hormone in humans is not 

known. In mice, one study reported that Srebp1c transcription was negatively regulated by 

thyroid hormone via a putative negative thyroid hormone response element (nTRE)36, but 

another group has shown that Srebp1c transcription is also upregulated by non-genomic 

thyroid hormone signalling37. Although thyroid hormone increases the expression of genes 

involved in de novo lipogenesis, it does not cause a net increase in mouse hepatic levels of 

triacylglycerol38. The major reason for this lack of increase is due to upregulated 

metabolism of FFAs by thyroid hormones; however, downregulation of the key desaturase 

enzyme stearoyl-CoA desaturase 1 (SCD1) by thyroid hormones as observed in humans 

might also contribute39. The mechanism by which thyroid hormones downregulate SCD1 in 

humans is not yet understood, but it seems to occur in a TRE-independent manner39. 

Similarly, thyroid hormones decrease the activity of glycerol-3-phosphate acyltransferase 3 

(GPAT3)40, which is needed for triacylglycerol synthesis in rat hepatocytes.

Thyroid hormones also reduce apolipoprotein B100 (Apo B100) levels in the livers of rats, 

which decreases the production of VLDL and LDL41. Indeed, in humans, serum levels of 

triglycerides are normal or slightly decreased in hyperthyroidism, whereas they are normal 

or increased in hypothyroidism1,42. Thyroid hormones also modulate the relative amounts 

of circulating lipoproteins as highlighted by the fact that levels of HDL are increased in 

hypothyroidism owing to the decreased activity of cholesteryl ester transfer protein (CETP) 

and hepatic lipase1.

In addition to their effects on the neutral lipids and triacylglycerol, thyroid hormones seem 

to decrease the biosynthesis of hepatic sphingolipid and phospholipid species. In 2005, a 

report showed that thyroid hormones increase de novo sphingolipid synthesis in the livers of 

rats43. However, using metabolomics analyses, we found that the administration of thyroid 
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hormones prevents the production of hepatic sphingolipids in rats that are fed a high-fat 

diet44. Furthermore, thyroid hormones can alter the intracellular concentration of several 

phospholipid species, such as phosphatidylcholine, phosphatidylserine and cardiolipin45.

Lipolysis and hepatic fat oxidation

Although thyroid hormones stimulate lipogenesis, there is a net reduction in total hepatic 

triglycerides during hyperthyroidism46 due to fatty acid metabolism occurring at a higher 

rate than fatty acid synthesis. Mobilization, degradation and β-oxidation of fatty acids by 

thyroid hormones all contribute to the increased overall rate of fatty acid metabolism (Fig. 

1). In particular, thyroid hormones increase the activity of hepatic lipases, lipophagy and 

mitochondrial oxidation of fatty acids, which are the primary processes used by the liver to 

reduce steatosis.

The catabolic actions of thyroid hormone on hepatic lipids are primarily mediated by the 

mobilization of FFAs from stored triacylglycerol and their subsequent β-oxidation. The 

release of FFAs from triacylglycerol stores in hepatocytes is mediated by the enzymatic 

activities of cytosolic lipases47. The two major cytosolic lipases in the liver are hepatic 

lipase and adipose triglyceride lipase (ATGL; also known as PNPLA2). The expression and 

activity of hepatic lipase are sensitive to thyroid hormone status48. In both animals and 

humans, hypothyroidism is associated with a decline in hepatic lipase activity, which can be 

recovered with thyroid hormone replacement therapy49 (Fig. 1). The regulation of ATGL 

expression and activity by thyroid hormones in hepatic cells is less clear. However, a 2015 

study did suggest that thyroid hormones increase the recruitment of ATGL to lipid droplets 

to facilitate lipolysis50. Zinc-α2-glycoprotein, which is encoded by AZGP1, stimulates 

lipolysis in humans and induces a reduction in body fat in mice51. Interestingly, thyroid 

hormones increase the expression of zinc-α2-glycoprotein in hepatic cells, which might also 

contribute to the lipolytic action of thyroid hormones52.

Regulation of lipophagy by thyroid hormones

Lysosomal acid lipase/cholesteryl ester hydrolase (LAL) is another critical regulator of 

hepatic triacylglycerol lipolysis in addition to the cytosolic lipases53. The delivery of 

triacylglycerols to lysosomes is mediated by an autophagic process known as 

lipophagy54,55. This specific type of autophagy involves the engulfment of triacylglycerol 

stored in the fat droplets by autophagosomes, followed by autophagosomal–lysosomal 

fusion that delivers the triacylglycerols to lysosomes for degradation and hydrolysis into 

FFAs54,55. Thyroid hormones increase the number of lipid-laden autophagosomes and 

lysosomes in both human hepatic cells and mouse liver in a THR-dependent manner56 (Fig. 

1). Moreover, inhibition of autophagy and/or lipophagy in vivo markedly reduces thyroid-

hormone-induced acylcarnitine flux and ketogenesis, which is the final step in β-

oxidation56. Although the precise mechanism for induction of lipophagy by thyroid 

hormones is not clear, the induction of β-trophin (C19orf80; also known as ANGPTL8) by 

thyroid hormones might be a necessary priming step for the recruitment of autophagic 

machinery to triacylglycerols stored in fat droplets57.
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Observations from our group suggest that thyroid hormones also activate lysosomal 

biogenesis by inhibiting mammalian target of rapamycin complex 1 (MTORC1) activity and 

activating the transcriptional activity of transcription factor EB (TFEB; R.A.S., B.K.S. and 

P.M.Y., unpublished observations), which controls the expression of many genes that encode 

proteins involved in autophagy and lysosomal genes and is known to regulate lipophagy58. 

Additionally, thyroid hormones activate NAD-dependent protein deacetylase sirtuin 1 

(SIRT1) to decrease FOXO1 acetylation and phosphorylation4. These post-translational 

modifications increase the transcriptional activity and nuclear localization of FOXO1, 

which, in turn, induces the expression of several genes associated with autophagy59.

Effects of thyroid hormones on peroxisomal fat oxidation

A primary function of peroxisomal β-oxidation is to shorten very long-chain fatty acids (>16 

carbon atoms) so that they can be further metabolized within mitochondria. Researchers 

have known for decades that thyroid hormones regulate both the number and expression 

levels of the peroxisomal enzymes60–66. However, the mechanisms by which thyroid 

hormones regulate peroxisome synthesis and function are currently unknown.

Regulation of mitochondrial fatty acid oxidation by thyroid hormones

Mitochondria are the major sites for fatty acid metabolism and are classic targets for thyroid 

hormone action in the liver67. Thyroid hormones regulate mitochondrial biogenesis and 

function in hepatocytes via coordinated signals emanating from both the nuclear and 

mitochondrial genome68. The nuclear regulation of mitochondrial content by thyroid 

hormones is primarily due to regulation of the PPARγ co-activator 1α (PGC1α)–nuclear 

respiratory factor 1 (NRF1)–transcription factor A, mitochondrial (mtTFA) axis68. Thyroid 

hormones are known to increase protein levels of PGC1α, which acts as a co-transcriptional 

regulation factor that induces mitochondrial biogenesis by activating NRF1 to promote the 

expression of mtTFA68. In addition to the PGC1α–NRF1–mtTFA axis, THRs have been 

reported to be localized within mitochondria and to regulate transcription from the 

mitochondrial genome69. The rate-limiting enzyme for mitochondrial β-oxidation is 

carnitine O-palmitoyltransferase 1, liver isoform (CPT1-Lα), which is transcriptionally 

stimulated by thyroid hormones in hepatocytes70 (Fig. 1) and inhibited by malonyl-CoA 

that is generated by acetyl-CoA carboxylase during fatty acid synthesis. In 2013, thyroid-

hormone-mediated activation of SIRT1 activity was shown to induce PGC1α activity and 

regulate CPT1A mRNA expression71. Thyroid hormones also regulate CPT1A gene 

expression by increasing PPARα signalling in the liver12. Notably, PPARα is required for 

thyroid-hormone-mediated induction of fibroblast growth factor 21 (FGF21), a protein that 

regulates hepatic fat catabolism72. Thyroid hormones increase the expression of other 

mitochondrial enzymes needed for fatty acid β-oxidation, including medium-chain acyl-CoA 

dehydrogenase (MCAD)73, pyruvate dehydrogenase kinase isoform 4 (PDK4)74 and 

mitochondrial uncoupling protein 2 (UCP2)75. Moreover, data from our group suggest that 

oestrogen-related receptor-α (ERRα; also known as ESRRA) also regulates thyroid-

hormone-induced expression of CPT1-L and mitochondrial β-oxidation via PGC1α (R.A.S., 

B.K.S. and P.M.Y., unpublished observations).
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In addition to stimulating mitochondrial activity and fatty acid β-oxidation, thyroid 

hormones couple lipophagy with the removal of mitochondria that have been damaged by 

reactive oxygen species (ROS) generated from an increase in oxidative phosphorylation. In 

2015, we showed that thyroid hormones maintain the quality of hepatic mitochondria by 

autophagic removal of mitochondria, known as mitophagy76. ROS generated by thyroid-

hormone-mediated oxidative phosphorylation initiate a Ca2+–calcium/calmodulin-dependent 

protein kinase kinase 2 (CAMKK2)–5′-AMP-activated protein kinase (AMPK) signalling 

cascade. The activation of this signalling cascade results in the activation of serine/

threonine-protein kinase ULK1 (a key mitophagic protein), which translocates into the 

mitochondria. ULK1 recruits autophagy-related proteins (that is, ATG proteins), which are 

required for nascent autophagosome formation, and initiates mitochondrial clearance76. 

Additionally, hepatic mitophagy seems to be coupled with mitochondrial biogenesis as both 

processes are induced by thyroid hormones76,77. This tight association between 

mitochondrial activity and mitochondrial turnover ensures the maintenance of a healthy 

mitochondrial pool that can sustain increased lipid handling induced by thyroid hormones.

Cholesterol biosynthesis and clearance

Thyroid hormones help maintain the basal serum levels of cholesterol that are needed to 

meet the body’s normal requirements for cellular synthesis and turnover (Fig. 2). Thyroid 

hormones regulate serum levels of cholesterol by stimulating cholesterol biosynthesis, 

export (primarily as VLDL and LDL), reverse transport from peripheral tissues, hepatic 

reuptake via LDL receptors (LDLRs) and conversion into bile acids in the liver78. In rats, 

thyroid hormones induce the expression of hydroxymethylglutaryl-CoA reductase (Hmgcr) 
and farnesyl pyrophosphate synthetase (Fdps) to promote cholesterol synthesis in the 

liver79. Thyroid hormones also strongly induce the gene and protein expression of Apo A1 

and scavenger receptor class B member 1 (SRB1), which increases cholesterol efflux from 

peripheral tissues to HDL in the reverse cholesterol transport pathway80,81. Furthermore, 

thyroid hormones can increase HDL metabolism by stimulating CETP activity82.

In rats, the major mechanism by which thyroid hormones decrease serum levels of 

cholesterol is through the induction of hepatic LDLRs to increase cholesterol clearance81. 

LDLR is also regulated by SREBP2, which itself is transcriptionally regulated by thyroid 

hormones83 in rodents and humans. Furthermore, thyroid hormones can increase the 

transcription of both mouse and human LDLR-related protein 1 (LRP1), a lipoprotein 

involved in the removal of chylomicron remnants and VLDL84. Within the liver, thyroid 

hormones also increase the expression of rat cholesterol 7α-hydroxylase (CYP7A1), the 

rate-limiting enzyme that converts cholesterol into bile acids in the reverse cholesterol 

transport pathway, and decrease expression of Apo B protein, the major apolipoprotein in 

LDL, to reduce serum levels of LDL cholesterol even further85,86. In addition, thyroid 

hormones can promote the excretion of bile acids in the liver and intestines, which are the 

last steps of the reverse cholesterol transport pathway, by stimulating mouse ATP-binding 

cassette subfamily G member (Abcg5/Abcg8) complex gene transcription, directly and 

independently from its effects on LXRs87.
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Finally, in addition to the transcriptional regulation of genes involved in cholesterol 

synthesis, reverse cholesterol transport and bile secretion88, thyroid hormones might use 

microRNAs (miRNAs) to regulate serum levels of cholesterol. Thus, thyroid hormones 

induce expression of human miR181d, which decreases the expression of caudal-type 

homeobox protein 2 (CDX2), a transcription factor that activates sterol O-acyltransferase 2 

(SOAT2). SOAT2 is critical for the conversion of cholesterol to cholesterol esters89, the 

preferred form of cholesterol within LDL. This example of thyroid hormones using miRNAs 

demonstrates that thyroid hormones might use a non-TRE-mediated mechanism to lower 

serum levels of cholesterol.

Non-transcriptional effects

Previously, research suggested that the only mode of action of thyroid hormones was the 

transcriptional regulation of target genes via THRs binding to TREs and the recruitment of 

co-activators to increase RNA polymerase binding to the basal transcriptional protein 

complex. Surprisingly, T3 and T4 exert biological actions that do not require THRs binding 

to DNA or the absence of THRs90,91. Thus, T3 activates PI3K–RACα serine/threonine-

protein kinase (AKT) signalling via a non-genomic mechanism92. This signalling 

mechanism has been implicated in the regulation of FASN expression by T3. The inhibition 

of T3-mediated induction of FASN expression by PI3K and extracellular-signal-regulated 

kinase 1 (ERK1) inhibitors further suggests that there are other non-transcriptional 

mechanisms that control hepatic lipogenesis by thyroid hormones32. Thyroid hormones can 

also regulate hepatic lipid metabolism by activating the cAMP–protein kinase A (PKA) and 

Ca2+–AMPK pathways93–95.

In addition to T3 and T4, the thyroid hormone derivative 3,5-diiodothyronine has been 

extensively studied for its ability to regulate hepatic lipid metabolism via non-THR-

mediated signalling96. In vitro and in vivo studies show that 3,5-diiodothyronine increases 

fatty acid oxidation in hepatocytes and supresses the lipogenic pathways97–103. Notably, 

3,5-diiodothyronine directly activates SIRT1, which leads to the deacetylation of PGC1α 
and activation of its transcriptional activity in order to induce expression of the genes 

required for fatty acid oxidation104. 3,5-Diiodothyronine also modulates the activities and 

localization of hepatic lipases to increase lipid mobilization from fat droplets50. In addition, 

in a mouse model of familial hypercholesterolaemia, 3,5-diiodothyronine exerts beneficial 

effects on lipid metabolism by reducing serum levels of LDL cholesterol by an LDLR-

independent mechanism86. Thus far, there is no evidence to suggest that reverse T3 regulates 

transcription by nuclear THRs or has any non-transcriptional effects on metabolism and/or 

cell signalling.

TSH and hepatic lipid metabolism

Although hypothyroidism-associated increased hepatosteatosis is thought to result from a 

decrease in serum levels of thyroid hormone, studies have suggested that when the levels of 

TSH in the serum are high, TSH binds to TSH receptors in the liver to modulate lipid 

metabolism. In vivo rodent studies show that TSH receptors are expressed in hepatocytes 

and can be stimulated by TSH to induce hepatosteatosis via SREBP1C105. TSH also 
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supresses the synthesis of hepatic bile acid via an SREBP2–hepatocyte nuclear factor 4α 
(HNF4α)–CYP7A1 signalling pathway106. Moreover, TSH inhibits cholesterol synthesis by 

increasing AMPK-mediated phosphorylation of HMGCR to inhibit HMGCR activity107. 

Collectively, these findings support the notion that TSH itself can regulate both hepatic lipid 

and cholesterol homeostasis; however, in vivo studies confirming the direct action of TSH, 

independent from thyroid hormone, are very difficult to interpret because of the concomitant 

reduction in the serum levels of thyroid hormone.

Metabolic diseases of the liver

Thyroid hormone effects on hypercholesterolaemia

Since the early 1950s, we have known that thyroid hormone status in humans is inversely 

related to levels of LDL cholesterol108. Moreover, thyroid hormone supplementation leads 

to improvements in lipid and lipoprotein profiles in patients with hypothyroidism109. Early 

studies of levothyroxine and the thyroxine enantiomer dextrothyroxine showed promising 

effects in reducing serum levels of LDL cholesterol but were discontinued owing to serious 

adverse effects from cardiac, bone and muscle toxicity110–112. Nonetheless, promising 

results from these studies led to the development of liver-selective and THR isoform-specific 

thyroid hormone mimetics as potential lipid-lowering agents113,114. The first liver-selective 

thyromimetic, 3,3-dibromo-3′-pyridazinone-1-thyronine (L-94901), was described in 1986 

(REF. 115) (Table 1). This compound has cholesterol-lowering effects in hypothyroid rats 

without any deleterious effects on the heart115. Similarly, three other compounds 

(CGH-509A, CGS-23425 and T-0681) have shown efficacy in lowering serum levels of LDL 

cholesterol116,117; however, the development of these compounds for clinical use has not 

been actively pursued.

2,5-Diiodothyropropionic acid (DITPA) is the first THR-selective thyromimetic to display 

slightly higher affinity for THRβ than THRα. In a clinical trial that lasted for 6 months, 

DITPA therapy moderately decreased serum levels of total cholesterol and LDL cholesterol 

in patients with congestive heart failure118. GC-1 (also known as sobetirome) belongs to the 

first generation of more specific THRβ agonists and reduces serum levels of cholesterol and 

triglyceride in animal models of obesity119. In a phase I study, a 2-week treatment regimen 

of GC-1 reduced serum levels of LDL cholesterol by up to 41% in healthy participants120. 

Furthermore, GC-1 reduces the cholesterol content in plaques along the aortic arterial walls 

of apolipoprotein E (APOE)-deficient mice121. Another THRβ-specific thyromimetic, 

KB-141, decreases plasma levels of cholesterol in both rodents and primates, primarily 

through stimulation of the reverse cholesterol pathway122. The THRβ-specific analogue 

KB2115 (also known as eprotirome) has similar effects on plasma levels of cholesterol and 

is the first thyroid hormone mimetic designed for the treatment of dyslipidaemia that has 

reached phase III trials. When administered with statin therapy, eprotirome further decreases 

levels of LDL cholesterol, triglycerides and lipoproteins in patients with 

hypercholesterolaemia123. Another THRβ-specific thyromimetic, MGL-3196, has been 

developed for the treatment of hypercholesterolaemia and is currently in a phase I trial124.

Another class of thyromimetics are liver-selective prodrugs and/or their metabolites that bind 

to THR with a high affinity. Hepatic CYP450 enzymes activate some of these compounds, a 
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process that generates the active metabolites, which have a short half-life. Therefore, most of 

the thyromimetic actions of this class of thyromimetics are confined to the liver, and thus, 

adverse effects in non-hepatic tissues are minimized. One such drug, MB07811, is effective 

in reducing serum levels of LDL cholesterol and total cholesterol in rabbits, dogs and 

monkeys125. This drug is safe on the basis of a phase Ib clinical study126 and was carried 

forward for a phase II trial127.

Although the majority of patients with mild hypothyroidism have little or no derangements 

in serum levels of triglyceride and VLDL1, some patients with severe hypothyroidism 

exhibit hypertriglyceridaemia1. Similar to levothyroxine replacement in hypothyroidism, 

thyroid hormone mimetics can also decrease hypertriglyceridaemia, a known risk factor for 

atherosclerosis that is independent of levels of LDL cholesterol. Thus, GC-1 reduces serum 

levels of triglyceride by >50–60% in hypothyroid and normal mice128. Similarly, both 

KB-141 and MB07811 markedly reduce serum levels of triglycerides in normal and obese 

mice17,129.

Effects of thyroid hormones in NAFLD

NAFLD is a global epidemic with an incidence of 30% or more among adults in both 

developed and developing countries130. NAFLD is considered to be a hepatic manifestation 

of the metabolic syndrome and is closely associated with the development of other 

metabolic risk factors such as type 2 diabetes mellitus, hyperlipidaemia and coronary artery 

disease131. NAFLD represents a spectrum of liver diseases that includes excessive 

accumulation of lipids in the hepatocytes that is initially benign (hepatosteatosis) but 

progresses to a more advanced stage with inflammation (non-alcoholic steatohepatitis 

(NASH)) and culminates in fibrosis accompanied by increased inflammation, apoptosis and 

scarring of liver tissue (cirrhosis)132. Patients with NAFLD also have an increased risk of 

hepatocellular carcinoma133. The long-term complications of NAFLD have made it the 

most common cause for liver transplantation in the United States133.

Several epidemiological studies conducted in countries from around the world show an 

inverse relationship between serum levels of thyroid hormone and the incidence of 

NAFLD134,135. Similarly, Asian patients with NAFLD had significantly lower levels of 

serum-free T4 than control patients in a cross-sectional study of 878 elderly Chinese 

euthyroid participants (11.12 ± 1.43 pmol/l versus 11.58 ± 1.47 pmol/l; P < 0.001)136. In 

another report, subclinical hypothyroidism, even within the range of upper-normal TSH 

levels, was significantly associated with NAFLD in a concentration-dependent manner137. 

Overt hypothyroidism is even more closely associated with NAFLD and is a risk factor that 

is independent from other known metabolic risk factors, thus confirming the strong clinical 

relationship between these two conditions137,138.

In paediatric populations, children with obesity who have increased TSH levels have more 

severe hepatosteatosis than children with obesity but normal TSH139. Of note, two studies 

from 2014 and 2016 demonstrate that serum levels of free T3, free T4 and the free T3:free T4 

ratio are inversely associated and that TSH levels are associated with NAFLD in the general 

population, even among those within the reference range for euthyroid participants140,141. 

In addition to the deleterious effects of decreased serum levels of thyroid hormone on 
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hepatic lipid homeostasis, it is possible that increased TSH per se might promote the 

development of NAFLD by stimulating lipogenesis in the liver105. In addition, the 

intrahepatic thyroid hormone concentration and/or thyroid hormone signalling could be 

decreased in the livers of patients with NAFLD142–144. Although the cause (or causes) of 

such resistance to thyroid hormone action in the liver is not clear, studies from the past three 

decades suggest that intracellular fatty acids impair THR activity145. Additionally, the 

mRNA and protein expression levels of type 1 iodothyronine deiodinase (DIO1), the enzyme 

that converts T4 to T3 in the liver, are very sensitive to serum levels of thyroid hormone. 

Therefore, decreased expression and activity of DIO1 could lead to intrahepatic 

hypothyroidism by reducing the conversion of T4 to T3. Of note, decreased serum T3 and 

increased reverse T3 have been reported in patients with advanced NASH146.

Data from our groups suggest that reduced intrahepatic concentrations of thyroid hormone 

transporters, THR and nuclear co-activators of THR are other mechanisms that could 

potentially regulate thyroid hormone signalling in NAFLD (R.A.S., B.K.S. and P.M.Y., 

unpublished observations). Notably, exogenous thyroid hormones, thyroid hormone 

analogues and a novel glucagon–thyroid hormone hybrid molecule can all reduce 

hepatosteatosis in NAFLD147,148. Many factors exist that contribute to the progression of 

NAFLD, such as diet, endocrine status and gene polymorphisms; thus, decreased 

intrahepatic concentrations of thyroid hormones might be found in only a subset of patients 

with NAFLD. Further studies of serum markers for thyroid hormone action on hepatic 

function, such as sex hormone-binding globulin, ferritin, cholesterol or acylcarnitines, could 

provide potential tools to evaluate intrahepatic thyroid hormone status149,150.

Several preclinical studies of thyroid hormone analogues have demonstrated their efficacy in 

reducing lipid accumulation in animal models of NAFLD96 (Table 1). GC-1 is a synthetic 

thyroid hormone analogue that preferentially binds THRβ1 in an isoform-specific manner 

and has the same affinity for THRβ1 as T3. Similar to T3, GC-1 prevents and reverses 

hepatosteatosis in rats fed a diet that induces NASH148. Furthermore, GC-1 lowers liver 

weight, the liver weight:body weight ratio and serum levels of triglycerides in these same 

animals. In addition to decreasing hepatic lipid accumulation, GC-1 also decreases 

lipoperoxidation and reduces liver injury, as the increases in serum levels of aspartate 

transaminase (AST) and alanine transaminase (ALT) fall after GC-1 treatment148. These 

findings suggest that GC-1 is an excellent thyromimetic for the treatment of NAFLD 

provided it has the requisite safety profile.

MB07811 is an oral THRβ-specific agonist that targets the liver to reduce hepatic steatosis 

in rats and mice17. MB07811 reduces hepatic triglycerides by increasing hepatic β-

oxidation, mitochondrial respiration rates and expression of genes involved in β-oxidation. 

The aforementioned thyromimetic KB2115 can also improve NAFLD in rats151. In 

addition, 12 weeks of therapy with KB2115 lowered serum levels of cholesterol in patients 

who were taking statins, suggesting that KB2115 is a safe chronic therapy, as the authors of 

the study did not report cardiac or bone toxicity123. Unfortunately, despite these beneficial 

effects, the clinical trials of KB2115 were terminated as a parallel 12-month dosing study in 

dogs showed adverse effects on cartilage152. These findings suggest that thyroid hormone 

analogues have other adverse effects in addition to those known to occur in bone and heart. 
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Researchers will need to perform careful preclinical testing for adverse effects before 

clinical studies for other compounds are undertaken.

In 2016, one group reported the generation of a hybrid molecule, which contains both 

thyroid hormone and glucagon147, that reduces hepatosteatosis in NAFLD without bone or 

heart adverse effects. This compound has opened an exciting new area for synthetic bi-

hormonal therapy of metabolic diseases, as one hormone targets a specific tissue whereas the 

other has intracellular activity. The thyroid hormone metabolite 3,5-diiodothyronine is also 

able to reduce hepatic insulin resistance and decrease hepatosteatosis, suggesting that it is an 

attractive candidate for the treatment of NAFLD, particularly as it does not seem to have the 

systemic adverse effects of T3 and T4 (REF. 44).

A noteworthy point is that 15% of patients with NASH have hypothyroidism compared with 

7.2% of patients with normal liver function153. A 2012 study found that patients with 

NASH had a higher risk of hypothyroidism than patients with NAFLD without NASH and 

that hypothyroidism increased the risk of NASH154. A further study showed that NASH and 

advanced fibrosis occurred more frequently in both patients who were hypothyroid and 

patients who were subclinically hypothyroid155. These studies suggest that hypothyroidism 

and subclinical hypothyroidism also increase the risk of NASH in addition to 

hepatosteatosis142. Although these observations suggest a potential beneficial effect of 

thyroid hormones on NASH, thus far, there have not been any animal or human 

interventional studies demonstrating that thyroid hormones or thyroid hormone analogues 

can prevent or block the progression to NASH.

Decreased levels of thyroid hormone have been associated with an increased incidence of 

hepatocellular cancer in humans156. In addition, thyroid hormones have been shown to be 

anti-neoplastic in liver cancers157. Hepatocellular cancer occurs in patients with NASH, and 

many THR mutations have been reported in patients with hepatocellular cancer158. The 

presiding hypothesis is that THRs serve as tumour suppressors, primarily by inhibiting WNT 

signalling, the expression of cyclin-dependent kinase 2 (CDK2) and cyclin E and by 

stimulating TGFβ signalling. The suppression and stimulation of these signalling pathways 

are thought to lead to cell cycle arrest at the G1 phase159. Therefore, the suppressive 

activity of thyroid hormones is hypothesized to be blocked in the presence of mutant THRs. 

However, there have been no studies that definitively demonstrate that thyroid hormones can 

prevent hepatocellular cancer in animals or patients with NASH and/or fibrosis.

Conclusions and future perspectives

Advances in our understanding of the cellular and molecular mechanisms of fatty acid and 

cholesterol synthesis and metabolism have led to a better appreciation for the role of thyroid 

hormones and THRs in maintaining normal hepatic lipid homeostasis. We now understand 

the lipid derangements that can occur in hypothyroidism and hyperthyroidism at a deeper, 

more mechanistic, level. It is possible that some of the control points in the signalling 

pathways that regulate triglyceride and cholesterol levels within the liver and serum are 

modulated by thyroid hormones and thus could be potential drug targets for thyromimetics 

or other drugs. Additionally, serum levels of free T3, free T4 and levels of TSH characterize 

Sinha et al. Page 12

Nat Rev Endocrinol. Author manuscript; available in PMC 2018 June 21.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



the sufficiency of the hypothalamic–pituitary–thyroid axis; however, they might not 

accurately reflect intrahepatic levels of thyroid hormones, which can be reduced in the livers 

of patients with NAFLD.

Studies from the past several years suggest that thyroid hormone analogues that are specific 

for THRβ or THRβ in the liver, or analogues that are bi-hormonal, are potential therapies for 

metabolic conditions such as hypercholesterolaemia and NAFLD. Although the actions of 

thyroid hormones on hepatic fatty acid and cholesterol metabolism have been topics of 

interest to basic scientists and clinicians for many years, the new advances in our knowledge 

in these areas that are presented in this Review provide stronger rationales and tools for 

using thyroid hormone or thyromimetic drugs to treat hepatic metabolic disorders.
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Key points

• Thyroid hormones regulate hepatic lipid metabolism in a cell autonomous 

manner

• Thyroid hormone receptors (THRα and THRβ) differentially regulate hepatic 

lipid metabolism

• Thyroid hormone induces the expression of genes that encode proteins 

involved in hepatic lipogenesis

• Thyroid hormone couples autophagy to mitochondrial fat oxidation to induce 

ketogenesis

• Thyroid hormone induces reverse cholesterol transport

• Thyroid hormone analogues and/or mimetics offer therapeutic alternatives for 

treatment of lipid-associated hepatic pathologies
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Figure 1. Thyroid hormone effects on hepatic lipid metabolism.
Thyroid hormone stimulates lipolysis from fat stores in white adipose tissue and from 

dietary fat sources (high-fat diets) to generate free fatty acids (FFAs) that enter the hepatic 

cells via protein transporters such as fatty acid transporter protein (FATP), liver fatty acid 

binding protein (L-FABP) and CD36. Thyroid hormone induces de novo lipogenesis (DNL) 

via the transcription of several key lipogenic genes such as Acc1, Fasn, Me and Thrsp. In 

addition, thyroid hormone indirectly controls the transcriptional regulation of hepatic DNL 

by regulating the expression and activities of other transcription factors such as sterol 
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regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and 

carbohydrate-responsive element-binding protein (ChREBP). DNL is also driven by the 

influx of high levels of carbohydrate or glucose derived from high-carbohydrate diets via 

glucose transporters (GLUTs), which are shuttled to FFA generation. FFAs are typically 

esterified to triacylglycerol and subsequently packaged into VLDL for export or stored as 

intracellular lipid droplets. Triacylglycerol stored as lipid droplets can also be hydrolysed 

back to FFAs via classic lipases and lipophagy (by regulating transcription factor EB 

(TFEB), NAD-dependent protein deacetylase sirtuin 1 (SIRT1) and forkhead box protein O1 

(FOXO1)), undergo mitochondrial β-oxidation by the activity of various co-activators or 

nuclear receptors (such as peroxisome proliferator-activated receptor-α (PPARα), 

oestrogen-related receptor-α (ERRα), fibroblast growth factor 21 (FGF21) and PPARγ co-

activator 1α (PGC1α)) and target the transcription of genes such as Cpt1a, Mcad (also 

known as Acadm), Pdk4 and Ucp2. ↑/↓ depicts the positive or negative effect that thyroid 

hormone action has on the cellular process shown, respectively. OXPHOS, oxidative 

phosphorylation; ROS, reactive oxygen species; TCA, tricarboxylic acid.
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Figure 2. Thyroid hormone regulation of cholesterol biosynthesis and clearance.
Thyroid hormone stimulates cholesterol formation (mostly as VLDL) from its precursors 

and acetyl-CoA. Thyroid hormone increases the expression of Hmgcr and Fdps to promote 

hepatic cholesterol synthesis. Thyroid hormone also strongly induces the gene and protein 

expression of apolipoprotein A1 (Apo A1), scavenger receptor class B member 1 (SRB1) 

and sterol regulatory element-binding protein 2 (SREBP2), which then increase LDL 

receptor (LDLR) levels to increase cholesterol efflux from peripheral tissues to HDL 

through the reverse cholesterol transport pathway. Thyroid hormone increases HDL 

metabolism by stimulating cholesteryl ester transfer protein (CETP) activity. Thyroid 

hormone also increases expression of cholesterol 7α-hydroxylase (CYP7A1), which 

converts cholesterol into bile acids in the reverse cholesterol transport pathway. Thyroid 

hormone promotes the excretion of bile acids by directly increasing ATP-binding cassette 

subfamily G member 5/8 (Abcg5/Abcg8) transporter gene transcription. Additionally, 

thyroid hormone induces miR181d expression, which then decreases the expression of 

caudal-type homeobox protein 2 (CDX2) transcription factor and the Soat2 gene to inhibit 
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cholesterol ester formation. ↑/↓ shows increase or decrease in thyroid hormone action, 

respectively. FFA, free fatty acid.
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Table 1
Thyroid hormone analogues and/or mimetics and their biological effects

Thyroid hormone analogues and/or 
mimetics

Biological effects Species Refs

L-94901 Lowers cholesterol Mouse 115

CGH-509A Lowers cholesterol Rat 117

CGS-23425 Lowers cholesterol Rat 117

T-0681 Lowers cholesterol Mouse 116

DITPA Lowers cholesterol Human 118

GC-1 (sobetirome) Lowers cholesterol, triglyceride, blood glucose, adipose tissue 
and atherosclerosis

Mouse 119–121

KB-141 Lowers cholesterol, triglyceride, adipose tissue and blood 
glucose

Monkey, rat and 
mouse

122

KB2115 (eprotirome) Lowers cholesterol and triglyceride Human 123

MGL-3196 Lowers cholesterol and triglyceride Human 124

MB07811 Lowers cholesterol, triglyceride and blood glucose Human 126

3,5-Diiodothyronine Lowers blood glucose and triglyceride and improves hepatic 
insulin resistance

Rat 44,103
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