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Introduction

In neurons, voltage-gated Cav Ca2+ channels convert electrical signals into discrete 

elevations in intracellular Ca2+ that initiate a wide range of signaling cascades. Of the 

multiple classes of Cav channels, Cav1 L-type channels are key mediators of Ca2+ signals 

controlling neurogenesis (Marschallinger et al., 2015; Temme et al., 2016; Volkening et al., 

2017), neurite growth (Audesirk et al., 1990; Robson and Burgoyne, 1989; Roehm et al., 

2008; Schindelholz and Reber, 2000), and gene transcription (Dolmetsch et al., 2001; Graef 

et al., 1999; Oliveria et al., 2007). Mutations affecting the major Cav1 channels in the brain, 

Cav1.2 and Cav1.3, are linked to a variety of neurological and psychiatric disorders (Kabir et 

al., 2017; Pinggera and Striessnig, 2016). Thus, factors that regulate Cav1 channels may be 

critical for maintaining the balance between normal and diseased states of the nervous 

system.

A major regulator of Cav1 channels is calmodulin (CaM). Constitutively associated with the 

pore-forming Cav α1 subunit, CaM promotes inactivation of the channel upon binding to 

Ca2+ (Ben-Johny and Yue, 2014). Ca2+-dependent inactivation (CDI) of Cav1 channels is 

crucial for controlling excitability in the heart (Alseikhan et al., 2002), but a variety of 

factors may oppose CDI of Cav1 channels in neurons. In particular, members of a family of 
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Ca2+ binding proteins (CaBPs) related to CaM are highly expressed in neural tissues 

(Haeseleer et al., 2000) and suppress CDI in heterologous expression systems (Hardie and 

Lee, 2016). The mechanism is thought to involve competitive displacement of CaM from the 

channel complex (Findeisen et al., 2013; Zhou et al., 2004) as well as allosteric modulation 

(Oz et al., 2013; Yang et al., 2014).

CaBPs are highly expressed in the retina where they may regulate the contribution of Cav1 

channels to neurotransmitter release at ribbon synapses (Haeseleer et al., 2004; Haeseleer et 

al., 2000; Rieke et al., 2008; Sinha et al., 2016). CaBPs are also expressed in cochlear hair 

cells, where it was hypothesized that their antagonism of CaM may account for the very 

limited CDI of Cav1.3 channels (Cui et al., 2007; Yang et al., 2006). Of the multiple CaBP 

family members, CaBP2 is specifically enriched in inner and outer hair cells (Cui et al., 

2007; Yang et al., 2016). However, CDI of Cav1.3 in inner hair cells of CaBP2 knock-out 

mice was not affected (Picher et al., 2017), despite the fact that CaBP2 strongly suppresses 

CDI of Cav1.3 channels in transfected HEK293 cells (Schrauwen et al., 2012). Thus, 

whether CaBPs regulate CDI of Cav1 channels in neuronal cell-types remains to be 

established.

Expressed at higher levels in the cochlea than CaBP2, CaBP1 is particularly enriched in 

spiral ganglion neurons (SGNs, (Yang et al., 2016)) which transmit sound information from 

hair cells to the brain via the auditory nerve. Alternative splicing gives rise to three CaBP1 

variants (CaBP1-S, CaBP1-L, and caldendrin), of which caldendrin is the most abundant in 

the cochlea (Yang et al., 2016). To elucidate the cellular functions of CaBP1, we analyzed 

the properties of Cav1 channels and Cav1 signaling pathways in SGNs of mice lacking all 

three variants (C-KO; (Kim et al., 2014)). Our results indicate that CaBP1 suppresses CDI of 

Cav1 channels in SGNs and is necessary for the contribution of Cav1 channels to excitation-

transcription coupling and the activity-dependent repression of neurite outgrowth. Our study 

provides the first evidence that CaBPs modulate CDI of Cav1 channels in neurons, and 

highlights the diverse roles of CaBPs in regulating Cav Ca2+ signaling in the nervous 

system.

Materials and Methods

Ethical Approval

All experiments were performed in accordance with guidelines set by the Office of the 

Institutional Animal Care and Use Committee at the University of Iowa. The procedures 

used in this study are not expected to produce pain or suffering in the animals. Generation of 

C-KO mice (RRID: MGI: 5780462) was described previously (Kim et al., 2014). Mice were 

maintained on a C57BL/6 (Envigo) background and housed in groups on a standard 12:12 

hour light: dark cycle, with food and water provided ad libitum. Mice from post-natal days 

(P) 3–7 of mixed sexes were used in this study.

Electrophysiological recordings of SGNs

Dissociated SGN cultures were prepared according to a previously described protocol (Lv et 

al., 2012) with modification. Briefly, cochlear tissue was dissected from 2–4 mice in 
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Ca2+/Mg2+-free Hank's Balanced Salt Solution (HBSS) and digested in an enzyme mixture 

containing collagenase type I (1 mg/mL, ThermoFisher 17100) and DNase I (1 mg/mL, 

Sigma DN25) at 37°C for 25 min. After gentle triturations, the cells were plated on poly-L-

ornithine/laminin-coated coverslips in Nunclon 4-Well PS MultiDish (Thermo Scientific). 

SGNs were maintained in Neurobasal-A culture media supplemented with 2% B27 (v/v), 2 

mM L-glutamine, 1x penicillin-Streptomycin, 25 ng/mL BDNF (Sigma B3795) and 25 

ng/mL NT3 (Sigma N1905). All media and supplements were from Gibco unless noted 

otherwise.

About 24–72 h after plating SGNs (cultures prepared from P5-P7 mice), whole-cell patch 

clamp recordings were performed at room temperature. Data were acquired with an EPC-10 

patch clamp amplifier and Patchmaster software (HEKA Elektronik) and analyzed with Igor 

Pro software (Wavemetrics). Electrodes (3–5 MΩ) were pulled from borosilicate glass and 

were filled with solution containing (in mM): 70 CsCl, 70 N-methyl-D-glucamine chloride, 

1 CaCl2, 10 HEPES, 10 EGTA, 4 MgATP, pH 7.2. The external solution contained (in mM): 

120 choline-Cl, 20 tetraethylammonium chloride (TEA-Cl), 5 4-aminopyridine (4-AP), 0.02 

linopirdine, 2 CsCl, 5 CaCl2 or 5 BaCl2, 0.5 MgCl2, 10 HEPES, 5 D-glucose, pH 7.40. As 

described previously (Lv et al., 2014; Lv et al., 2012), the following criteria were used for 

inclusion of data: (1) establishment of stable giga-ohm seal for at least 5 min before data 

collection; (2) currents did not show signs of voltage-clamp error or contamination by 

outward currents; (3) absence of current rundown.

Current-voltage relations were analyzed with depolarizing voltage ramps from a holding 

potential of −45 mV to +70 mV in 320 ms. The current amplitude was divided by the cell 

capacitance to generate the current density–voltage (I–V) relationship. I–V curves were fit 

with the following equation: I = G(V − E)/{1 + exp[(V − V1/2)/k]} where G is conductance, 

V is the test potential, E is the reversal potential, V1/2 is the voltage for half-maximal 

activation, and k is the slope factor. Inactivation was analyzed with depolarizing voltage 1-s 

steps from a holding potential of −45 mV to 0 (for ICa) or −10 mV (IBa). Different voltages 

were used due to account for the negative shift in voltage-dependent activation of IBa 

compared to ICa caused by surface charge screening effects (Wilson et al., 1983). 

Inactivation was determined by dividing the amplitude of the residual current at the end of 

the pulse with that of the peak current.

Analysis of SGN survival and neurite growth

Dissociated spiral ganglion cultures were prepared as previously described (Hegarty et al., 

1997) (Hansen et al., 2001). For each culture, 4 mice were used. Briefly, the spiral ganglia 

were dissected from P3-P5 mouse pups in Ca2+/Mg2+-free HBSS, and enzymatically 

digested with 0.1% collagenase and 0.125% trypsin. After mechanical dissociation, the cells 

were plated on coverslips coated with poly-L-ornithine/laminin in 8-well culture chambers 

(Nalge Nunc International). Cells were maintained in N2 media, ingredient as follows: high 

glucose Dulbecco’s Modified Eagle’s Medium (DMEM), 1x N2 supplement (Invitrogen; 

Carlsbad, CA), insulin (10 µg/ml, Sigma-Aldrich), and 1x penicillin/streptomycin. Cells 

were kept in a humidified incubator at 37 °C with 5% CO2.
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Four hours after plating, SGNs were placed in control (5.4 mM K+) or depolarizing 

conditions (various K+ concentrations) prior to analysis of survival or neurite appearance. To 

evaluate the contribution of Cav1 channels, the solution contained isradipine (0.1 µM or 10 

µM, TOCRIS), (±)-Bay K 8644 (0.1 µM or 10 µM, TOCRIS), or DMSO (0.1%). Following 

incubation, SGNs were fixed in 4% paraformaldehyde (PFA) in phosphate-buffered saline 

(PBS) for 15 min, and then in blocking buffer (5% normal goat serum and 0.5% Triton-X in 

PBS) for 1 h at room temperature (RT). SGNs were labeled with primary anti-neurofilament 

200 (NF200) monoclonal antibody (1:500, Sigma-Aldrich Cat# N0142 RRID: AB_477257) 

in blocking buffer for 1 h at RT. After 3 washes in 1X PBS (5 min each), SGNs were 

incubated with secondary antibodies conjugated with Alexa 568 (1:500, ThermoFisher, Cat# 

A-11019, RRID: AB_143162) in blocking buffer and DAPI for 1 h at RT. The cells were 

washed 3 times in 1x PBS before mounting with glycerol and analyzing with an Olympus 

BX53 microscope equipped with Olympus DP72 camera and CellSens Standard imaging 

software (RRID: SCR_014551).

Quantitative analysis was performed by researchers blinded to experimental conditions. For 

analysis of SGN survival, all neurons were counted in each well following exposure to 

control or experimental conditions. For analysis of neurite growth, images were taken for all 

SGNs with visible neurites. Neurite length was defined as the maximal possible distance 

along a neurite and determined for each SGN using the measurement tool in Image J (NIH; 

RRID: SCR_003070). If there was more than one neurite, the longest branch was quantified. 

If the longest neurite extended beyond the field of the image, additional images were 

acquired and automatically stitched together using CellSens software. All the data were 

compiled with Excel. To obtain the percentage of neurons with neurites, the number of 

SGNs with neurites longer than 10 µm was normalized to the total number of SGNs in each 

well.

Phosphorylated CREB assays

Measurement of CREB phosphorylation following depolarization was performed as 

described previously (Hansen et al., 2003). Briefly, SGN cultures were prepared as described 

for survival/neurite growth assays and were incubated with 0.1% DMSO (control) or 10 µM 

isradipine for 30 min at 37 °C, and stimulated with the same medium containing 5.4 mM K+ 

or 30 mM K+ for 15 min at RT. Neurons were immediately fixed with 4% PFA and proceed 

with immunocytochemistry described above except that cells were also incubated in anti-

phospho-CREB (Ser133) monoclonal antibody (1:350, Cell Signaling Technology Cat# 

9198, RRID: AB_2561044) and Alexa 647 (1:500, Thermo Fisher Scientific Cat# A21246, 

RRID: AB_10375565). Images of SGNs were taken with Olympus Fluoview 1000 confocal 

laser scanning microscope with a 60x lens and FluoView software (RRID: SCR_014215), 

and analyzed with ImageJ software. The region of interest was outlined from DAPI staining, 

and pCREB intensity was measured as mean grey value in arbitrary units of pixel intensity. 

The imaging and quantification were performed by researchers blinded to genotype and 

conditions.
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Ca2+ imaging

SGN cultures were prepared as for electrophysiology experiments except that the cells were 

maintained in N2 media supplemented with BDNF (25 ng/mL) and NT3 (25 ng/mL). About 

12–16 hours after plating, SGNs were infected by adenoassociated virus (AAV1) expressing 

GCaMP3 under a synapsin promoter (AAV1.CMV.PI.SynGCaMP3.SV40, Vectorcore, 

University of Pennsylvania). Ca2+ imaging was performed 24–48 hours after the infection. 

SGNs were kept in 5 mM K+ control solution (in mM: 119 NaCl, 23 NaHCO3, 10 glucose, 

1.25 NaH2PO4, 5 KCl, 2 Na-Pyruvate, 3 CaCl2, and 1 MgCl2) and then stimulated with 80 

mM K+ solution (same as control solution except with 44 mM NaCl and 80 mM KCl). Bath 

solutions were continuously perfused by gravity. Images were taken at 1 frame per second 

with Olympus Fluoview 1000 confocal laser scanning microscope with a 40x water 

immersion lens and FluoView software and analyzed with ImageJ software. TurboReg 

(RRID: SCR_014308) was used to align images when there was shift during imaging.

The evoked Ca2+ signal (F/F0) was measured by normalizing the maximal fluorescence 

intensity (F = average of the maximum signal detected in 3 frames after the 80 mM K+ 

stimulation) to the baseline fluorescence (F0 = average of the signal in the first 3 frames 

recorded after time zero). For some experiments, isradipine (10 µM) was applied to the cells 

between two applications of 80 mM K+ solution. In these experiments, the evoked Ca2+ 

signal (F/Fb) was measured by normalizing the maximal fluorescence intensity (F = average 

of the maximal signal detected in 3 frames after applying isradipine) to the baseline 

fluorescence (Fb = average of the minimum signal in 3 frames after applying isradipine but 

before the second application of 80 mM K+).

Experimental design and statistical analysis

For all experiments, male and female mice were used. Whenever possible, WT and C-KO 

samples were prepared and analyzed in parallel. Statistical analysis was done with Graphpad 

Prism software 7 (RRID: SCR_002798) unless noted otherwise. An alpha level of 0.05 was 

used for all statistical tests. Data were first tested for normality by Shapiro-Wilk normality 

test. If the data were normally distributed, unpaired t test or ANOVA with post hoc 

Bonferroni’s multiple comparisons test was performed. Otherwise, Mann-Whitney test, or 

Kruskal-Wallis test were performed. For 2-way ANOVA test, the main effects were reported 

if there was no significant interaction, and post hoc analysis was performed on the main 

effects that had more than two levels. Otherwise, post hoc tests were performed and simple 

main effects were reported using adjusted p value for multiple comparisons. To analyze the 

change in distribution of neurite lengths between 12 h to 24 h, neurite lengths were binned to 

100 µm bin-width (except neurites longer than 410 µm were binned as 1 group), and Chi-

square test was performed. Three significant digits for p values were reported. Error bars 

represented standard deviation (SD) unless otherwise noted.

Results

CDI of Cav channels is enhanced in C-KO SGNs

Based on the effects of CaBP1 on Cav1 channel CDI in heterologous expression systems 

(reviewed in (Hardie and Lee, 2016)), we hypothesized that CaBP1 should support Cav1-
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mediated Ca2+ signaling in SGNs by suppressing CDI. If so, CDI should be greater in SGNs 

lacking CaBP1 expression. To test this prediction, we characterized the properties of Ca2+ 

currents (ICa) and Ba2+ currents (IBa) in whole-cell patch clamp recordings of SGNs in 

culture from wild-type (WT) and C-KO mice. Although low-voltage activated Cav3 channels 

are expressed in SGNs, we minimized their contribution by maintaining the holding 

potential at −45 mV (Lv et al., 2012). In current-voltage (I–V) analyses using ramp 

protocols, there was no significant difference in peak current densities or parameters for 

voltage-dependent activation in WT and C-KO SGNs (Fig. 1A,B; Table 1). Thus, genetic 

silencing of CaBP1 did not affect the activation properties of Cav currents in SGNs.

Inactivation was measured as the current amplitude at the end of a depolarizing pulse 

normalized to the peak current amplitude (Ires/Ipk) for ICa and IBa. Since Ba2+ binds to CaM 

poorly (Wang, 1985), IBa exhibits voltage dependent inactivation that is much slower than 

the rapid inactivation of ICa due to CDI. Although Cav2 channels are expressed in SGNs 

(Chen et al., 2011; Lv et al., 2012), we isolated CDI mediated by Cav1 channels by 

exploiting the reliance of CDI of Cav2 channels on global Ca2+ elevations that are readily 

blocked by Ca2+ chelators (e.g., EGTA, BAPTA). Since Cav1 channel CDI depends on local 

Ca2+ signals within a nanodomain of the channel pore (reviewed in (Christel and Lee, 

2012)), greater inactivation (i.e., smaller Ires/Ipk) of ICa compared to IBa in the presence of 

EGTA (10 mM in the intracellular recording solution) should reflect CDI of Cav1 channels 

(Huang et al., 2012). CDI was evident in both WT and C-KO SGNs in that Ires/Ipk was 

indeed smaller for ICa than for IBa (Fig. 1C,D). Using the difference in Ires/Ipk for ICa and IBa 

as a metric for CDI (FCDI; (Thomas and Lee, 2016)) we noted significantly greater CDI in 

C-KO than in WT neurons (~1.7-fold; Fig. 1E). These results support a role for CaBP1 in 

suppressing CDI of Cav1 currents in SGNs.

Activity-dependent enhancement of SGN survival is not affected in C-KO cultures

Ca2+ influx through Cav1 channels mediates the prosurvival effects of depolarization in 

many neurons (Collins et al., 1991) including rat SGNs (Hegarty et al., 1997; Roehm et al., 

2008; Shen et al., 2016). To determine if activity-dependent increases in SGN survival 

differed in WT and C-KO cultures, we used a survival assay modified from previous studies 

of rat SGNs (Hegarty et al., 1997; Roehm et al., 2008). Neurotrophin-3, which augments 

SGN survival and neurite growth in culture (Hegarty et al., 1997), was omitted from the 

culture medium in order to maximize any difference between genotypes. SGN survival was 

assessed as the percentage of neurons remaining after a prolonged exposure (44 hours) to 

varying concentrations of extracellular K+ ([K+]o). While this approach may seem non-

physiological, it should be noted that dissociated SGNs in culture (mostly type I SGNs) are 

electrically silent as they do not receive innervation from inner hair cells. To mimic electrical 

activity under these conditions, elevated concentrations of [K+]o are used. This is a widely-

used strategy for dissecting the contributions of Cav1 channels to transcriptional regulation 

(Wheeler et al., 2012) and activity-dependent repression of neurite growth (Enes et al., 

2010). In agreement with previous work (Hegarty et al., 1997), there was a biphasic effect of 

[K+]o on SGN survival with maximal survival at 30 mM for both WT and C-KO cultures. 

However, there was no difference in the survival of SGNs from WT and C-KO mice under 
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these conditions (Fig. 2). Thus, CaBP1 is dispensable for the effects of depolarization on the 

survival of SGNs in culture.

Activity-dependent repression of neurite growth is relieved in C-KO SGNs

To determine if other Cav1-regulated signaling pathways were affected in C-KO SGNs, we 

analyzed activity-dependent repression of neurite regrowth. During dissociation, SGN axons 

are sheared off but regenerate and grow to lengths >600 µm with time in culture (Hegarty et 

al., 1997). Neurite regrowth in vitro is inhibited by depolarization-mediated Ca2+ influx 

(Roehm et al., 2008). We hypothesized that the Ca2+-dependent brake on neurite regrowth 

should be lessened in C-KO SGNs, possibly due to greater CDI of Cav1 channels (Fig. 1C–

E). To test this, we compared the number of WT and C-KO SGNs with neurites following 

exposure to varying concentrations of [K+]o. In contrast to previous findings (Roehm et al., 

2008), increasing [K+]o did not significantly affect the number of WT SGNs with neurites 

(Fig. 3A; H(5) = 7.043, p = 0.218 by Kruskal Wallis test ), perhaps due the absence of 

neurotrophin-3 in our cultures. However with increasing [K+]o, the number of C-KO SGNs 

with neurites was significantly greater (H(5) = 22.19, p < 0.001, by Kruskal-Wallis test), 

particularly with [K+]o ≥ 30 mM (Fig. 3B).

If CaBP1 represses the initiation rather than the growth of neurites, then there should be a 

larger time-dependent increase in the number but not the length of neurites in C-KO than 

SGN cultures. To test this prediction, we compared the increase in the number of SGNs with 

neurites between 12 and 24 hours of depolarization. In this and subsequent experiments, 30 

mM [K+]o was used for depolarization since neuronal survival was maximal at this 

concentration (Fig. 2). This concentration of [K+]o should produce ~30 mV change in the 

membrane potential, which falls within the range of depolarization required for SGNs to 

reach firing thresholds (Liu et al., 2014). Between 12 and 24 hours of depolarization, the 

increase in SGNs with neurites was significantly greater in C-KO than WT cultures (Fig. 

4A–C). However, neurite lengths did not undergo as large of an increase in C-KO as in WT 

cultures (χ2(4) = 16.82, p = 0.002, by Chi-square test; Fig. 4D,E). Therefore, loss of CaBP1 

enhances the activity-dependent initiation but not rate of growth of SGN neurites.

Cav1 regulation of neurite growth is disrupted in C-KO SGNs

To determine if the contribution of Cav1 channels to the regulation of neurite growth is 

altered in C-KO SGNs, we used the Cav1 antagonist isradipine. In WT cultures, isradipine 

(0.1 µM) caused ~10% increase in the proportion of SGNs with neurites (Fig. 5A). This was 

not due to greater survival of WT SGNs, which was not affected by isradipine at this 

concentration (Table 2). A higher concentration (10 µM) of isradipine strongly inhibited 

survival of WT SGNs (Table 2), which may explain why neurite growth of WT SGNs was 

not further potentiated at this dose (Fig. 5A). In contrast to its effects on WT SGNs, 

isradipine did not alter the percent of C-KO SGNs with neurites following depolarization 

(Fig. 5B).

We next tested if the Cav1 agonist Bay K 8644 would, like isradipine, have a weaker effect 

on neurite growth of SGNs in C-KO than in WT cultures. Consistent with a role for Cav1 

channels in suppressing neurite growth, Bay K 8644 caused a dose-dependent decline in the 
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number of WT SGNs with neurites following depolarization (Fig. 6A). However, this effect 

could have resulted from toxicity since WT SGN survival was significantly reduced in the 

presence of Bay K 8644. In contrast to its effects on WT SGNs, Bay K 8644 had no 

significant effect on either neurite growth or survival of C-KO SGNs. Taken together, these 

results indicate an uncoupling of Cav1 Ca2+ signals from activity-dependent regulation of 

neurite growth and survival in C-KO SGNs.

Cav1 coupling to transcriptional regulation is impaired in C-KO SGNs

A prominent Cav1 signaling pathway in many neurons involves the activity-dependent 

phosphorylation of cAMP response element binding protein (CREB) – a transcription factor 

that regulates synaptic plasticity underlying learning and memory (Bengtson and Bading, 

2012). In neurons, Cav1 channels are tightly coupled to increases in phosphorylated CREB 

(pCREB) levels which can be measured by immunofluorescence (Wheeler et al., 2012). 

Based on the reduced contribution of Cav1 channels to the regulation of neurite growth in C-

KO SGNs, we hypothesized that Cav1 signaling to pCREB would be diminished in C-KO 

SGNs. To test this, we measured pCREB levels by immunofluorescence in WT and C-KO 

SGNs following exposure to a basal (5 mM) and depolarizing (30 mM) concentration of 

KCl. Although depolarization caused a robust increase in pCREB in both WT and C-KO 

SGNs, this increase was significantly blunted in C-KO compared to WT SGNs (Fig. 7A–C). 

Consistent with the lack of effect of isradipine in C-KO SGNs in neurite growth assays (Fig. 

5B), pCREB induction by depolarization was prevented by isradipine (10 µM) in WT but not 

C-KO SGNs (Fig. 7A–C). Thus, the contribution of Cav1 channels to pCREB activation is 

also severely impaired in C-KO SGNs.

We also compared the magnitude of Cav1-mediated Ca2+ signals in WT and C-KO SGNs 

transfected with the genetically encoded Ca2+ indicator GCaMP3. Depolarization with 80 

mM [K+]o caused a marked increase in GCaMP3 fluorescence in WT SGNs which was 

significantly weaker in C-KO SGNs (Fig. 8A,B). Consistent with evidence for other Cav 

channels besides Cav1 in SGNs (Lv et al., 2014; Lv et al., 2012), the evoked GCaMP3 signal 

was reduced but not abolished by isradipine in WT SGNs (Fig. 8A,C). The isradipine-

insensitive Ca2+ signal was not significantly different in C-KO and WT SGNs (Fig. 8A,C), 

which suggested that the contribution of Cav channels other than Cav1 is not affected by 

CaBP1 knockdown and that the major reduction in the depolarization-evoked Ca2+ signal in 

C-KO compared to WT SGNs is due to loss of function of Cav1 channels.

Discussion

CaBP1 regulates CDI of Cav1 channels in SGNs

Despite a wealth of evidence that CaBP1 modulates Cav1.2 and Cav1.3 channels in 

heterologous expression systems (reviewed in (Hardie and Lee, 2016)), our study is the first 

to demonstrate that CaBP1 regulates CDI of Cav1 channels in neurons. The increase in CDI 

in C-KO SGNs is relatively modest considering that coexpression of CaBP1 with Cav1.2 and 

Cav1.3 nearly abolishes CDI in transfected HEK293 cells (Cui et al., 2007; Zhou et al., 

2004). This discrepancy could stem from caldendrin being the major CaBP1 splice variant 

expressed in SGNs (Yang et al., 2016). In transfected cells, caldendrin has a more moderate 
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effect than the other CaBP1 variants in suppressing CDI (Tippens and Lee, 2007). It is also 

possible that CDI is suppressed in SGNs by factors in addition to CaBP1. For example, 

alternative splicing and RNA editing can produce Cav1 channels in neurons with limited 

CDI (Bazzazi et al., 2013; Shen et al., 2006; Singh et al., 2008; Tan et al., 2011). It is 

noteworthy that knock-out of CaBP2 causes increased voltage-dependent inactivation rather 

than CDI of the Cav1.3 current in inner hair cells (Picher et al., 2017), despite evidence that 

CaBP2 strongly suppresses CDI of Cav1.3 channels in transfected HEK293T cells 

(Schrauwen et al., 2012). Clearly, the native environment in which Cav channels are 

expressed may strongly influence the extent to which Cav channels are modulated by CaBPs.

CaBP1 enables activity-dependent coupling of Cav1 channels to pCREB

Intuitively, stronger CDI in C-KO SGNs might lead to weaker, more transient Cav1-

mediated Ca2+ signals that would be insufficient to support activity-dependent CREB 

phosphorylation. However, it is also possible that CaBP1 may couple Cav1 channels to 

pCREB independent of its effects on CDI. In analyses of cortical neurons in culture, 

mutation of a CaM binding site (IQ-domain) in the proximal C-terminal domain of Cav1.2 

reduces activity-dependent phosphorylation of CREB independent of any changes in Cav1-

mediated Ca2+ signals (Dolmetsch et al., 2001). Mutations in the Cav1.2 IQ domain also 

disrupt CaBP1 binding (Zhou et al., 2005), and CaBP1 is highly expressed in cortical 

neurons (Kim et al., 2014). Thus, CaBP1 rather than CaM binding to the IQ-domain may be 

required for excitation-transcription coupling in neurons. Understanding precisely how 

CaBP1 enables Cav1 signaling to the nucleus in SGNs, and perhaps more broadly in other 

neurons, is an important challenge for future studies.

CaBP1 is necessary for activity-dependent repression of SGN neurite growth

While it promotes axon growth of retinal ganglion neurons (Goldberg et al., 2002) and 

sympathetic motor neurons (Singh and Miller, 2005), electrical activity suppresses axon 

growth of dorsal root ganglion neurons (Fields et al., 1990; Robson and Burgoyne, 1989). 

Depolarization of dissociated dorsal root ganglion cells with high [K+]o or electrical 

stimulation inhibits the regeneration of their axons, which is blunted by genetic or 

pharmacological inactivation of Cav1.2 channels as well as blockers of transcription (Enes et 

al., 2010). Similarly, depolarization acts as a brake on neurite growth of SGNs, although 

Cav2 as well as Cav1 channels are involved (Roehm et al., 2008). Our findings that neurite 

growth is less repressed by depolarization in C-KO than WT SGNs (Fig. 3B) could be 

explained by weaker Cav1 Ca2+ signals due to increased CDI, and limited pCREB-

dependent transcription (Fig. 9). Cav1 coupling to other signaling molecules would also be 

impaired such as the Ca2+-dependent protease, calpain. For example, Cav1-mediated Ca2+ 

influx strongly activates calpain in many cell-types (Jacquemet et al., 2016), and calpain 

inhibitors relieve activity-dependent block of SGN neurite growth (Roehm et al., 2008). In 

addition, CaBP1 interacts with a variety of other regulators of Ca2+ signaling including 

inositol trisphosphate receptors (Haynes et al., 2004) and calmodulin-dependent protein 

kinase II (Haeseleer et al., 2000). Therefore, CaBP1 may regulate SGN neurite growth via 

multiple mechanisms.
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Concluding remarks

During development, the growth potential of axons diminishes upon their forming 

connections with appropriate targets. In primary sensory neurons, such as in the dorsal root 

ganglion (DRG), lesioning of the peripheral axon reactivates the genetic program controlling 

axon regrowth (Yiera and Bradke, 2006). While electrical activity promotes axon growth in 

some neurons, it halts axon growth in DRGs (Fields et al., 1990) in a manner that depends 

on Cav1 channels (Robson and Burgoyne, 1989). Like DRGs, SGNs extend axons that 

extend peripherally and centrally. The role of CaBP1 in supporting the function of Cav1 

channels and their contribution to activity-dependent repression of neurite growth in SGNs 

may be important during maturation of the auditory system in ensuring that peripheral and 

central axons remain firmly connected to hair cells in the cochlea and neurons in the 

cochlear nucleus, respectively.

However, activity-dependent repression of SGN neurite growth presents a challenge for 

strategies to restore auditory perception with cochlear implants. When inserted into the 

cochlea of deaf patients, multi-channel cochlear implants mimic synaptic activation of SGNs 

by lost hair cells but there is a limited ability of up to 8–10 independent electrode channels 

to accurately transmit sound information that is normally communicated by ~3500 inner hair 

cells to ~30,000 SGNs. The regrowth of SGN axons towards particular cochlear implant 

electrodes might improve the tonotopic specificity of SGN activation and improve temporal 

coding necessary for speech recognition (Rubenstein, 2004). The electrical stimulation 

provided by cochlear implants is expected to support the survival of SGNs (Hegarty et al., 

1997; Miller et al., 2003), but also limit SGN neurite growth (Roehm et al., 2008). In 

addition to neurotrophin therapy (Budenz et al., 2012), antagonizing CaBP1 signaling could 

offer a promising approach to overcoming current obstacles in cochlear implant therapies.
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Figure 1. Voltage-dependent activation is not affected but CDI is increased in C-KO SGNs
(A–B) I–V plots for ICa (A) and IBa (B) in WT and C-KO SGNs. Voltage protocol consisted 

of a 320-ms ramp from −45 mV to 70 mV. Black line and grey shading represent mean and 

SEM, respectively. (C) Representative traces for normalized currents evoked by a 1-s step to 

−10 mV (for IBa) or 0 mV (for ICa) for WT and C-KO SGNs. Scale bars, 0.5 s (horizontal); 

200 pA for ICa (vertical). IBa was normalized to the scale of ICa. (D) For data obtained as in 

C, inactivation was measured as current amplitude at the end of the pulse normalized to the 

peak current amplitude (Ires/Ipk). (E) The difference in Ires/Ipk from D for ICa and IBa [ICa − 

IBa] was plotted for WT (n = 11 cells from 9 cultures from different litters) and C-KO SGNs 
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(n = 9 cells from 8 cultures from different litters). Data were analyzed by unpaired t test. In 

D, E, points represent individual cells and bars represent mean ± SD; p values from unpaired 

t-tests are shown for each comparison. In D, t(18) = 3.207 for WT; t(15) = 5.894 for C-KO. 

In E, t(18) = 3.143.
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Figure 2. Activity-dependent regulation of neuron survival is not altered in C-KO SGNs
Dissociated SGNs from WT or C-KO mice were maintained in culture for 4 h prior to 

depolarization with different [K+]o for 44 h prior to immunofluorescent labeling with NF200 

antibodies. The control group was processed for NF200 labeling after the initial 4 h culture 

period. Survival (%) represents the number of SGNs at the end of depolarization period 

relative to the control for the indicated [K+]o. There was no significant difference in the 

effect of [K+]o on SGN survival in WT and C-KO cultures (F(1, 36) = 0.582, p = 0.450, by 

2-way ANOVA, n = 4 cultures each).
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Figure 3. Activity-dependent regulation of neurite growth is altered in C-KO SGNs
Dissociated SGNs from WT or C-KO mice were maintained in culture for 4 h prior to 

depolarization with different [K+]o for 44 h followed by immunofluorescent labeling with 

NF200 antibodies. (A,B) Representative images of WT (A) and C-KO (B) SGNs exposed to 

30 mM or 80 mM [K+]o. Scale bar, 100 µm. Right, the percent of SGNs with neurites 

(relative to the total number of SGNs on the coverslip) at the end of the depolarization 

period is plotted for the indicated [K+]o. **, p < 0.01, ***, p < 0.001 compared to [K+]o = 5 

mM by post-hoc Dunn’s multiple comparisons test. Each point represents result from 

different cultures (n = 5 cultures for WT, n = 7 cultures for C-KO; 3 mice were used per 

culture) and bars represent mean ± SD.
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Figure 4. Neurite initiation but not rate of growth is enhanced in C-KO SGNs
SGNs were cultured for 12 h or 24 h in 30 mM [K+]o prior to NF200 labeling. (A, B) 

Representative images of WT and C-KO SGNs at the indicated time points. Scale bar, 100 

µm. (C) The percent increase in SGNs with neurites at 24 h relative to 12 h is shown for WT 

and C-KO cultures (n = 5 cultures each, two replicates for each culture; t(8) = 3.102, p = 

0.015, unpaired t test). Each point represents result from one culture and bars represent mean 

± SD. (D, E) Distribution of neurite lengths (>10 µm) for SGN cultures after 12 h and 24 h 

for WT (D) and C-KO (E) cultures (n = 5 each, 106 and 216 WT SGNs at 12 h and 24 h, and 

265 and 667 C-KO SGNs at 12 h and 24 h were analyzed). In D,E, results represent 

measurements on all SGNs in each culture.
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Figure 5. Isradipine nullifies difference in neurite growth in WT and C-KO SGNs
SGNs were cultured in 30 mM [K+]o for 12 h in the presence of 0.1% DMSO or isradipine 

(0.1 µM or 10 µM) prior to NF200 labeling. (A,B) Representative images of WT and C-KO 

SGNs exposed to DMSO (control) or 0.1 µM isradipine (+ Isr). Scale bar, 100 µm. Right, the 

percentage of SGNs with neurites was measured as in Fig. 3 and shown for the indicated 

conditions. Isradipine had significant effects on WT SGNs (F(2, 8) = 14.63, p = 0.002 by 

ANOVA, n = 4 cultures/genotype), but not C-KO SGNs F(2, 9) = 0.63, p = 0.56 by ANOVA, 

n = 4 cultures/genotype). In A, p-value for the indicated comparison was determined by 

Bonferroni’s post-hoc test (t(8) = 5.374). Each point represents result from one culture and 

bars represent mean ± SD.
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Figure 6. Bay K 8644 suppresses neurite growth and survival of WT but not C-KO SGNs
SGNs were cultured in 30 mM [K+]o for 44 h in the presence of 0.1% DMSO or Bay K 8644 

(0.1 µM or 10 µM) prior to NF200 labeling. (A,B) Representative images of WT (A) and C-

KO (B) SGN cultures exposed to DMSO (control) or 0.1 µM Bay K (+ Bay K). Scale bar, 

100 µm. Right, the percentage of SGNs with neurites was measured as in Fig. 3, and the 

percent survival represents the number of SGNs at the end of the depolarization period 

normalized to the control. Bay K had a significant effect on neurite growth (F(2,9) = 7.57, p 
= 0.012 by ANOVA) and survival (F(2,9) = 20.5, p < 0.001, ANOVA), but not in C-KO 

cultures (F(2,9) = 3.91, p = 0.060, for neurite growth and F(2,9) = 0.72, p = 0.512 for neuron 

survival, ANOVA). p-values shown for the indicated comparisons were determined by 

Bonferroni’s test: #, t(9) = 3.52; ##, t(9) = 3.19; *, t(9) = 6.21; **, t(9) = 4.45. 4 WT and 4 C-

KO cultures were analyzed. Each point represents result from one culture and bars represent 

mean ± SD.
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Figure 7. Cav1-dependent phosphorylation of CREB is abolished in C-KO SGNs
(A,B) Representative images of WT and C-KO SGNs double-labeled with antibodies against 

pCREB (green) and NF200 (red) following a 15-min exposure to 5 or 30 mM [K+]o with or 

without isradipine (Isr, 10 µM). Scale bar, 10 µm. (C) Quantification of pCREB intensity in 

arbitrary units (a.u.). Results represent analyses of ~56 SGNs in 3 independent cultures. 

Each culture was prepared from 8 pups with 2 technical replicates per condition. 8–10 

neurons were randomly selected from each replicate. Data are plotted as mean ± SEM. By 

Kruskal-Wallis and post-hoc Dunn’s test: #, compared to WT 5 mM, padj < 0.001 with mean 

rank difference of 171.9; ǂ, compared to C-KO 5 mM, padj < 0.001 with mean rank 
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difference of 144.4; p-values are shown for the indicated comparisons. *, mean rank 

difference = 76.28; **, mean rank difference =104.9.
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Figure 8. Cav1-mediated Ca2+ signals are reduced in C-KO SGNs
(A) Representative changes in GCaMP3 fluorescence (F/F0) in SGNs from WT or C-KO 

mice evoked by 80 mM [K+]o before and after application of isradipine. (B,C) 

Quantification of GCaMP3 fluorescent intensity changes in data obtained in A. p-values 

determined by Mann-Whitney test are indicated. U = 68.5 in B, U = 48.5 in C. Each point 

represents one region of interest and bars represent mean ± SD. F, maximum intensity; F0, 

intensity at time 0; Fb, baseline intensity. Data were collected from 4 WT and 4 C-KO 

cultures prepared from different litters. Each culture was prepared from 2–3 pups. For each 

experiment, 1–3 regions of interest were analyzed.
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Figure 9. Cav1 signaling pathways that are altered in C-KO SGNs
(A) In WT SGNs, CaBP1 reduces CDI of Cav1 channels leading to increased Cav1-mediated 

signaling to pCREB and repression of neurite growth. (B) In C-KO SGNs, Cav1 channels 

undergo increased CDI and less coupling to pCREB and derepression of neurite growth.
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Table 1

Parameters from Boltzmann fits of I–V data

WT (n = 10) C-KO (n = 10) t – and p – values

ICa Vh (mV) 1.18 ± 1.12 1.05 ± 1.39 t(20) = 0.072, p = 0.944

k (mV) 6.13 ± 0.36 6.55 ± 0.53 t(20) = 0.656, p = 0.519

I(pA/pF) max −62.69 ± 8.93 −56.35 ± 6.81 t(20) = 0.574, p = 0.573

IBa Vh (mV) −15.56 ± 1.50 −17.44 ± 1.12 t(18) = 1.029, p = 0.317

k (mV) 8.12 ± 0.48 8.97 ± 0.51 t(18) = 1.197, p = 0.247

I(pA/pF) max −54.07 ± 7.36 −52.32 ± 5.24 t(20) = 0.199, p = 0.845

Data represent mean ± SEM; t – and p – values determined by unpaired t – test.
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Table 2

Effect of isradipine on survival WT and C-KO SGNs.

[Isr] (µM) WT (% survival) C-KO (% survival)

0.1 90.94 ± 10.68 88.57 ± 10.46

10 62.07 ± 2.70*** 56.63 ± 2.43***

SGNs were cultured in 30 mM [K+]o for 12 h in the presence of 0.1% DMSO (control) or isradipine (0.1 µM or 10 µM) prior to NF200 labeling. 

Percent survival represents the number of SGNs at the relative to the vehicle control at the end of the depolarization period. By 2-way ANOVA, 
isradipine had a significant effect (F(2, 18) = 22.68, p < 0.001; n = 4 cultures/genotype), but there was no difference between genotypes (F(1, 18) = 
0.26, p = 0.617).

***
% survival was significantly reduced compared to control, p < 0.001 (t(18) = 4.27 for WT;

**
t(18) = 4.89 for C-KO), Bonferroni’s post-hoc test.
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