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Abstract

The brain connectome provides an unprecedented degree of information about the organization of 

neuronal network architecture, both at a regional level, as well as regarding the entire brain 

network. Over the last several years the neuroimaging community has made tremendous 

advancements in the analysis of structural connectomes derived from white matter fiber 

tractography or functional connectomes derived from time-series blood oxygen level signals. 

However, computational techniques that combine structural and functional connectome data to 

discover complex relationships between fiber density and signal synchronization, including the 

relationship with health and disease, has not been consistently performed. To overcome this 

shortcoming, a novel connectome feature selection technique is proposed that uses hypergraphs to 

identify connectivity relationships when structural and functional connectome data is combined. 

Using publicly available connectome data from the UMCD database, experiments are provided 

that show SVM classifiers trained with structural and functional connectome features selected by 

our method are able to correctly identify autism subjects with 88 % accuracy. These results 

suggest our combined connectome feature selection approach may improve outcome forecasting in 

the context of autism.

1 Introduction

Improvements in computational analyses of neuroimaging data now permit the assessment 

of whole brain maps of connectivity, commonly referred to as the brain connectome [7]. The 

brain connectome provides unprecedented information about global and regional 

conformations of neuronal network architecture (or network architecture for short) that is 

particularly relevant as it relates to neurological disorders. For this reason, the brain 

connectome has recently become instrumental in the investigation of network architecture 

organization and its relationship with health and disease, notably in the context of 

neurological conditions such as epilepsy, autism, Alzheimer’s, and Parkinson’s. In general, 

Correspondence to: Brent C. Munsell.

HHS Public Access
Author manuscript
Med Image Comput Comput Assist Interv. Author manuscript; available in PMC 2018 June 
21.

Published in final edited form as:
Med Image Comput Comput Assist Interv. 2016 October ; 9901: 9–17. doi:
10.1007/978-3-319-46723-8_2.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



two connectome categories exist: (1) a structural connectome that is reconstructed using 

white matter fiber tractography from diffusion tensor imaging (DTI), and (2) a functional 
connectome that is reconstructed using resting-state time-series signal data from blood 

oxygen level dependent (BOLD) functional MRI (rsfMRI).

In mathematical terms, a connectome is a weighted undirected graph, where nodes in the 

graph represent brain regions (defined in an anatomical parcellation, or brain atlas), and the 

edge that connects two different nodes is weighted by a value that represents the level of 

neural-connectivity, or information exchange. To better understand how the brain network is 

organized, network analysis algorithms [4] are applied to the connectome to reveal the 

underlying network architecture of the brain, which can then be used to quantify the 

differences between healthy and disease conditions. Currently, network analysis techniques 

have mainly been applied to just structural or functional connectivity data. However, 

research that combines both types of data [1,5,6,8] to better understand functional and 

structural connectivity relationships has gained attention in recent years.

Here a novel combined connectome feature selection technique is proposed that uses 

hypergraphs to discover latent relationships in node-based graph theoretic measures found in 

structural and function connectomes. The primary rational behind selecting features where 

structural and functional connectivity agree, is that fiber density and signal synchronization 

similarities are likely to be correlated, and when combined these similarities may be easier 

to identify and quantify. More specifically, for each diagnosis label (i.e. disease and healthy) 

the proposed feature selection technique uses a hypergraph learning algorithm to find a 

hypergraph Laplacian graph that combines structural and functional node-based connectivity 

measures. A hierarchical partitioning algorithm is then applied to the hypergraph Laplacian, 

which in turn creates a code vector that encodes structural and functional connectivity 

similarities. The resulting code vectors are then used to create a binary weight vector that 

only selects brain regions associated with structural or functional node-based connectivity 

measures capable of differentiating the disease condition from the healthy one. Lastly, the 

selected structural and functional connectome features are used to train a SVM classifier that 

can predict diagnosis label of subjects not included in the training procedure.

2 Materials and Methods

2.1 Participants and MRI Data Acquisition

All participant data was acquired from the publicly available University of Southern 

California (USC)/University of California Los Angeles (UCLA) multimodal connectivity 

database1 (UMCD). In particular, high-functioning children and adolescents with an autism 

spectrum disorder (ASD), and healthy control (HC) children and adolescents were recruited. 

In total, the autism study has 70 participants (35 ASD and 35 HC) that had both rsfMRI and 

DTI scan data. A complete list of all the demographic data, including the scan parameters, 

from the original study can be found at [5].

1http://umcd.humanconnectomeproject.org.
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2.2 Preprocessing and Connectome Reconstruction

Functional preprocessing steps were performed using the FSL2 and AFNI3 software 

libraries. In general, the following steps were performed: skull stripping, slice timing 

correction, motion correction with rigid-body alignment using MCFLIRT, geometric 

distortion correction using FUGUE. Structural pre-processing steps were performed using 

the FSL and Diffusion toolkit4 software libraries. In general, the following steps were 

performed: skull stripping, eddy current correction, motion correction with rigid-body 

alignment using MCFLIRT, voxel-wise fractional anisotropy (FA) estimation, and fiber track 

assignment using FACT algorithm. A complete overview of all the preprocessing steps can 

be found at [5].

The FSL FEAT query function is then applied to the functional and structural preprocessed 

images. In particular, the atlas proposed in Power et al. [2] defines m = 264 ROIs that are 

represented by a 10 mm diameter sphere. A symmetric m × m functional connectivity matrix 

Cf is constructed using the extracted ROIs, where each element in the functional 

connectivity matrix reflects the signal synchronization between two ROIs, which is 

estimated by computing the correlation between two discrete time-series rsfMRI signals. 

Likewise, a symmetric m × m structural connectivity matrix Cs is constructed using the same 

ROIs, where each element reflects the average number of fiber tracks, or fiber density, that 

connect the two ROIs.

2.3 Node-Based Connectome Feature Vector

The next step is to convert the values defined in C into node-based connectome feature 

vector cα = (cα1, …, cαm) using the betweenness centrality graph-theoretic connectivity 

measure, where α = s represents a node-based structural connectome feature vector, and α = 

f represents a node-based functional connectome feature vector. Betweenness centrality is a 

global measure that represents the fraction of shortest paths that go through a particular node 

(or brain region) defined in the connectome. The betweenness centrality measure for node i 
is

cαi = 1
m − 1 m − 2 ∑

h, j ∈ m

ρh j
i

ρh j
, (1)

where h ≠ j, h ≠ i, j ≠ i, The number of shortest path between node h and j is represented by 

ρhj, the number of these shortest paths going through node i is represented by ρh j
i . This is 

normalized to a value in [0 1], where (m − 1)(m − 2) is the highest score attainable in the 

network.

2http://www.fmrib.ox.ac.uk/fsl.
3https://afni.nimh.nih.gov/afni/.
4http://trackvis.org/dtk/.
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2.4 Combined Connectome Feature Selection

Given a training data set A = aϕ ϕ = 1
n

 of n ASD subjects we compute set of graph 

Laplacians Lϕ ϕ = 1
n

, where aϕ = (cϕs | cϕf) is a 2m dimension feature vector that combines 

structural and functional node-based connectome values for subject ϕ. To do so, we first 

create a complete bipartite graph Gϕ = (cϕs, cϕf, Eϕ) for each subject, where the edge that 

connects structural node i to functional node j in the bipartite graph is weighted by wij = 1 − 

|csi cfj|. The proposed edge weight strategy has a very straight forward and intuitive meaning: 

If two brain regions both have similar connectivity values then wij ≈ 1, conversely if two 

brain regions do not have similar connectivity values then wij ≈ 0.

A 2m × m2 dimension hypergraph incidence matrix Hϕ for subject ϕ is then created using 

Gϕ. Because we use bipartite graph, it’s important to note that each hyper-edge only 

represents the structural-functional relationship between two node-based connectome 

features. Once Hϕ is found, the normalized hypergraph Laplacian5

Lϕ = I − Dv
−1/2HϕDe

−1Hϕ
t Dv

−1/2 (2)

is computed [11], where Dv is a diagonal matrix that defines the strength for each vertex in 

Hϕ, De is a diagonal matrix that defines the strength for each edge in Hϕ, and I is the identity 

matrix. In general, our design has two advantages: (1) we only identify functional and 

structural connectivity relationships just between two different regions in the brain, and (2) 

the resulting hypergraph Laplacian is very sparse. A median hypergraph Laplacian Lm is 

then found using each subject specific hypergraph Laplacian in Lϕ ϕ = 1
n

, where Lm(i, j) = 

median({L1(i, j), L2(i, j), …, Ln(i, j)}).

Eigen decomposition is applied to Lm creating a 2m dimension embedding space and then a 

hierarchical partition is performed as illustrated in Fig. 1. More specifically, each embedding 

space partition in the hierarchy defines three cluster groups: (1) clusters that only have DTI 

brain regions, (2) clusters that only have rsfMRI brain regions, and (3) clusters that have 

both DTI and rsfMRI brain regions. At each partition the three cluster groups are found 

using the well-known normalized spectral clustering technique in [10]. However, instead of 

using a k-means algorithm the density estimation algorithm in [3] is applied, primarily 

because the number of clusters is automatically found and outliers can be automatically 

recognized and excluded. As shown in Fig. 1, the DTI and rsfMRI brain region cluster 

becomes the search space for the next partition in the hierarchy, and terminates when a DTI 

and rsfMRI brain region cluster does not exist.

In our approach, each partition level in the hierarchy represents a unique integer code, and 

partitions at the top of the hierarchy represent brain regions that show low structural and 

functional connectivity similarities (i.e. low code value), and partitions near the bottom of 

5In our approach each hyper edge has the same influence, therefore W is the identity matrix and is omitted in Eq. (2).
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the hierarchy represent brain regions that show high structural and functional connectivity 

similarities (i.e. large code value). Lastly, a code vector xad = (xs1, xs2, …, xsm, xf1, xf2, …, 
xfm) is created using the code values in partition hierarchy, and then normalized by simply 

dividing all the code values by the height of the partition hierarchy.

This exact same procedure outlined above is then applied to a training set of HC subjects, 

and a HC code vector xhc is produced. Next, a weight vector

w = xad − xhc (3)

is created, where a weight value close to one represents structural or function brain regions 

that have dramatically different code values, which suggests these regions may better 

differentiate the disorder from the normal condition. On the other hand, a weight value close 

to zero represents structural or function brain regions that have the same (or very similar) 

code values, which suggests these regions may not be able to differentiate the disorder from 

the normal condition. Lastly, we make w binary by applying a threshold, i.e. wi ≥ th = 1 and 

wi < th = 0. The primary motivation behind making the weight vector binary was to reduce 

the number of dimensions, which in turn will reduce the amount of error that may be 

introduced into the chosen classifier.

2.5 Linear SVM Classifier

Using a training data set A = aϕ ϕ = 1
n

 that now includes both ASD and HC subjects, the 

binary diagnosis labels y = (y1, y2, …, yn), e.g. ASD = 1 and HC = 0, and the binary weight 

vector w, a linear two-class SVM classifier based on the LIBSVM library6 is trained. In 

particular, the binary values in w is applied to each feature vector in A, creating a new sparse 

training data matrix Ã. Finally, a SVM classifier is trained using Ã. Once the SVM classifier 

is trained, the diagnosis label of a subject not included in the training data set can be 

predicted as follows: First compute a = (cs | cf), then create sparse feature vector ã = (a1w1, 
a2w2, ⋯, a2mw2m) by applying learned binary weights, and lastly calculate the predicted 

diagnosis label y using trained SVM classifier, where the sign of the y (i.e., y ≥ 0 or y < 0) 

determines the diagnosis label.

Since the proposed combined connectome feature selection has two free parameters, i.e. 

number of Eigen-values (or dimensions) used by cluster algorithm (d) and binary weight 

threshold (th) a grid search procedure is performed that uses 10-fold cross validation 

strategy. Specifically, an independent two-dimension grid-search procedure is performed for 

each left-out-fold, where the value stored at grid coordinate (d, th) are the mean and standard 

deviation values for the accuracy (ACC), sensitivity (SEN), specificity (SPC), negative 

predictive value (NPV), and positive predictive value (PPV) measures. In particular, d is 

adjusted at increments of 1 starting at 1 and ending at 2m, and th is adjusted at increments of 

0.05 starting at 0.1 and ending at 1.0. Lastly, when the grid-search procedures completes the 

parameter values that have the highest ACC and PPV scores are selected.

6http://www.csie.ntu.edu.tw/∼cjlin/libsvm.
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3 Results

The grid search parameters the yielded the best ACC and PPV classification results are d = 3 

and th = 0.8. To assess the performance of the proposed feature selection method, SVM 

classifiers are also trained using structural and functional connectome features in training 

data set A that are selected by: (1) a linear regression technique that includes ℓ1 

regularization (i.e. Lasso), and (2) no feature selection. As shown in Table 1, a SVM 

classifier trained using structural and functional connectome features selected by the 

proposed method is the most accurate at 88.3 %, can predict the disease case (i.e. PPV) 

approximately 87.2 % of the time, and consistently shows the highest sensitivity, specificity, 

and NPV.

The bar plots in Fig. 2 show the median7 structural and functional weight values found using 

Eq. (3) when grid search parameter th = 0.8 is used. The SVM classifier in Table 1 is trained 

only using the node-based connectivity values from the selected 47 regions (24 structural 

regions and 23 functional regions) also shown in Fig. 2. In general, the 47 regions have 

largest difference in code values, which suggests the structural and functional connectivity 

characteristics in these brain regions are significantly different between ASD and HC 

subjects.

Lastly, Fig. 3 shows the median (See footnote 7) top, middle, and bottom DTI and rsfMRI 
regions in the learned partition hierarchy. Included are tables that list the brain regions in the 

bottom level (i.e. last partition) of the hierarchy. These regions have the most similar 

structural and functional connectivity characteristics. Note: The term shared in this figure 

means in this grouping the same brain region is present in both connectomes.

4 Conclusion

A novel connectome feature selection technique is proposed that uses a hypergraph learning 

algorithm to identify brain regions that have similar structural and functional connectivity 

characteristics. Compared to other well-known feature selection techniques, SVM classifiers 

trained using structural and functional connectome features selected by our method are 

significantly better than SVM classifiers trained using connectome features selected by a 

state-of-the-art regression algorithm. Furthermore, since our approach converts a subject 

specific complete bipartite graph to an incidence matrix, the resulting incidence matrix is 

very sparse, which in turn greatly improves the space and time complexity of our approach. 

Visualizations that display brain regions in the top, middle, and bottom partitions in the 

proposed partition hierarchy show significant structural and functional connectivity 

differences in ASD and HC subjects and as seen in Fig. 3. Lastly, even though the 

betweenness centrality node-based connectivity measure is used, our method achieved 

similar accuracy and PPV classification results (mean ± 3 %) when replaced by the 

Eigenvector centrality or clustering coefficient connectivity measures.

7Median value is found using the results from all 10 folds.
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Fig. 1. 
Hierarchical partition approach. Each partition level in the hierarchy has a unique integer 

code value that represents structural and functional connectivity similarities between brain 

regions.
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Fig. 2. 
Bar plots that show the median weight values for each node-based connectome feature 

(structural and functional) found by Eq. (2). The SVM classifier in Table 1 was trained only 

using the node-based connectivity values from the selected 47 regions. Approximately 91 % 

reduction in node-based connectome features
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Fig. 3. 
Visualizations that show the DTI and rsfMRI regions in the top, middle, and bottom 

partitions (see Fig. 1 for design of partition hierarchy). The tables summarize the brain 

regions in the bottom partition of the hierarchy.
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