
An Overview of Network-Based and -Free Approaches for
Stochastic Simulation of Biochemical Systems

Abhishekh Gupta and Pedro Mendes*

Center for Quantitative Medicine and Department of Cell Biology, University of Connecticut
School of Medicine, 263 Farmington Av., Farmington, CT 06030-6033, USA

Abstract

Stochastic simulation has been widely used to model the dynamics of biochemical reaction

networks. Several algorithms have been proposed that are exact solutions of the chemical master

equation, following the work of Gillespie. These stochastic simulation approaches can be broadly

classified into two categories: network-based and -free simulation. The network-based approach

requires that the full network of reactions be established at the start, while the network-free

approach is based on reaction rules that encode classes of reactions, and by applying rule

transformations, it generates reaction events as they are needed without ever having to derive the

entire network. In this study, we compare the efficiency and limitations of several available

implementations of these two approaches. The results allow for an informed selection of the

implementation and methodology for specific biochemical modeling applications.

Keywords

stochastic simulation; modeling; network-based; network-free; rule-based modeling; systems
biology

1. Introduction

Research in systems biology has been increasingly supported by computational models of

biochemical reaction networks. These models are studied either through a deterministic

approach, using differential equations to represent the temporal changes of the

concentrations of the chemical species, or via a stochastic approach based on the chemical

master equation (CME) and solved through Monte Carlo simulation algorithms. Although

the deterministic approach of solving a set of differential equations by numerical integration

Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative
Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
*Correspondence: pmendes@uchc.edu; Tel.: +1-860-679-3783.

Supplementary Materials: The following are available online at www.mdpi.com/2079-3197/6/1/9/s1: File S1: archive containing
model files, raw timing data, and analysis scripts.

Author Contributions: A.G. and P.M. conceived and designed the experiments and wrote the paper; A.G. performed the experiments
and analyzed the data.

Conflicts of Interest: A.G. is one of the authors of SGNS2; P.M. is one of the authors of COPASI. The authors declare no financial
conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data;
in the writing of the manuscript; or in the decision to publish the results.

HHS Public Access
Author manuscript
Computation (Basel). Author manuscript; available in PMC 2018 June 21.

Published in final edited form as:
Computation (Basel). 2018 March ; 6(1): . doi:10.3390/computation6010009.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by/4.0/

is fast and widely adopted, it is unable to estimate the variance of the species concentrations

and can become inaccurate for systems with a small number of particles [1]. In these

situations, the stochastic approach of using a Monte Carlo simulation algorithm for

evaluation of the CME is preferred.

The CME is a very high dimension differential equation that describes the evolution of the

entire state space. Direct solutions of the CME are rare and apply only to very small

systems. In practice, the CME is solved by applying a simulation algorithm that provides an

exact solution in the Monte Carlo sense (i.e., by summation of many simulated trajectories).

Gillespie derived an algorithm that satisfies this requirement [2]. This is often referred to as

the Gillespie algorithm, although Gillespie himself referred to it as the stochastic simulation
algorithm (SSA). In fact, Gillespie provided two variants of the algorithm, the direct method
and the first reaction method, with the direct method being the most widely used. Gillespie’s

SSA has been further improved for computational efficiency [3–5] and there have been

several implementations of these algorithms in software for computational systems biology.

For example, there are software applications, such as COPASI [6], VCell [7], and StochPy

[8], which provide user-friendly platforms to create and simulate models using the SSA and

include other features to further analyze the model and simulation results. Furthermore,

there are other lightweight programs developed specifically to simulate models using the

SSA, namely Dizzy [9], Gillespie2 [10], SGNS2 [11], RoadRunner [12] and pSSAlib [13].

All these simulators require the full set of reactions—the reaction network—to be

enumerated beforehand and thus are sometimes termed “network-based”.

There are several cases in which a biochemical network is very large or limitless. A

particularly common occurrence is given by some signal transduction networks that contain

proteins with multi-site phosphorylation, leading to combinatorial numbers of chemical

species and reactions between them [14–16]. Another case is that of the formation of

polymers with an unlimited number of monomers. In order to model such systems, an

approach has been developed in which sets of similar reactions are defined by rules that

apply to sets of species specified by patterns [17–19]. This formalism results in a concise

model specification of the underlying chemical kinetics [20,21]. The most common rule-

based modeling languages are the BioNetGen language (BNGL) [17] and Kappa [22]. The

BNGL simulator, BioNetGen [17,23], operates by deriving the reaction network specified in

the reaction rules and then applying the SSA for simulation. On the other hand, rule-based

simulators such as KaSim, PySB [24], RuleMonkey [25] and NFsim [19] carry out

simulations directly on the basis of reaction rules without deriving the entire reaction

network, and accordingly these have been termed “network-free”. At its core, all these

simulators are based on Gillespie’s method, as rules are sampled at each time interval using

a method equivalent to how reactions are sampled in the SSA.

In this review, we compare these two stochastic simulation approaches and several popular

software implementations in the context of models with different complexity. The

comparison addresses issues such as the number of particles, species, and reactions, as well

as the length of the simulation.

Gupta and Mendes Page 2

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2. Network-Based Approach

The stochastic formulation of chemical kinetics describes the time evolution of a well-stirred

set of chemically interacting particles in thermal equilibrium within a fixed reaction volume

[1]. The time evolution of the number of particles of each species in the volume, on the basis

of the probabilities of all reactions that can occur in the system, is driven by the CME. As

already mentioned, the CME is rarely solved analytically, mostly because the number of its

terms grows exponentially with the number of species in the system.

An alternative to the analytical solution of the CME is to simulate the trajectories of

molecular populations in exact accordance with the CME, as proposed by Gillespie [2] (the

SSA). Each trajectory corresponding to a single SSA run represents an exact sample from

the distribution defined by the CME. The steps of SSA can be summarized as follows:

1. Initialize: Set the time t = 0 and set up the initial state vector, propensities, and

random number generators.

2. Execute: Using a suitable sampling procedure, generate random numbers and,

on the basis of these, determine the next reaction to occur and the time interval.

3. Update: Update the molecule count, and if needed, recalculate the propensities.

Output the system state.

4. Iterate: If simulation end time is not reached, go to step 2.

The two original, and statistically equivalent, sampling procedures for step 2 of the SSA are

the direct method (DM) and the first reaction method (FRM) [2]. The DM samples two

random numbers from the uniform distribution in the unit interval, and the time of next

reaction (τ) is first generated according to the probability function of reactions. Using τ, the

DM then generates the indices of reactions and selects the one to occur next. The FRM,

using a random number, generates “tentative reaction times” (τv) for all the reactions and

then selects the reaction with the smallest τv. Because the FRM needs to generate many

more random numbers per iteration than the DM (for systems with three or more species),

the DM is generally the procedure implemented for the sampling in step 2 of the SSA [2].

Gibson and Bruck proposed the next reaction method (NRM) [4] that can reduce the

computational costs of the SSA significantly. In addition to using one random number per

iteration, to reduce the time to update propensities and to find the smallest τv value, the

NRM uses an indexed priority queue to store the τv values generated in previous iterations

and to extract them whenever required. This results in a significant improvement in the

runtime performance when compared to the FRM. This algorithm is exact as well as

efficient. For large reaction networks and loosely coupled reaction systems, the NRM is

significantly faster than both the FRM and the DM. This advantage, however, may not be

significant for small systems, as the computational cost of maintaining the additional data

structures required dominates the simulation time [5].

Other variants to accelerate the search for the next reaction in the SSA have been proposed,

such as the optimized direct method (ODM) [5], the sorting direct method (SDM) [26], the

Gupta and Mendes Page 3

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

partial-propensity direct method (PDM) [27], and the SSA with composition rejection

algorithm (SSA–CR) [28–30].

Besides the exact algorithms mentioned above, many others have been proposed that can

accelerate the simulation even further, but they do this by adopting approximations and no

longer provide exact solutions. A popular method is the τ-leaping algorithm [31], which

does not simulate each reaction event individually but rather steps a time-span τ and

estimates how many and which reactions have happened meanwhile. Many other variants of

this and other approximations have been proposed, including hybrid methods that partition

the system into a part that is simulated using differential equations and another that uses the

SSA or one of its variants (see review by Pahle [32]).

Most of the stochastic simulators provide options to choose between the DM and the NRM,

for example, COPASI [6], StochPy [8], and Dizzy [9]. Other simulators use only one of

these, with Gillespie2 [10] and RoadRunner [12] using only the DM, and SGNS2 [11] using

only the NRM. The pSSAlib software [13] allows selection between the DM, the PDM, a

sorting variant of the PDM (SPDM), and the SSA–CR. StochKit2 [33] provides several of

these, including the SSA–CR, but automatically selects which algorithm to use.

3. Network-Free Approach

To address the combinatorial complexity in biological signaling networks [14], originating

from multiple post-translational modifications and conformational changes, rule-based

modeling approaches have been developed [15,17,18,20–22,34]. At the core of these

approaches are reaction rules that represent groups of reactions. These rules refer to specific

binding sites with or without specific ligands. Rules can also specify different states of a

molecule (such as oxidized or reduced, phosphorylated or unphosphorylated, etc.). With

rule-based modeling it is easy to specify, with a few rules, a complex set of combinatorial

interactions in which several subunits can assemble into larger complexes and allow for

modification of specific moieties. This type of model specification is therefore very useful

for signal transduction networks in which these types of interactions are abundant.

The BNGL [17,35–37], the κ-language [18], and ρbio-calculus [38] are some examples of

formalisms developed for biochemical rule-based modeling. While the BNGL can be

processed by different software applications (BioNetGen [23,36], DYNSTOC [25],

RuleMonkey [39], and NFsim [19]), the other languages are mostly restricted to being

processed by a single software package. The BioNetGen software package expands a BNGL

rule-based model to a reaction network, which is then simulated using a variety of

deterministic and stochastic network-based methods. However, when a rule-based model can

result in a large reaction network, the expansion as well as the simulation of such a network

becomes computationally expensive. For such scenarios, the generation of the reaction

network can be avoided by a network-free simulation approach.

DYNSTOC [25] uses an agent-based null-event stochastic simulation approach based on an

earlier package, STOCHSIM [40]. In this approach, each of the reactive molecular

components are represented as a software object (agent), and these are tracked individually

Gupta and Mendes Page 4

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

during the simulation. More specifically, for each fixed time increment, on the basis of a

decision to select either one or two molecules for the next reaction, the reactants are first

chosen randomly. Then the rules that qualify for the interaction on the basis of the chosen

reactants are shortlisted, and for the reaction with the highest probability, an update is

performed using a graph-rewriting operation.

Unlike DYNSTOC, which uses a fixed time-step, RuleMonkey [39] has a variable time

increment, and rules are represented as pattern graphs. The simulation procedure is similar

to the SSA [2], as the time increment and rule selection are based on the DM. Once a rule to

execute next is chosen, the most potential reactants are selected on the basis of the pattern

graphs and are then used to update the state of system. As such, RuleMonkey uses iterative

updates to track rule rates exactly, avoiding null events that do not change the state of the

system being simulated [41]. NFsim [19] is another rule-based simulator, using a

generalized algorithm [42] also based on the SSA. Contrary to RuleMonkey, NFsim

introduces null events in its implementation [41]. While both RuleMonkey and NFsim have

been shown to perform similarly over a wide parameter range [41], NFsim has the additional

capabilities of defining functional rates and coarse-grained rules. It uses an efficient

representation of molecules, complexes, and rules as well as an optimized handling of

reactant selection and transformation.

These network-free simulators, unlike the network-based SSA simulators, scale with the

number of rules rather than the number of reactions and thus should be very efficient for

systems in which a few rules can represent a large number of reactions [37]. While this is

true for networks with limited interacting particles, the network-free simulators might not be

as efficient, given they represent each particle individually. The particle-specific events, such

as aggregation and polymerization, make the computational cost even higher. On the other

hand, although the network-based simulators are dependent on the number of reactions, their

efficiency is not affected greatly by the number of molecules [37]. As such, network-based

simulators may be preferred for systems with large particle numbers and a moderate reaction

network.

All of the approaches described have difficulties when there are large numbers of particles

and a large reaction network. To address this situation, there have been efforts to develop

hybrid methods [37,43–45]. The hybrid particle-population-based approach [37] is reported

to be exact and efficient but requires a predefined partition of the system into network-free

and -based parts. Because these hybrid approaches are based on the partitioning of the

models, it is important to identify limits of both network-based and -free approaches such

that automatic identification of different parts of the network could be created on the basis of

this information [37].

4. Benchmarking Stochastic Simulation

4.1. Simulators

A survey of the literature reveals that several of the stochastic simulators described above are

regularly used in computational systems biology but to our knowledge have never been

compared for performance in a systematic way. Given that in stochastic simulation one must

Gupta and Mendes Page 5

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

define the time-dependent distribution (or at least some statistics of this distribution, such as

the mean and standard deviation), this usually requires repeating simulations many times;

thus the performance of the simulators used may be a critical factor. We profiled a number of

the most widely used simulators with a set of models of increasing complexity. The intention

was not only to compare simulators on the basis of similar algorithms, but also to compare

the different algorithms used. We note that we only considered software implementing

methods that are exact solutions of the CME; approximate and hybrid methods were

excluded.

We identified a series of commonly used and freely available network-based and -free

simulators, which are listed in Table 1. Because we needed to profile these on the same

computer to be able to compare them, only software packages that could be run on a local

machine were included. Moreover, to be able to specify the same model across all of these,

we used models specified with the BNGL; thus we restricted the selection to packages that

could either process BNGL directly or could import models in the systems biology markup

language (SBML) [46] (BioNetGen was used to generate the reaction network and export it

in SBML format). Three exceptions were included: KaSim, which uses the κ-language

rather than BNGL; pSSAlib, which has an implementation of the PDM and the SSA–CR;

and StochKit2, which has an implementation of the SSA–CR. For KaSim, we translated the

models into the κ-language. For pSSAlib, we created a program that converts the standard

SBML into the specific dialect it can understand (while pSSAlib claims to read SBML, it

requires specific annotations in the files). For StochKit, we used the SBML converter that

was provided with that package.

4.2. Models

To compare the performance of simulators under different conditions, we selected models

with increasing complexity, as quantified by the number of species and reactions. Table 2

summarizes the models considered in this study. The first two models, “multi-state” and

“multi-site”, are conceptual and have been used for the illustration of basic biochemical

networks. We expected the derivation as well as simulations of these models to be fast, as

they have a small number of species and reactions. The remaining three models were

originally formulated to study specific signaling networks. They are more complex than the

previous two and allowed us to test the simulators under more realistic conditions.

The multi-state model is composed of three species, R, L, and A; R and L can form a

complex “R.L”, and the latter can dissociate back to the monomers. The species A can bind

to R, and it can exist in a phosphorylated or unphosphorylated state (see Figure A1 for

details). This model was previously described in [17,25].

The multi-site model contains the same three species, but here A has three different

phosphorylation sites; L binds A to any of its phosphorylated sites, and R binds A to its

unphosphorylated sites (see Appendix A, Figure A2).

The Epidermal growth factor receptor (EGFR) signaling model describes the early signaling

events in the epidermal growth factor receptor cascade [47]. Besides the epidermal growth

factor and its receptor, the model consists of the adapter proteins Grb2 and Shc, and EGF-

Gupta and Mendes Page 6

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

induced activation of the guanine nucleotide exchange factor Sos. The reaction network

described by this model contains 356 molecular species and 3749 reactions (see Appendix

A, Figure A3 and Supplementary model file for details).

The B-cell receptor (BCR) signaling model has been used to investigate the early events in

B-cell antigen receptor signaling [48], particularly the roles of the Src family protein

tyrosine kinases Lyn and Fyn, which regulate the activities and fates of B cells. The model

includes 1152 species and 24,388 reactions (see Appendix A, Figure A4 and Supplementary

model file for details).

Finally, the high-affinity human IgE receptor (FcεRI) signaling model represents the early

events in Fc epsilon receptor (FcεRI) signaling [49]. This model consists of the interactions

between FcεRI, Lyn, Syk, and a bivalent ligand that aggregates FcεRI. Several variants of

this model have been used previously for testing the performance of some network-free

simulators [19]. In this study, we used the variant with 2 γ sites in the receptor, which

consists of 24 rules, generating a network with 3744 species and 58,276 reactions (see

Appendix A, Figure A5).

To include even larger networks, we attempted to use a model of ErbB-mediated activation

of the protein kinases ERK and AKT [50] and a model of early T-cell receptor signaling

[51]. Both these models are composed of hundreds of rules each, and we were unable to

generate the network with BioNetGen because of the excessive memory requirement by this

application (in a computer with 32 GB of RAM). Therefore, these were not used for the

profiling, and they are examples of systems that currently can only be simulated with

network-free methods.

5. Results

We performed two sets of tests to probe the performance and scaling of each simulator. The

first set was intended to test how the simulators behave in the presence of increasing

numbers of particles in the system. This was achieved by setting increasing values for the

initial conditions of each species (summarized in Appendix B, Table A1). In the second set,

we tested how the simulators scale in increasingly longer simulations, which was achieved

by requesting longer end times (Appendix B, Table A1).

5.1. Increasing Numbers of Particles

We ran simulations of all the models in Table 2 for a fixed end time of 100 s (simulation

time), using the initial conditions in Appendix B, Table A1. Figure 1 depicts the behavior of

each simulator for increasing molecule numbers and for each model.

For the multi-state model (Figure 1A), we found that BioNetGen, pSSAlib, and SGNS2

were the fastest. Interestingly, for initial conditions with very few molecules, the network-

free implementations KaSim, NFsim, and RuleMonkey were faster than the remaining

network-based SSA implementations; however, they become slower than other tools for a

larger number of molecules. The execution times of the network-based COPASI (both in

DM and NRM), Dizzy, and RoadRunner applications were mostly invariant with the number

Gupta and Mendes Page 7

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of molecules, indicating that these tools have a large overhead at the time of loading the

model but otherwise were fast. DYNSTOC was fast for very few molecules but very quickly

became the slowest, showing the extreme dependency of this approach on the number of

particles in the system. Finally StochPy was the second slowest. This was partly perhaps it is

written in an interpreted language (Python), but also because this tool outputs every single

reaction event, unlike the other tools that allow arbitrary sampling intervals (here we

requested them to produce 1000 intervals along the time course; see Methods).

For the multi-site model, the scaling of the execution times with the number of particles was

qualitatively similar for all simulators. Although there were clear differences between their

execution times, as shown in Figure 1B, there was no clear separation between the network-

free and -based implementations. While NFsim was faster than some of network-based

simulators, it was slower than BioNetGen, addedpSSAlib, RoadRunner, SGNS2 and

StochKit2. These simulators, along with COPASI and RuleMonkey, completed all the

simulations within 100 s of a wall-clock time. On the other hand, for large number of

particles, Dizzy, Gillespie2 and KaSim took more than 100 s to complete.

In the EGFR signaling model, only 8 of the 13 simulators could complete all simulations

within a threshold of 2000 s. For this model, in the lower extreme of the molecule numbers,

NFsim and RuleMonkey were the fastest. However with an increasing number of molecules,

BioNetGen and pSSAlib_SPDM became the fastest (Figure 1C). Under these conditions, the

execution times of NFsim and RuleMonkey became similar to those of COPASI and

RoadRunner.

The BCR signaling model could not be simulated using RuleMonkey because of a “Non-

binding bimolecular reaction” error (meaning that it could not deal with the complete

BNGL). The conversion of the SBML model to the StochKit2 format could not completed,

and therefore it was not benchmarked. Among the remaining six simulators,

pSSAlib_SPDM was the fastest for a larger number of molecules. For a low number of

molecules, pSSAlib_SPDM was slower than BioNetGen, NFsim and SGNS2. All of these

closely followed pSSAlib_SPDM, with a similar scaling of their execution times for a larger

number of molecules. On the other hand, COPASI and RoadRunner had a visibly large

overhead at the start but scaled less dramatically with the increase in the number of particles.

For a larger number of particles, COPASI, NFsim, pSSAlib_SSACR and RoadRunner could

not complete the simulations within a threshold of 5000 s (wall-clock time).

Both COPASI and RoadRunner were not able to load the FcεRI signaling model within

5000 s. Although pSSAlib_SPDM had a significant overhead, it had a constant time scaling

of the execution time and was the fastest for a large initial number of molecules (See

Appendix A, Figure A6); pSSA_SSACR, on the other hand, scaled almost linearly and could

not complete all simulations within 5000 s. For the other three simulators, we observed

execution time patterns similar to that of the BCR signaling model. BioNetGen was

followed by SGNS2, which was marginally slower than NFsim. Given that for this model,

the derivation of the network from BNGL takes a considerable amount of time, the choice of

using NFsim appears to be advantageous (see Appendix A, Figure A6).

Gupta and Mendes Page 8

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5.2. Dependency on the Simulation End Time

In the second test, we measured the execution times as a function of the simulation end time,

keeping the initial number of molecules fixed. Figure 2 depicts the scaling of the execution

times with different simulation end times for all the models and simulators.

The results for the multi-state model (Figure 2A) were similar to those of the previous test

with increasing initial molecule numbers. Again, DYNSTOC and StochPy were the slowest.

For this model, we observed a clear separation of the network-free implementations and the

other network-based simulators. More specifically, we found that network-based simulators,

except StochPy, were either very fast or invariant with the increasing simulation end time.

On the other hand, all the network-free simulators became slower with increasing simulation

end time. Also consistent with the previous results on particle numbers, the network-based

simulators were the fastest for longer simulation end times.

For the multi-site model (Figure 2B), we found that the execution times of all the simulators

scaled similarly to the multi-state model. For this model, only 9 of the 13 simulators

completed all simulations within a threshold of 2000 s. DYNSTOC, StochPy, KaSim and

Dizzy could not complete all the simulations; pSSAlib_SPDM was the fastest throughout all

the simulation end times, followed by BioNetGen, RoadRunner, NFsim, SGNS2 and

StochKit2.

For the EGFR signaling model (Figure 2C), COPASI and RoadRunner could not complete

all the simulations within 5000 s. Only NFsim and RuleMonkey (network-free) and

BioNetGen, pSSAlib, SGNS2 and StochKit2 (network-based) were able to finish all

simulations under the time threshold. The network-based simulators were significantly faster

than the network-free simulators, whose execution times were in a range similar to those of

COPASI and RoadRunner (for the simulations that they could finish).

COPASI and RoadRunner had significantly long execution times for the BCR signaling

model (Figure 2D), despite that this increased minimally with the simulation end time. Once

again, this is a reflection of these tools’ overhead in model loading and associated “house-

keeping tasks”. It should be noted that, as in the first test, RuleMonkey and StochKit could

not be used for comparison. Only BioNetGen, NFsim, pSSAlib, and SGNS2 were able to

run all the simulations and scale with a similar pattern; pSSAlib_SPDM was the fastest.

These simulators were also the only simulators that could run the FcεRI signaling model in a

reasonable time (Figure 2E). Once again, pSSAlib_SPDM had a constant time scaling of the

execution time and was the fastest for larger simulation end times; pSSAlib_SSACR could

not complete all the simulations within the time threshold of 5000 s. BioNetGen was the

second fastest, and only a marginal difference was seen between the execution times of

NFsim and SGNS2. In the execution times of the FcεRI signaling model, it appeared that

NFsim was starting to become competitive with the network-based simulators. Given the

time taken to generate the network from rules, there could be an advantage to using this

network-free simulator for models of this dimension.

Gupta and Mendes Page 9

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

6. Discussion

Benchmarking several simulators on the basis of different network-based or -free algorithms

has revealed interesting patterns. The benchmarks have tested the scaling of the execution

times of simulators on the basis of two tests, namely, as a function of the number of particles

in the system and as a function of simulation end times. The first test was focused on

exposing issues depending on the number of particles in the system; the second test was

focused on exposing issues that arised closer to stable states (attractors). We note that most

realistic simulations should start from steady states rather than the idealized state of only a

few input molecules; biological systems are in stable states at the start of most experiments,

which usually apply a perturbation forcing a transition between stable states (either different

steady states or stable oscillations). Thus the behaviors over the longer times in the second

test were rather important.

The results of both the tests indicate that StochPy and DYNSTOC are the slowest

implementations. In the case of StochPy, a SSA–DM implementation, the tool is designed to

write the raw simulation output after each event, rather than to do so at a requested fixed-

interval output; thus we suspect that it spends a significant amount of time writing

(unecessary) output. Additionally, this tool is Python-based, an interpreted language, and

this likely also incurres a considerable time penalty. For DYNSTOC, the issue is rather

different and is due to the algorithm used, in which each molecule is tracked as an agent. At

very low molecule numbers for the simplest model, this tool was among the fastest, and it

scaled linearly with the number of molecules. Thus the problem is that this approach is not

able to deal with any reasonable number of molecules, which were present in every other

model tested. Thus we conclude that such a pure agent-based approach is not competitive.

The results show that, surprisingly, the network-based approach was always the fastest, not

only for small- and moderate-sized reaction networks, but also for the larger networks and

under all the conditions tested. For the simpler models, with a relatively low number of

species and with limited interactions, the lightweight simulators BioNetGen, Gillespie2,

pSSAlib_SPDM, and SGNS2 were significantly faster than all the others tested. Gillespie2

became slower when simulating larger models, but BioNetGen, pSSAlib_SPDM, and

SGNS2 remained very fast under all conditions tested.

An important aspect of rule-based modeling is the concept of “observables”, which are

functions of the species’ abundances. BioNetGen outputs the values of the observables, but

SGNS2 only outputs the species abundances; thus in order to obtain values of the

observables, the output of SGNS2 would require a further data processing step; pSSAlib

outputs data in separate files and requires a post-processing step for this purpose. Although

COPASI is slower, mostly as a result of a large overhead in model loading and preparing

data structures, it can also readily output the values of the observables. RoadRunner run

times are approximately similar to COPASI’s, but it has the same problem of requiring post-

processing as in SGNS2.

The network-based simulators tested spanned a range of different SSA approaches. Several

were based on the DM (Dizzy, StochPy, Gillespie2, BioNetGen, and COPASI_D), while a

Gupta and Mendes Page 10

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

couple used the NRM (COPASI_GB and SGNS2) and the CR (pSSAlib_SSACR and

StochKit2); pSSAlib_SPDM, which uses PDM, was found to be the fastest for the upper

extremes of our tests. In the SPDM, while the time spent on factoring out reaction

propensities did not pay off for a small number of molecules or short simulations, it did lead

to a significant efficiency when larger numbers of molecules were reached. Consequently,

for the FcεRI signaling model, pSSAlib_SPDM completed the simulation in half the time

taken by BioNetGen in the most extreme case tested—a considerable speed-up. The efficient

implementation of this method is, however, handicapped by the general usability of the

simulator. One setback is that the pSSAlib does not accept any SBML file, but requires

specific annotations, which other software do not include. This is particularly problematic

for rule-based models that are generated from the BNGL; these models usually have very

large numbers of reactions and adding the annotation manually is not practical.

As expected, the DM was observed to be less efficient than the NRM and CR. However, the

comparison of the DM against the NRM in the same package (COPASI) showed that the

difference is not large and is only apparent under conditions with large numbers of particles.

One notable exception to this was BioNetGen, which, while being a DM implementation,

was the fastest at all times. This might have been due to its implementation of the sorting

variant of the DM. Further efficiency seems to have been obtained by various code

optimizations (earlier versions of BioNetGen than that tested here were much slower), but

the same is true for SGNS2 (a NRM implementation). We noted, however, that BioNetGen

uses the standard C runtime rand() function, unlike SGNS2 and most other SSA

implementations, which use the Mersenne Twister [52], a much better-quality pseudo-

random number generator but that is slower (see Appendix A, Figure A7 for a comparison of

the two). The dangers of using poor pseudo-random number generators are well known

[53,54], and this could be a concern here, particularly for long simulation times. Also

surprising is that the SSA–CR implementations (both pSSAlib_SSACR and SStochKit2)

were not faster than the NRM, despite expectations of the contrary [28,30]. The expected

advantage of SSA–CR did not materialize in models with large numbers of reactions. Of

course, the efficiency of this implementation cannot be ruled out for other types of models

not tested here.

What are the advantages of network-free simulation? While the network-free simulators

were never the fastest with any of the models and conditions included here, there are clearly

situations in which they are needed. The use of network-free simulation is inevitable when

the derivation of the network is computationally challenging or impossible. For example,

complete models of the ErbB-mediated activation of ERK and AKT [50] and of early T-cell

receptor signaling [51] result in very large reaction networks, so large that BioNetGen is

unable to generate the corresponding reaction networks. Even if the network could be

derived, loading it in simulators such as COPASI and RoadRunner would require a

significantly long time. Network-free simulators are also essential to simulate systems with

infinitely linking molecules, such as models of polymerization, models of trivalent ligand

bivalent receptors (TLBRs), models of large complexes, and so forth. Among the network-

free simulators tested, NFsim was generally the fastest. Under some of the less-demanding

conditions tested (i.e., low molecule numbers and simpler models), RuleMonkey had a small

advantage, but otherwise it is clear that NFsim is currently the best choice. NFsim also

Gupta and Mendes Page 11

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

provides an option to define functional or conditional rate laws and complex rules. This

capability is particularly useful to model systems whose rates are affected by the availability/

unavailability of specific molecules. We also identified areas in which network-free

simulators require further improvements. For example, we were not able to simulate models

with reactions for which several of the bound moieties suffer a transformation (catalysis)

with any of the network-free simulators, as these aborted with errors when encountering the

catalysis, despite that BioNetGen easily generates their network (as it should). This is a

rather common occurrence that happens in every enzyme mechanism (because the reaction

between substrates happens with these bound to the enzyme). An example was a model of

the electron-transport chain [55], and another was a model of the cap-binding complex in

mRNA translation [56]. RuleMonkey was unable to run the BCR signaling model, aborting

with the error message “Non-binding bimolecular reaction”. These limitations in processing

valid BNGL rules affect both NFsim and RuleMonkey, but can hopefully be corrected in

future versions of these packages.

The present analysis revealed that the network-based (SPDM) simulation was the most

efficient method for all models tested. We hoped to have identified regimes in which

network-free simulation would be more competitive. This suggests that, while a rule-based

specification of the models is much simpler than enumerating all the reactions, simulation

via network-free implementations is not always efficient, unless the derivation of the

network from the rules is computationally intractable or there are infinitely linking species/

molecules in a model. It is possible that larger models than those tested here (but with a

finite number of reactions) may present conditions under which network-free simulation

outperforms network-based, but this is yet to be established. On the basis of the present

results, we have to conclude that for hybrid algorithms that integrate both of these

approaches (e.g., [37]), the only portion of the networks that should be partitioned to be

simulated by the network-free approach are those rules leading to the formation of infinite

linking chains, while the rest of the network should be simulated using the network-based

approach.

7. Methods

For each model, we prepared an input file appropriate for each simulator (see below); then

we verified that the simulation results quantitatively matched across all simulators (a sample

time trace of observables in each model is shown in Appendix A, Figures A1–A5). We

found that the numbers of particles output for all the simulators matched. A more thorough

test of the exactness of these implementations is beyond this scope, but could be carried out

using the SBML stochastic test suite [57].

7.1. Model Construction

BNGL specifications for all the models used in this study were retrieved from the respective

sources (Table 2). These BNGL files were used as direct input for DYNSTOC, RuleMonkey,

and BioNetGen. For NFsim, we generated appropriate XML files from the BNGL with

BioNetGen.

Gupta and Mendes Page 12

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Most other simulators used SBML as input; thus we used BioNetGen to generate the

network of reactions and write them out in SBML format. We found that the reaction kinetic

rate laws in the SBML files generated using BioNetGen were expressed in units of

concentration per time, rather than quantity per time as required in the SBML specifications.

We created a simple Perl script (see Supplementary file fixbbionetgensbml.pl) to correct the

BioNetGen SBML Level 2 output. Because a few simulators could only read SBML Level 1,

we used COPASI to create translations of the corrected Level 2 BioNetGen file to Level 1

(version 1) versions, which could then be read by RoadRunner, StochPy, Gillespie2, Dizzy

and SGNS2.

Two simulators, namely, KaSim and StochKit2, do not accept BNGL nor SBML files as

input. For KaSim, the first two model files were directly written in -language and then were

used as inputs. Because KaSim was rather slow for these models, we did not create -

language files for the remaining three models. For pSSAlib-specific SBML model files, we

used a Perl script to fill the required annotations into the SBML model file. StochKit2 has its

own format for input, but it is supplied with an SBML translator, sbmltostochkit, which was

used here to convert the corrected BioNetGen SBML files to its own input format. We note

that this converter did not succeed with the BCR and FcεRI signaling models (failed to

finish after a span of 24 h); thus these were not tested with StochKit2.

7.2. Simulations

We wanted to test the performance of the simulators with increasing numbers of particles

(molecules); thus for each model, we started different runs with increasing initial numbers of

molecules (see Appendix B, Table A1). All models were simulated for a fixed end time of

100 s. Another test was to investigate how the simulators behaved with increasing end times,

and in this case, the simulations were started with the same fixed number of molecules and

were asked to carry out longer simulations each time. In each simulation, the packages were

instructed to output 1000 samples at equal intervals along the time course (irrespective of

end time). The median values of execution times of five independent runs for each simulator

with each model and condition are shown in Figures 1 and 2. In both tests, we observed

quantitatively similar trajectories for the observables in the simulation results from all the

simulators.

For most of the network-based simulators, Gillespie’s DM was chosen to simulate the

models. Both the DM and NRM were used for simulation using COPASI. The NRM method

was used for simulation using SGNS2, as it was the only method available in this software.

As StochKit2 automatically chooses one method from a wide array of SSA methods on the

basis of the input model, to make it comparable with other simulators and to test the

constant-time SSA–CR, we adapted the StochKit2 source code to always run the SSA–CR.

The default simulation method was chosen for the network-free simulators. For NFsim, to

account for any differences that might have occurred as a result of on-the-fly computation of

the observables, we simulated the models in two scenarios: with and without on-the-fly

observable computation.

Gupta and Mendes Page 13

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

7.3. Analysis

The execution times were recorded using gtime, a GNU implementation of time utility [58].

All simulations were performed in Mac OSX using a 2.9 GHz Intel core i7 processor with

16 GB of RAM.

Data analysis was performed in R [59]. The plots for the scaling of the execution times were

generated using the tidyverse package [60]. The schematic representations of the models

presented in Appendix A, Figures A1–A5 were generated from the respective BNGL files

with the software RuleBender [61]. Raw timing data and the analysis scripts can be found in

the Supplementary file S1.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We are grateful to the National Institutes of Health (NIGMS) for funding this work under Grant No. GM080219.
We thank Carole Proctor and Colin Gillespie for supplying the source code of the Gillespie2 software.

References

1. McQuarrie D. Stochastic approach to chemical kinetics. J Appl Probab. 1967; 4:413–478.

2. Gillespie DT. A general method for numerically simulating coupled chemical reactions. J Comput
Phys. 1976; 22:403–434.

3. Gillespie DT. Exact Stochastic Simulation of Coupled Chemical Reactions. J Phys Chem. 1977;
81:2340–2361.

4. Gibson MA, Bruck J. Efficient Exact Stochastic Simulation of Chemical Systems with Many
Species and Many Channels. J Phys Chem. 2000; 104:1876–1889.

5. Cao Y, Li H, Petzold L, Bruck J. Efficient formulation of the stochastic simulation algorithm for
chemically reacting systems. J Chem Phys. 2004; 121:4059–4067. [PubMed: 15332951]

6. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U.
COPASI—A COmplex PAthway SImulator. Bioinformatics. 2006; 22:3067–3074. [PubMed:
17032683]

7. Blinov ML, Schaff JC, Vasilescu D, Moraru II, Bloom JE, Loew LM. Compartmental and Spatial
Rule-Based Modeling with Virtual Cell. Biophys J. 2017; 113:1365–1372. [PubMed: 28978431]

8. Maarleveld TR, Olivier BG, Bruggeman FJ. StochPy: A Comprehensive, User-Friendly Tool for
Simulating Stochastic Biological Processes. PLoS ONE. 2013; 8:e79345. [PubMed: 24260203]

9. Ramsey S, Orrell D, Bolouri H. Dizzy: Stochastic simulation of large-scale genetic regulatory
networks. J Bioinform Comput Biol. 2005; 3:415–436. [PubMed: 15852513]

10. Gillespie CS, Wilkinson DJ, Proctor CJ, Shanley DP, Boys RJ, Kirkwood TBL. Tools for the
SBML Community. Bioinformatics. 2006; 22:628–629. [PubMed: 16410323]

11. Lloyd-Price J, Gupta A, Ribeiro AS. SGNS2: A compartmentalized stochastic chemical kinetics
simulator for dynamic cell populations. Bioinformatics. 2012; 28:3004–3005. [PubMed:
23014631]

12. Somogyi ET, Bouteiller JM, Glazier JA, König M, Medley JK, Swat MH, Sauro HM.
libRoadRunner: A high performance SBML simulation and analysis library. Bioinformatics. 2015;
31:3315–3321. [PubMed: 26085503]

13. Ostrenko O, Incardona P, Ramaswamy R, Brusch L, Sbalzarini IF. pSSAlib: The partial-propensity
stochastic chemical network simulator. PLoS Comput Biol. 2017; 13:e1005865. [PubMed:
29206229]

Gupta and Mendes Page 14

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

14. Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B. The complexity of complexes in
signal transduction. Biotechnol Bioeng. 2003; 84:783–794. [PubMed: 14708119]

15. Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W. Rules for Modeling
Signal-Transduction Systems. Sci Signal. 2006; 2006doi: 10.1126/stke.3442006re6

16. Stefan MI, Bartol TM, Sejnowski TJ, Kennedy MB. Multi-state Modeling of Biomolecules. PLoS
Comput Biol. 2014; 10:e1003844. [PubMed: 25254957]

17. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. BioNetGen: Software for rule-based modeling
of signal transduction based on the interactions of molecular domains. Bioinformatics. 2004;
20:3289–3291. [PubMed: 15217809]

18. Danos V, Laneve C. Formal molecular biology. Theor Comput Sci. 2004; 325:69–110.

19. Sneddon MW, Faeder JR, Emonet T. Efficient modeling, simulation and coarse-graining of
biological complexity with NFsim. Nat Methods. 2010; 8:177–183. [PubMed: 21186362]

20. Chylek LA, Harris LA, Tung CS, Faeder JR, Lopez CF, Hlavacek WS. Rule-based modeling: A
computational approach for studying biomolecular site dynamics in cell signaling systems. Wiley
Interdiscip Rev Syst Biol Med. 2014; 6:13–36. [PubMed: 24123887]

21. Chylek LA, Harris LA, Faeder JR, Hlavacek WS. Modeling for (physical) biologists: An
introduction to the rule-based approach. Phys Biol. 2015; 12:045007. [PubMed: 26178138]

22. Danos V, Feret J, Fontana W, Krivine J. Scalable Simulation of Cellular Signaling Networks. Lect
Notes Comput Sci. 2007; 4807:139–157.

23. Harris LA, Hogg JS, Tapia JJ, Sekar JAP, Gupta S, Korsunsky I, Arora A, Barua D, Sheehan RP,
Faeder JR. BioNetGen 2. 2: Advances in rule-based modeling. Bioinformatics. 2016; 32:3366–
3368. [PubMed: 27402907]

24. Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in Python using
PySB. Mol Syst Biol. 2013; 9doi: 10.1038/msb.2013.1

25. Colvin J, Monine MI, Faeder JR, Hlavacek WS, Von Hoff DD, Posner RG. Simulation of large-
scale rule-based models. Bioinformatics. 2009; 25:910–917. [PubMed: 19213740]

26. McCollum JM, Peterson GD, Cox CD, Simpson ML, Samatova NF. The sorting direct method for
stochastic simulation of biochemical systems with varying reaction execution behavior. Comput
Biol Chem. 2006; 30:39–49. [PubMed: 16321569]

27. Ramaswamy R, González-Segredo N, Sbalzarini IF. A new class of highly efficient exact stochastic
simulation algorithms for chemical reaction networks. J Chem Phys. 2009; 130:244104. [PubMed:
19566139]

28. Slepoy A, Thompson AP, Plimpton SJ. A constant-time kinetic Monte Carlo algorithm for
simulation of large biochemical reaction networks. J Chem Phys. 2008; 128:205101. [PubMed:
18513044]

29. Ramaswamy R, Sbalzarini IF. A partial-propensity variant of the composition-rejection stochastic
simulation algorithm for chemical reaction networks. J Chem Phys. 2010; 132:044102. [PubMed:
20113014]

30. Thanh VH, Zunino R, Priami C. On the rejection-based algorithm for simulation and analysis of
large-scale reaction networks. J Chem Phys. 2015; 142:244106. [PubMed: 26133409]

31. Gillespie DT. Approximate accelerated stochastic simulation of chemically reacting systems. J
Chem Phys. 2001; 115:1716–1733.

32. Pahle J. Biochemical simulations: stochastic, approximate and hybrid approaches. Brief Bioinform.
2009; 10:53–64. [PubMed: 19151097]

33. Sanft KR, Wu S, Roh M, Fu J, Lim RK, Petzold LR. StochKit2: Software for discrete stochastic
simulation of biochemical systems with events. Bioinformatics. 2011; 27:2457–2458. [PubMed:
21727139]

34. Palmisano A, Hoops S, Watson LT, Jones TC Jr, Tyson JJ, Shaffer CA. Multistate Model Builder
(MSMB): A flexible editor for compact biochemical models. BMC Syst Biol. 2014; 8doi:
10.1186/1752-0509-8-42

35. Faeder JR, Blinov ML, Goldstein B, Hlavacek WS. Rule-based modeling of biochemical networks.
Complexity. 2005; 10:22–41.

Gupta and Mendes Page 15

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

36. Blinov ML, Yang J, Faeder JR, Hlavacek WS. Graph Theory for Rule-Based Modeling of
Biochemical Networks. Trans Comput Syst Biol. 2006; 7:89–106.

37. Hogg JS, Harris LA, Stover LJ, Nair NS, Faeder JR. Exact Hybrid Particle/Population Simulation
of Rule-Based Models of Biochemical Systems. PLoS Comput Biol. 2014; 10:e1003544.
[PubMed: 24699269]

38. Andrei O, Kirchner H. A Rewriting Calculus for Multigraphs with Ports. Electron Notes Theor
Comput Sci. 2008; 219:67–82.

39. Colvin J, Monine IM, Gutenkunst RN, Hlavacek WS, Hoff DDV, Posner RG. RuleMonkey:
Software for stochastic simulation of rule-based models. BMC Bioinform. 2010; 11:404.

40. Novere NL, Shimizu TS. STOCHSIM: Modelling of stochastic biomolecular processes.
Bioinformatics. 2001; 17:575–576. [PubMed: 11395441]

41. Yang J, Hlavacek WS. Efficiency of reactant site sampling in network-free simulation of rule-based
models for biochemical systems. Phys Biol. 2011; 8doi: 10.1088/1478-3975/8/5/055009

42. Yang J, Monine MI, Faeder JR, Hlavacek WS. Kinetic Monte Carlo method for rule-based
modeling of biochemical networks. Phys Rev E. 2008; 78:031910.

43. Falkenberg CV, Blinov ML, Loew LM. Pleomorphic Ensembles: Formation of Large Clusters
Composed of Weakly Interacting Multivalent Molecules. Biophys J. 2013; 105:2451–2460.
[PubMed: 24314076]

44. Lok L, Brent R. Automatic generation of cellular reaction networks with Moleculizer 1.0. Nat
Biotechnol. 2005; 23:131–136. [PubMed: 15637632]

45. Blinov ML, Faeder JR, Yang J, Goldstein B, Hlavacek WS. ‘On-the-fly’ or ‘generate-first’
modeling? Nat Biotechnol. 2005; 23:1344–1345. [PubMed: 16273053]

46. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray D,
Cornish-Bowden A, et al. The systems biology markup language (SBML): A medium for
representation and exchange of biochemical network models. Bioinformatics. 2003; 19:524–531.
[PubMed: 12611808]

47. Blinov ML, Faeder JR, Goldstein B, Hlavacek WS. A network model of early events in epidermal
growth factor receptor signaling that accounts for combinatorial complexity. Biosystems. 2006;
83:136–151. [PubMed: 16233948]

48. Barua D, Hlavacek WS, Lipniacki T. A Computational Model for Early Events in B Cell Antigen
Receptor Signaling: Analysis of the Roles of Lyn and Fyn. J Immunol. 2012; 189:646–658.
[PubMed: 22711887]

49. Faeder JR, Hlavacek WS, Reischl I, Blinov ML, Metzger H, Redondo A, Wofsy C, Goldstein B.
Investigation of Early Events in FcεRI-Mediated Signaling Using a Detailed Mathematical Model.
J Immunol. 2003; 170:3769–3781. [PubMed: 12646643]

50. Creamer MS, Stites EC, Aziz M, Cahill JA, Tan CW, Berens ME, Han H, Bussey KJ, Von Hoff
DD, Hlavacek WS, et al. Specification, annotation, visualization and simulation of a large rule-
based model for ERBB receptor signaling. BMC Syst Biol. 2012; 6doi: 10.1186/1752-0509-6-107

51. Chylek LA, Akimov V, Dengjel J, Rigbolt KTG, Hu B, Hlavacek WS, Blagoev B. Phosphorylation
Site Dynamics of Early T-cell Receptor Signaling. PLoS ONE. 2014; 9:e104240. [PubMed:
25147952]

52. Matsumoto M, Nishimura T. Mersenne Twister: A 623-Dimensionally Equidistributed Uniform
Pseudo-Random Number Generator. ACM Trans Model Comput Simul. 1998; 8:3–30.

53. Marsaglia G. Random Numbers Fall Mostly in the Planes. Proc Natl Acad Sci USA. 1968; 61:25–
28. [PubMed: 16591687]

54. Park SK, Miller KW. Random Numbers Generators: Good Ones Are Hard To Find. Commun
Assoc Comput Mach. 1988; 31:1192–1201.

55. Selivanov VA, Votyakova TV, Zeak JA, Trucco M, Roca J, Cascante M. Bistability of
Mitochondrial Respiration Underlies Paradoxical Reactive Oxygen Species Generation Induced by
Anoxia. PLoS Comput Biol. 2009; 5:e1000619. [PubMed: 20041200]

56. Meng X, Firczuk H, Pietroni P, Westbrook R, Dacheux E, Mendes P, McCarthy JE. Minimum-
noise production of translation factor eIF4G maps to a mechanistically determined optimal rate
control window for protein synthesis. Nucleic Acids Res. 2017; 45:1015–1025.

Gupta and Mendes Page 16

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

57. Evans TW, Gillespie CS, Wilkinson DJ. The SBML discrete stochastic models test suite.
Bioinformatics. 2008; 24:285–286. [PubMed: 18025005]

58. [accessed on 22 October 2017] GNU Implementation of Time. Available online: https://
www.gnu.org/software/time/

59. R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing; Vienna, Austria: 2017.

60. Wickham, H. [accessed on 15 November 2017] Tidyverse: Easily Install and Load the ’Tidyverse’,
version 1.2.1; R Package. Available online: https://www.tidyverse.org/

61. Xu W, Smith AM, Faeder JR, Marai GE. RuleBender: A visual interface for rule-based modeling.
Bioinformatics. 2011; 27:1721–1722. [PubMed: 21493655]

Gupta and Mendes Page 17

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.gnu.org/software/time/
https://www.gnu.org/software/time/
https://www.tidyverse.org/

Figure 1.
Execution times of the simulators for different number of molecules in the tested models,

namely, (A) multi-state model, (B) multi-site model, (C) epidermal growth factor receptor

(EGFR) signaling model, (D) B-cell receptor (BCR) signaling model, and (E) The high-

affinity human IgE receptor (FcεRI) signaling model. In all the models for this test

condition, the simulation end time was set to 100 s.

Gupta and Mendes Page 18

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2.
Execution times of the simulators for different simulation end times in the tested models,

namely, (A) multi-state model, (B) multi-site model, (C) EGFR signaling model, (D) BCR

signaling model, and (E) FcεRI signaling model. In all the models for this test condition, the

initial number of particles was fixed (see Appendix B, Table A1).

Gupta and Mendes Page 19

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gupta and Mendes Page 20

Ta
b

le
 1

Si
m

ul
at

or
s

us
ed

 in
 th

is
 s

tu
dy

. S
to

ch
as

tic
 s

im
ul

at
io

n
al

go
ri

th
m

 (
SS

A
)

us
ed

 in
 e

ac
h

of
 th

e
si

m
ul

at
or

s
is

 li
st

ed
 a

lo
ng

 w
ith

 th
e

la
ng

ua
ge

 th
ey

 a
re

 im
pl

em
en

te
d

w
ith

.

A
pp

ro
ac

h
Si

m
ul

at
or

SS
A

 M
et

ho
d

L
an

gu
ag

e
V

er
si

on
R

ef
er

en
ce

N
et

w
or

k-
ba

se
d

B
io

N
et

G
en

SD
M

 *
Pe

rl
 a

nd
 C

+
+

2.
3.

1
[1

7]

C
O

PA
SI

_D
D

M
 *

*
C

+
+

4.
21

 (
B

ui
ld

 1
66

)
[6

]

C
O

PA
SI

_G
B

N
R

M
 *

**
C

+
+

4.
21

 (
B

ui
ld

 1
66

)
[6

]

D
iz

zy
D

M
Ja

va
1.

11
.4

[9
]

G
ill

es
pi

e2
D

M
C

R
ev

: 5
6

[1
0]

pS
SA

lib
_S

PD
M

SP
D

M
 #

C
+

+
2.

0.
0

[1
3]

pS
SA

lib
_S

SA
C

R
C

R
 #

#
C

+
+

2.
0.

0
[1

3]

R
oa

dR
un

ne
r

D
M

C
1.

4.
24

[1
2]

SG
N

S2
N

R
M

C
+

+
2.

1.
17

0
[1

1]

St
oc

hK
it2

C
R

C
+

+
2.

0.
13

[3
3]

St
oc

hP
y

D
M

Py
th

on
2.

3
[8

]

N
et

w
or

k-
fr

ee

D
Y

N
ST

O
C

—
C

1.
2.

0
[2

5]

K
aS

im
—

O
C

am
l

3.
5

[2
2]

N
Fs

im
—

C
+

+
1.

11
[1

9]

R
ul

eM
on

ke
y

—
C

2.
0.

25
[3

9]

* So
rt

in
g

di
re

ct
 m

et
ho

d;

**
D

ir
ec

t m
et

ho
d;

**
* N

ex
t r

ea
ct

io
n

m
et

ho
d;

So
rt

in
g

pa
rt

ia
l p

ro
pe

ns
ity

 d
ir

ec
t m

et
ho

d;

##
C

om
po

si
tio

n
re

je
ct

io
n

m
et

ho
d.

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Gupta and Mendes Page 21

Ta
b

le
 2

M
od

el
s

us
ed

 in
 th

is
 s

tu
dy

. T
he

 n
et

w
or

k
de

ri
va

tio
n

tim
e

w
ith

 B
io

N
et

G
en

 is
 a

ls
o

sh
ow

n
fo

r
ea

ch
 o

f
th

e
m

od
el

s.

M
od

el
N

o.
 o

f
Sp

ec
ie

s
N

o.
 o

f
R

ul
es

N
o.

 o
f

R
ea

ct
io

ns
D

er
iv

at
io

n
T

im
e

(s
)

M
ul

ti-
st

at
e

[1
7,

25
]

6
4

8
0.

0

M
ul

ti-
si

te
 [

39
]

66
12

28
8

0.
3

E
G

FR
 *

 s
ig

na
lin

g
[4

7]
35

6
23

37
49

11
.6

B
C

R
 *

*
si

gn
al

in
g

[4
8]

11
22

72
24

,3
88

33
.1

7

Fc
εR

I
**

*
si

gn
al

in
g

(γ
)

[4
9]

37
44

24
58

,2
76

16
3.

8

* E
pi

de
rm

al
 g

ro
w

th
 f

ac
to

r
re

ce
pt

or
;

**
B

-c
el

l r
ec

ep
to

r;

**
* T

he
 h

ig
h-

af
fi

ni
ty

 h
um

an
 I

gE
 r

ec
ep

to
r.

Computation (Basel). Author manuscript; available in PMC 2018 June 21.

	Abstract
	1. Introduction
	2. Network-Based Approach
	3. Network-Free Approach
	4. Benchmarking Stochastic Simulation
	4.1. Simulators
	4.2. Models

	5. Results
	5.1. Increasing Numbers of Particles
	5.2. Dependency on the Simulation End Time

	6. Discussion
	7. Methods
	7.1. Model Construction
	7.2. Simulations
	7.3. Analysis

	References
	Figure 1
	Figure 2
	Table 1
	Table 2

