|
|
Algorithm 1: Curvilinear Structure Enhancement |
|
|
input : Denoised 3-D dataset p̂ of size l × b × h, low-pass filter h, largest wavelet scale M
|
|
output: Enhanced 3-D dataset p̂e
|
|
for
k ← 1 to
h
do
|
|
a0 ← p̂ (:, :, k); |
| for
m ← 1 to
M
do
|
| for
i ← 1 to
l
do
|
| for
j ← 1 to
b
do
|
|
H(i, j, m) ← Det[H(d(i, j, m))]; |
| end
|
| end
|
| end
|
| Hmax ← max(H); |
| t ← max(Hmax(:)); |
| d ← zeros(l, b, t); |
| d2 ← zeros(l, b, t); |
| a ← zeros(l, b, t); |
| for
i ← 1 to
t
do
|
| ai ← conv(h, a0); |
| d(:, :, i) ← a0 − ai; |
| a0 ← ai; |
| a(:, :, i) ← a0; |
| end
|
| for
i ← 1 to
l
do
|
| for
j ← 1 to
b
do
|
| d2(i, j, 1 : Hmax(i, j)) ← 1; |
| end
|
| end
|
| d ← d × d2; |
| R ← max(d); |
| p̂e(:, :, k) ← R; |
| end |
|