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Abstract

A refinement protocol based on physics-based techniques established for water soluble proteins is
tested for membrane protein structures. Initial structures were generated by homology modeling
and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent
systems. Snapshots from the simulations were selected based on scoring with either knowledge-
based or implicit membrane-based scoring functions and averaged to obtained refined models. The
protocol resulted in consistent and significant refinement of the membrane protein structures
similar to the performance of refinement methods for soluble proteins. Refinement success was
similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of
lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-
based functions (DFIRE and RWplus) was found to be as good as scoring using implicit
membrane-based scoring functions suggesting that differences in internal packing is more
important than orientations relative to the membrane during the refinement of membrane protein
homology models.
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INTRODUCTION

Proteins have evolved over billions of years to form highly complex structures, which give
rise to a diverse range of functions.1:2 The atomistic details of their structure are of great
importance to develop a deeper understanding of their function as well as to develop novel
pharmaceutical strategies in the treatment of diseases. Experimental structure prediction
methods including X-ray techniques,® Nuclear Magnetic Resonance (NMR) spectroscopy®:>
and cryo-Electron Microscopy (cryo-EM) methods® have continuously improved over the
last decades and have resulted in extensive structural information about proteins. However,
the experimental methods of today cannot keep up with the vast number of genes encoding
for proteins in living organisms that are being discovered at a rapid rate.
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Computational structure predictions is an alternative to overcome the experimental
limitations.” Initially, ab /nitio methods were developed to perform structure prediction
purely by computational sampling from extended chains just based on the information of the
amino acid sequence of a given protein along with physical models to capture the energetics
of proteins.8-10 Although these methods have succeeded in some cases, they remain
computationally expensive and generally do not provide accurate predictions for most
proteins.11 Much more successful has been the use of structural templates from known
structures.12-14 In homology modeling, template structures are used to predict the structures
of a given target protein based on sequence similarity between the template and the target
proteins.1® More sophisticated approaches assemble structures in a piecewise fashion using
structural fragments from a variety of known structures.16:17

Template-based modeling often results in good models that are at least topologically correct
and often approach native structures for part of a given model. Nevertheless, it remains
challenging to reach experimental accuracy throughout a given model. To improve model
accuracy, refinement methods are being developed that start from homology models and
bring them closer to the true native structure. Generally, the idea is that refinement methods
either rely on general knowledge about protein structures encoded in statistical
potentials'®-21 or employ physics-based methods to drive a given homology model towards
the native state. Physics-based methods that apply molecular dynamics (MD) simulations
with extensive sampling?2-28 have been most successful to date in achieving consistent
refinement of soluble proteins2?, although the best-performing physics-based refinement
methods also incorporate statistical potentials for scoring and structure selection.24:25

The structure prediction of membrane proteins follows similar ideas but the still limited
number of available experimental structures of membrane proteins hinders accurate
template-based modeling. Moreover, refinement methods have not been applied extensively
to membrane protein structures even when it is possible to build initial models via homology
to known structures. The refinement of membrane protein structures could in principle
follow the same protocols used in the refinement of soluble proteins, but it may be expected
that sampling methods targeting proteins in aqueous environments do not generate
representative ensembles of membrane-interacting proteins. Some studies have combined
statistics-based refinement methods based on water soluble proteins with physics-based
approaches specific to the membrane proteins and/or experimental results during membrane
protein structure refinement.39-33 The combination of homology modeling with the
application of various reconstruction techniques for the loop regions can also increase the
accuracy of the structures for membrane proteins.34 Moreover, scoring functions based on
statistical potentials for membrane proteins have not been developed as extensively as
scoring functions for water soluble proteins.35-38 This may impact the ability to identify the
most native-like structures from an ensemble of models generated during sampling.
However, in one study by Gao et al.3? knowledge-based scoring functions meant for soluble
proteins performed well in discriminating membrane as well. One approach to account for
the membrane environment during scoring is to use physically motivated implicit membrane
models along with atomistic force fields*%-42. In past comparisons, such implicit membrane
models have performed equally good or better than knowledge based scoring functions,*°
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suggesting that such scoring functions may be useful for membrane structure prediction and
refinement.

Here, we are exploring how an MD-based refinement protocol that has been successful for
soluble proteins?3:25 could be extended to the refinement of membrane protein structures
that were built via homology. We applied a modified protocol where proteins were solvated
in explicit lipid bilayers with different lipid types instead of aqueous solvent, but we also
compared with simply using only aqueous solvent. As in our previous protocol, we carried
out extensive sampling via MD.23:25 Structures from the trajectories were then selected
using different scoring functions. We tested membrane-specific scoring functions based on
the Heterogeneous Dielectric Generalized Born implicit membrane model, version 3
(HDGBV3)#344 and the HDGB van der Waals model (HDGBvdW)*° developed by us as
well as commonly used knowledge-based scoring functions the Distance-scaled, Finite
Ideal-gas REference (DFIRE)3® and side-chain orientation dependent potential derived from
Random-Walk reference state (RWplus)36. The HDGB model models the membrane as a
variable dielectric continuum based on the generalized Born formalism in combination with
a solvent accessible surface area (SASA) approximation for the non-polar solvation free
energy. The HDGBvdW model is a recent extension of HDGB that adds a van der Waals
term to more accurately account for non-polar attractive interactions within the membrane.
The HDGB-based models were tested as scoring functions before and found to perform
similarly or better than knowledge-based approaches.? DFIRE is a widely used distance-
dependent knowledge-based statistical potential to discriminate native-like states of proteins.
RWhplus is another commonly used knowledge based potential using a hybrid model of
distance and orientation-dependent potentials derived from the structural databases. Previous
studies have established that both RWplus and DFIRE are effective scoring functions in
native-like model selection.36:46.47 We otherwise followed our established refinement
protocol for soluble proteins, which included averaging of the selected structures and further
refinement with respect to their local stereochemistry using the local Protein structure
REFinement via Molecular Dynamics (IlocPREFMD)*8 method.

Ideally, we would have liked to test our protocol blindly during the Critical Assessment of
protein Structure Prediction (CASP) competition,” but the number of membrane protein
structure targets in CASP has not been sufficient to date. Instead, we applied the refinement
protocol to eight integral membrane protein targets (six a-helical and two p-barrel), where
native structures were available and where we could build homology models using related
structures.

The overall finding is that we were able to achieve a similar level of refinement for the
membrane proteins as for soluble proteins. In the following we will explain the protocol in
more detail and discuss how different solvent environments and different scoring functions
employed during the refinement affected the results.
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METHODS

Test systems

We tested our structure refinement protocol with eight membrane protein structures (six a-
helical and two B-barrel) with known structures in the Protein Data Bank (PDB):49
aquaporin (PDB ID: 1j4n), bacteriorhodopsin (1py6), outer membrane protein X - OMPX
(1qj8), CXCR4 chemokine receptor (3odu), adenosine A2A receptor (3vg9),
proteorhodopsin (4hyj), salmonella typhi outer membrane protein F - OMPF (4kr8), and
delta opioid receptor (4n6h). Homology models for each protein were generated using
structures from homologous proteins. Alignments were obtained from the Position-Specific
Iterated Basic Local Alignment Search Tool (PSI-BLAST) web server®® and models were
built using MODELLER version 9.15% based on the sequence alignment provided by the
PSI-BLAST server. The generated homology structures used as input here are available upon
request. Table 1 provides an overview of the target and template proteins used in the
homology modeling along with their reported resolution values in A. The models from
MODELLER were refined further using locPREFMD to improve the local stereochemistry.
The resulting structures were the initial homology models used in this study. The homology
models built in this manner deviated from the true native structures by Ca root mean square
deviation (RMSD) values between 1.9 and 5 A (see Table 2).

System setup for refinement

The initial models were oriented along the membrane with a Monte Carlo (MC)
optimization protocol described in previous work?0 using the Implicit Membrane Model 1
(IMM1) energy function.5! Once optimally positioned and oriented, each protein was
solvated either in cubic boxes of explicit water or in rectangular boxes with an explicit lipid
bilayer of either dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine
(DMPC), or dilauroylphosphatidylcholine (DLPC) and surrounded by explicit water on
either side using the CHARMM-GUI Membrane Builder module.52-54 The sizes of the
aqueous solvent systems varied between 68 and 77 A allowing at least 9 A between the
proteins and the edge of the box. The lipid bilayer systems varied between 60 and 75 A for
the x- and y-dimensions and between 72 and 110 A for the z-dimension depending of the
protein size. A water layer of 10 A was presented on either side of the membrane surface.
We tested different variations of the refinement protocol with an explicit lipid bilayer, where
we used either DPPC for all targets or varied the lipid type based on predicted hydrophobic
lengths of the membrane proteins calculated using the MEMHLength program.®® The lipid
choice followed the experimental hydrocarbon region thicknesses reported by Kucerka et al.;
56 21.7 A for DLPC, 25.7 A for DMPC (measured at a temperature of 30°C), and 28.5 A for
DPPC (measured at a temperature of 50°C). Hydrophobic lengths were predicted for
homology models after equilibration in DPPC lipid bilayer (see Table 1). We also reported
the values for the target crystal structure for comparison in Table 1. Hydrophobic lengths for
target proteins were predicted to be in a reasonable range between 24 and 32 A, except for
4kr8. MEMHLength underestimates the thickness of 4kr8 as 11 A in comparison to the
experimental hydrophobic length of OmpF, which was reported to be around 20 A.57 We
note that the resulting values for the homology models significantly underestimate the
hydrophobic lengths obtained from the native structures in some cases (see Table 1) as a
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result of inaccuracies in the homology models. However, we used the hydrophobic lengths
predicted from the homology models here to reflect the conditions of blind structure
prediction. K* or ClI~ ions were added to the system for charge neutralization. The proteins,
lipid, water and any ions were represented in atomistic detail using the CHARMM c¢36 force
field for lipids®® and proteins®® and the TIP3PE0 model for water.

The bilayer systems were first subjected to 3,000 steps of energy minimization consisting of
1,500 steps of steepest descent (SD) and 1,500 steps of adopted basis Newton-Raphson
(ABNR) algorithms. Minimization was followed by 400 ps equilibration as prescribed by
the CHARMM-GUI server.52:53 A six-step equilibration procedure was applied with
restraints for proteins, lipids, water molecules and ions. The systems were relaxed gradually
by decreasing force constants from 10 to 0.1 kcal/mol/A2 for protein backbones, from 5.0 to
0.0 kcal/mol/AZ for protein side chains, from 2.5 to 0.1 kcal/mol/A2 for water and lipid
molecules during the equilibration. For ions, restraints with a force constant of 10
kcal/mol/A2 were applied for the first 25 ps of the equilibration. Water restraints were
applied to prevent water molecules from moving to the hydrophobic core of the bilayer.
Lipid restraints were applied to keep lipid tails and head groups in the hydrophobic and
polar regions, respectively. The first 50 ps of the equilibration were performed using
Langevin dynamics at constant volume and temperature and the rest of the equilibration was
run at constant pressure and temperature at a pressure of 1 bar and temperature of 323.15 K
for DPPC and 303.15 K for DLPC and DMPC.

The systems in aqueous solvent were neutralized with Na* or CI~ ions. The difference in
cations between the bilayer and aqueous solvent systems reflects default counterions in
CHARMM-GUI but is not expected to affect the refinement results. All systems were
initially minimized with 50 steps of SD and 500 steps of ABNR algorithms while applying
restraints on water and ions with a 5 kcal/mol/AZ2 force constant. The systems were further
equilibrated for around 30,000 steps by gradually heating to 298 K using restraints on Ca
and Cp atoms with a force constant of 0.5 kcal/mol/AZ2. A time step of 1 fs was used for
equilibration.

Sampling via molecular dynamics simulations

Molecular dynamics (MD) simulations were carried out to generate conformational
ensembles for each target. For each system, ten replicas with a total of 2 s simulation time
were carried out, similar to the amount of sampling that we applied in the refinement of
soluble proteins during CASP23. Ca atoms were restrained during the simulations with a
force constant of 0.025 kcal/mol/A? to avoid large deviations from the initial structures.
Lennard-Jones interactions were switched between 10 and 12 A. The Particle-Mesh Ewald
algorithm was used for the calculation of the long range electrostatic potentials. For lipid
bilayer simulations, Langevin dynamics was applied with a friction term of 0.01 ps~ under
a semi isotropic NPT ensemble at a temperature of 323 K for DPPC and 303 K for DLPC
and DMPC and a pressure of 1 bar using an MC Barostat. Simulations in water were
performed using Langevin dynamics with a friction term of 0.01 ps~1 and a temperature of
298 K. Lennard-Jones interactions were applied with a 9 A cutoff switching between 8 and 9
A for the simulations in water. The SHAKE algorithm was used to constrain bonds involving
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hydrogen atoms. All the simulations were performed using Chemistry at HARvard
Molecular Mechanics (CHARMM)®L version c42al with OpenMM®2 on GPU machines.
The Multiscale Modeling Tools for Structural Biology (MMTSB) Tool Set53 was used to
control the CHARMM simulations and also to carry out analysis of the generated models.

Structure selection via scoring and averaging

The same structure selection and averaging procedure that we used in CASP1025 and
CASP1123 was also applied here. For each protein, 20,000 snapshots were extracted and
scored. The scores were calculated using HDGBv3 and HDGBvdW-based scoring functions
as well as RWplus and DFIRE for comparison. In all cases, energies were calculated for the
oriented proteins as extracted from the simulations. For water simulations, the orientations
of the models were optimized using the MC-based optimization protocol“® before HDGB
scores were calculated. We note that RWplus and DFIRE are orientation-independent since
they do not consider a membrane environment. HDGB and HDGBvdW scores were also
calculated at the membrane widths matching with the hydrophobic lengths of the proteins
calculated using MEMHLength program. Root mean squared deviations from the initial
model (IRMSD) were calculated for each snapshot and used as a second scoring criterion.
Structures were then filtered to extract those with the smallest normalized energy score and
iRMSD values as described in our previous papers.23:25

The selected subsets of structures were then averaged to obtain a single structure. Each
average structure was minimized with 1,000 steps of ABNR minimization with 2
kcal/mol/AZ restraints on Ca. and CP atoms. In a final refinement step, the locPREFMD
procedure was applied to improve the local structural quality without changing the position
of the Ca atoms.

RESULTS AND DISCUSSIONS

In this study, we expanded our established protein structure refinement protocol for aqueous
proteins to membrane proteins. We compared sampling via MD in aqueous solvent, the
standard protocol for soluble proteins, with sampling in the presence of explicit lipid
bilayers. When selecting structures from the MD simulations we tested implicit membrane-
based scoring functions as well as knowledge-based scoring functions that are commonly
used for scoring soluble proteins. The refinement protocol was tested on eight targets where
experimental structures are available and homology models could be built using related
structures. We tested the protocol with using either DPPC lipids for all targets or adjusting
the lipid type based on predicted hydrophobic lengths of the proteins. The main metrics for
analyzing the results were Global Distance Test-High Accuracy (GDT-HA) scores and
RMSD values after refinement with respect to the native structures. GDT-HA scores
calculate the number of residues that are accurately superimposed within a set of short cutoff
distances. In contrast to RMSD, GDT-HA is insensitive to large deviations of unstructured
regions and it focuses on the similarity in the structured regions. In addition, we also report
on MolProbity54 and SphereGrinder5® scores after refinement as additional metrics. The
Molprobity score provides a quality assessment for the protein structures using various
validation criteria based on known structures. SphereGrinder focuses on correct local
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packing by evaluating the percentage of residues that are within a certain RMSD value from
a reference structure in spheres around each of the residues.

Overall refinement success

Tables 2-4 summarize the overall results of the refinement protocol for the eight proteins
studied in this work. Most structures could be refined with either sampling in aqueous
solvent or lipid bilayer environments. On average, the models were refined by 2-3 GDT-HA
units and 0.13-0.15 A Ca. RMSD. Refined models have low MolProbity scores (0.74-0.95
on average) and exhibited modest improvements in SphereGrinder scores by 1-2 units. This
is similar to what has been achieved in the refinement of soluble proteins?3.24 and shows that
structure refinement of membrane protein homology models via MD is also possible. The
initial homology models and the refined structures, both superimposed onto the native
structures, are shown in Figure 1. One structure (1qj8) was improved significantly by 9-12
GDT-HA units and 0.3-0.5 A Ca RMSD depending on the protocol. For 3vg9, the GDT-HA
scores decreased after refinement in all protocol variants. For 4kr8, the GDT-HA scores
decreased when sampling involved lipid bilayers. However, the crystal structures of these
two proteins have the lowest resolutions (2.7 A for 3vg9 and 3.1 A for 4kr8, see Table 1) and
therefore, the native reference structure is less reliable than for the other targets.

There does not appear to be a strong overall trend with respect to a-helical and p-barrel
structures, suggesting that refinement via our protocol is equally suitable for both types of
membrane proteins. To understand in more detail, how different secondary structural
elements were refined, we calculated per-residue improvements in RMSD values as shown
in Table 5. We find that the largest improvements are seen in the unstructured (coil) regions
whereas B-sheets and a-helical structures were refined to a lesser degree. This finding is in
contrast to our previous work, where we concluded that in the refinement of soluble
proteins23 the improvement of unstructured regions was more difficult. It is not entirely clear
why we come to different conclusions here, but one explanation could be that the initial
homology models for membrane proteins have better-preserved a-helical and p-strand
regions than typical homology models for soluble proteins. In support of this argument,
initial RMSD values for the unstructured regions are around twice as large as those of the a-
helical and B-strand regions (see Table 5). Therefore, there is more room to improve the
loops than the a-helical and B-strand regions. It may also be that at least in the simulations
with the lipid bilayers, the presence of the lipids hinders rearrangements of the a-helices and
B-strands whereas the sampling of unstructured regions that typically face the water are
more easily accomplished.

Effect of simulation environment

Our original refinement protocol was established for water soluble proteins and therefore
simulations were performed in a water environment. For membrane proteins, the natural
environment consists of lipid membranes. Therefore, we ran MD simulations in the presence
of lipid bilayers, but we also compared with simulations that were run in aqueous solvent
without a lipid bilayer. The simulations with lipid bilayers were carried out initially with
default DPPC bilayers for all proteins, but we also tested whether choosing different lipid
types that match the predicted lengths of the hydrophobic regions in the proteins would lead
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to different results. Based on the MEMHLength method developed by us, we predicted
lengths of the hydrophobic regions that varied from 11 to 29 A (see Table 1) so that there
may be a significant mismatch with DPPC bilayers that have a hydrophobic width of 28.5 A.

The results for simulations with DPPC lipid bilayers are given in Table 2. Refinement with
lipid bilayers with different lipid types are compared with the DPPC results in Table 3, and
results with only aqueous solvent are given in Table 4. Overall, the extent of refinement is
very similar. There are slightly higher improvements in GDT-HA scores when sampling the
protein structures in water only than in lipid bilayers, and the improvements in RMSD and
SphereGrinder metrics are slightly lower in water while MolProbity scores are also slightly
better in the refined models from the bilayer simulations. However, the differences are small
compared to the statistical uncertainties. Replacing DPPC with shorter lipids for proteins
with short hydrophobic lengths did also not significantly change the overall results, although
the results for individual proteins did vary (see Table 3). Therefore, the main conclusion is
that, at least within the context of our refinement protocol, the choice of the environment
during the MD simulations is not critical.

We would have expected an advantage of running the MD simulations with lipid bilayers as
the natural environment of the membrane environments. To understand better why the
overall results did not bear this out, further analysis was carried out. Table 5 shows the
improvements in per-residue RMSD values for residues within the membrane bilayer and in
the water phase. Generally, the structural improvements were greater in the water-exposed
parts of the structures Average improvements were —0.15 A for residues in water vs. —0.06
A in the membrane with little overall difference between the bilayer and water simulations.
However, the targets for which there were significant improvements in the membrane region
(1j4n, 1py6, 1qj8, 3odu, 4n6h), based on average per-residues RMSD improvements of
about —0.1 or better, the improvement was greater in the bilayer simulations. Especially
1qj8, 3odu, and 4n6h were refined more in the membrane region in the bilayer simulations.
On the other hand, for targets 4hyj and 4kr8, there were larger improvements for water-
exposed residues in the simulations without a bilayer. Figure 2 shows examples of improved
parts for 4n6h and 4kr8 with both DPPC and water simulations. For 4n6h, the DPPC
simulations provide more improvements in the membrane region, while for 4kr8, the water
region was improved more with simulations using aqueous solvent only. It appears,
therefore, that lipid bilayer environments may offer an advantage for the refinement of lipid-
facing regions. However, for some targets (4hyj and 4kr8), where neither water nor lipid
bilayer environments led to improvements in lipid-facing residues, the structures actually
became worse in the presence of the lipid bilayer. It is possible that the slow Kkinetics of
rearrangements of structural elements within the membrane bilayer plays a role here and that
much longer simulations are needed to realize improvements in the lipid-facing residues for
these residues when simulating in the presence of a lipid bilayer. We also note, that, at least
for the a-helical bundle 4hyj, the use of DMPC instead of DPPC to match a shorter
hydrophobic length leads to more significant improvements in the structure (see Table 3).
Based on this analysis, one additional conclusion may be that more significant refinement of
lipid-facing residues in membrane proteins is more likely when the MD simulations are
carried out with lipid bilayers.
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We also performed a residue-based RMSD analysis for ligand binding sites of proteins that
have ligands in the target crystal structures to determine whether those residues could be
refined as much as the rest of the structure in the absence of such ligands. Table 5 shows
that, on average, the ligand binding site environment did not change when sampling in the
presence of a lipid bilayer and actually became worse with the aqueous solvent simulations.
This is in contrast to modest improvements in the rest of the residues in both, bilayer and
water environments as discussed above. Similar results were obtained in an earlier study,
where even in the presence of ligands, refinement of the ligand binding site environment in
G-protein coupled receptors (GPCRs) was less successful than other parts of the structures.
66 This suggests that it is challenging to refine more flexible parts of membrane proteins,
such as ligand binding sites of GPCRs.

Effect of scoring function

The refinement protocol involves the selection of snapshots from the MD sampling for
subsequent structure averaging. Unexpectedly, there is not a large difference with different
scoring functions (see Tables 2-4). In particular, the knowledge-based scoring functions
RWplus and DFIRE performed as good as or better than the HDGB-based functions but the
differences are again not significant when considering the statistical uncertainties. The
HDGBv3 and HDGBvdW variants performed similarly well and we did not find a
significant effect of using either a membrane width corresponding to DPPC for all targets or
using membrane widths corresponding to the predicted hydrophobic lengths of each protein
(see Tables S1 and S2). The apparent lack of sensitivity of the results to the scoring function
is an interesting finding. This suggests that at least in the context of our refinement protocol,
the consideration of the membrane environment is not the most essential factor for selecting
structures for ensemble averaging. One explanation may be that the use of restraints keeps
all of the generated structures in sufficiently similar orientations and conformations relative
to the membrane and the key distinguishing factor between different snapshots may be
subtleties of internal packing arrangements, which is captured relatively well with
knowledge-based potentials such as DFIRE and RWplus.8” To further analyze this point, we
compared the scoring of all decoys extracted from the simulations vs. RMSD from the native
structure. The resulting scatter plots are shown in Figure 3 and correlation coefficients for
the relation between scores and RMSD are given in Table 6. Overall, there is not a strong
correlation, which may be expected because of the limited sampling in the presence of weak
positional restraints. However, to the degree that there is any correlation, RWplus and
DFIRE actually gave significantly higher positive correlations (0.15 vs. 0.05 on average).
This contrasts an earlier study, where we scored Rosetta-generated membrane-structure
decoys that spanned a larger variety of conformations generated without consideration of the
membrane®0. In that case, the HDGB-based scoring functions were correlated significantly
better with the distance from the native structure than DFIRE.

Amount of sampling vs. refinement

The analysis of our CASP10 and CASP11 results for soluble proteins suggested that
combining sampling from multiple simulations provided benefits but that very long
simulations did not necessarily increase the success of refinement. In CASP12, however, the
analysis of 200 ns long simulations with a maximum of 20 replicas did result in increased
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GDT-HA scores with longer sampling.#8 In the case of membrane proteins, we expected that
more sampling may be needed because of the slow relaxation of lipid molecules. Figure 4
shows the changes in average ARMSD and AGDT-HA values as a function of simulation
time and the number of simulations up to a maximum of 10 simulations over 200 ns each.
Again, we find that multiple simulations are better than a single simulation and for DPPC
simulations, there appears to be an additional benefit of running more than five replicates. In
the DPPC simulations, sampling of 40 ns or more per replica gave similar improvements in
GDT-HA scores, but RMSD values increased more significantly when simulations exceeded
100 ns. Therefore, it may be that much longer simulations could provide additional benefits
for simulations with lipid bilayers. However, the simulations with water show little
difference beyond a few replicates simulated for 60 ns or more suggesting that much longer
simulations may not offer additional advantages for the membrane proteins studied here.

CONCLUSION

In this study, we applied our refinement protocol for soluble proteins to eight membrane
proteins covering both a-helical and p-barrel structures. We find that MD-based refinement
of homology models for such membrane proteins is possible and results in similar
improvements in terms of GDT-HA scores and RMSD values as seen in the refinement of
soluble proteins in previous studies.23:2% Six out of eight proteins were refined, indicating
furthermore consistent structural improvements. One structure was refined quite
significantly, by around 11.5 units and no structure was made much worse than the initial
model. This is also consistent with the refinement of soluble proteins seen previously.23:25

In order to reflect the different environment of membrane proteins, the sampling via MD
included explicit lipid bilayers and the scoring of snapshots to select a subset for averaging
involved implicit membrane-based scoring functions. We found, however, that within the
context of our refinement protocol, sampling in simple aqueous solvent and scoring with
knowledge-based functions RWplus and DFIRE resulted in similar degrees of refinement.
However, based on a more detailed analysis it appears that the use of explicit bilayer may
offer some benefit in the refinement of lipid-facing residues.

Overall, this study confirms the utility of physics-based refinement methods for protein
structures and demonstrates that membrane protein structures can be subjected to such
protocols with similar success. As in the refinement of soluble proteins, the degree of
refinement still remains modest and a key challenge is how to expand sampling to achieve
more significant refinement. The use of restraints has been necessary to prevent partial
unfolding and larger deviations away from the native structure in longer simulations,
22-24,26,46 pyt the restraints are also limiting how much structures can be refined.
Overcoming this challenge is expected to benefit the refinement of soluble proteins as well
as the membrane proteins.

Protein structure prediction and refinement of membrane proteins has not been explored as
widely as for soluble proteins. The lack of template structures has hindered comparative
modeling efforts and CASP has not provided a large number of targets where prediction
methods could be tested blindly. We hope that this situation will change as structural biology
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efforts continue to focus on membrane structures and that there will be expanded
opportunities to test and validate structure prediction and refinement methods for
membranes such as the methods described here.
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Figure 1.
Native structures of target proteins (red) vs. homology models (yellow) and refined models

(green) using the RWplus scoring function for filtering. AGDT-HA values indicate the
change after refinement from the initial homology models with respect to the native
structures. Six proteins out of eight give positive AGDT-HA indicating an improvement in
the secondary structures. Examples of improved and unimproved structural parts inside the
boxes are shown in more detail.
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Figure 2.
Structures of target proteins (red), final models from the DPPC bilayer simulations (green),

final models from the water simulations (blue) after the refinement using the RWplus
scoring function for 4n6h (A) and 4kr8 (B). Details of the differences selected structure parts
in the membrane and water regions are shown in the boxes.
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Figure 3.

Score values vs. Ca RMSD from the native structure for each target with different scoring
functions for snapshots extracted from the MD simulations with DPPC lipid bilayers.
scattering plots. Scores are given relative to the respective minimum energy values. Energy
values for the HDGB-based scores are given in units of kcal/mol.
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Figure 4.
Average ARMSD (top) and AGDT-HA (bottom) values plotted over the simulation time

against the number of trajectories for the simulations in DPPC lipid bilayer (left) and in
water (right). The RMSD and GDT-HA values were calculated for the final structures using
RWhplus score for the structure selection and averaged over the proteins.
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