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Abstract

A refinement protocol based on physics-based techniques established for water soluble proteins is 

tested for membrane protein structures. Initial structures were generated by homology modeling 

and sampled via molecular dynamics simulations in explicit lipid bilayer and aqueous solvent 

systems. Snapshots from the simulations were selected based on scoring with either knowledge-

based or implicit membrane-based scoring functions and averaged to obtained refined models. The 

protocol resulted in consistent and significant refinement of the membrane protein structures 

similar to the performance of refinement methods for soluble proteins. Refinement success was 

similar between sampling in the presence of lipid bilayers and aqueous solvent but the presence of 

lipid bilayers may benefit the improvement of lipid-facing residues. Scoring with knowledge-

based functions (DFIRE and RWplus) was found to be as good as scoring using implicit 

membrane-based scoring functions suggesting that differences in internal packing is more 

important than orientations relative to the membrane during the refinement of membrane protein 

homology models.
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INTRODUCTION

Proteins have evolved over billions of years to form highly complex structures, which give 

rise to a diverse range of functions.1,2 The atomistic details of their structure are of great 

importance to develop a deeper understanding of their function as well as to develop novel 

pharmaceutical strategies in the treatment of diseases. Experimental structure prediction 

methods including X-ray techniques,3 Nuclear Magnetic Resonance (NMR) spectroscopy4,5 

and cryo-Electron Microscopy (cryo-EM) methods6 have continuously improved over the 

last decades and have resulted in extensive structural information about proteins. However, 

the experimental methods of today cannot keep up with the vast number of genes encoding 

for proteins in living organisms that are being discovered at a rapid rate.
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Computational structure predictions is an alternative to overcome the experimental 

limitations.7 Initially, ab initio methods were developed to perform structure prediction 

purely by computational sampling from extended chains just based on the information of the 

amino acid sequence of a given protein along with physical models to capture the energetics 

of proteins.8–10 Although these methods have succeeded in some cases, they remain 

computationally expensive and generally do not provide accurate predictions for most 

proteins.11 Much more successful has been the use of structural templates from known 

structures.12–14 In homology modeling, template structures are used to predict the structures 

of a given target protein based on sequence similarity between the template and the target 

proteins.15 More sophisticated approaches assemble structures in a piecewise fashion using 

structural fragments from a variety of known structures.16,17

Template-based modeling often results in good models that are at least topologically correct 

and often approach native structures for part of a given model. Nevertheless, it remains 

challenging to reach experimental accuracy throughout a given model. To improve model 

accuracy, refinement methods are being developed that start from homology models and 

bring them closer to the true native structure. Generally, the idea is that refinement methods 

either rely on general knowledge about protein structures encoded in statistical 

potentials18–21 or employ physics-based methods to drive a given homology model towards 

the native state. Physics-based methods that apply molecular dynamics (MD) simulations 

with extensive sampling22–28 have been most successful to date in achieving consistent 

refinement of soluble proteins29, although the best-performing physics-based refinement 

methods also incorporate statistical potentials for scoring and structure selection.24,25

The structure prediction of membrane proteins follows similar ideas but the still limited 

number of available experimental structures of membrane proteins hinders accurate 

template-based modeling. Moreover, refinement methods have not been applied extensively 

to membrane protein structures even when it is possible to build initial models via homology 

to known structures. The refinement of membrane protein structures could in principle 

follow the same protocols used in the refinement of soluble proteins, but it may be expected 

that sampling methods targeting proteins in aqueous environments do not generate 

representative ensembles of membrane-interacting proteins. Some studies have combined 

statistics-based refinement methods based on water soluble proteins with physics-based 

approaches specific to the membrane proteins and/or experimental results during membrane 

protein structure refinement.30–33 The combination of homology modeling with the 

application of various reconstruction techniques for the loop regions can also increase the 

accuracy of the structures for membrane proteins.34 Moreover, scoring functions based on 

statistical potentials for membrane proteins have not been developed as extensively as 

scoring functions for water soluble proteins.35–38 This may impact the ability to identify the 

most native-like structures from an ensemble of models generated during sampling. 

However, in one study by Gao et al.39 knowledge-based scoring functions meant for soluble 

proteins performed well in discriminating membrane as well. One approach to account for 

the membrane environment during scoring is to use physically motivated implicit membrane 

models along with atomistic force fields40–42. In past comparisons, such implicit membrane 

models have performed equally good or better than knowledge based scoring functions,40 
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suggesting that such scoring functions may be useful for membrane structure prediction and 

refinement.

Here, we are exploring how an MD-based refinement protocol that has been successful for 

soluble proteins23,25 could be extended to the refinement of membrane protein structures 

that were built via homology. We applied a modified protocol where proteins were solvated 

in explicit lipid bilayers with different lipid types instead of aqueous solvent, but we also 

compared with simply using only aqueous solvent. As in our previous protocol, we carried 

out extensive sampling via MD.23,25 Structures from the trajectories were then selected 

using different scoring functions. We tested membrane-specific scoring functions based on 

the Heterogeneous Dielectric Generalized Born implicit membrane model, version 3 

(HDGBv3)43,44, and the HDGB van der Waals model (HDGBvdW)45 developed by us as 

well as commonly used knowledge-based scoring functions the Distance-scaled, Finite 

Ideal-gas REference (DFIRE)38 and side-chain orientation dependent potential derived from 

Random-Walk reference state (RWplus)36. The HDGB model models the membrane as a 

variable dielectric continuum based on the generalized Born formalism in combination with 

a solvent accessible surface area (SASA) approximation for the non-polar solvation free 

energy. The HDGBvdW model is a recent extension of HDGB that adds a van der Waals 

term to more accurately account for non-polar attractive interactions within the membrane. 

The HDGB-based models were tested as scoring functions before and found to perform 

similarly or better than knowledge-based approaches.40 DFIRE is a widely used distance-

dependent knowledge-based statistical potential to discriminate native-like states of proteins. 

RWplus is another commonly used knowledge based potential using a hybrid model of 

distance and orientation-dependent potentials derived from the structural databases. Previous 

studies have established that both RWplus and DFIRE are effective scoring functions in 

native-like model selection.36,46,47 We otherwise followed our established refinement 

protocol for soluble proteins, which included averaging of the selected structures and further 

refinement with respect to their local stereochemistry using the local Protein structure 

REFinement via Molecular Dynamics (locPREFMD)48 method.

Ideally, we would have liked to test our protocol blindly during the Critical Assessment of 

protein Structure Prediction (CASP) competition,7 but the number of membrane protein 

structure targets in CASP has not been sufficient to date. Instead, we applied the refinement 

protocol to eight integral membrane protein targets (six α-helical and two β-barrel), where 

native structures were available and where we could build homology models using related 

structures.

The overall finding is that we were able to achieve a similar level of refinement for the 

membrane proteins as for soluble proteins. In the following we will explain the protocol in 

more detail and discuss how different solvent environments and different scoring functions 

employed during the refinement affected the results.
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METHODS

Test systems

We tested our structure refinement protocol with eight membrane protein structures (six α-

helical and two β-barrel) with known structures in the Protein Data Bank (PDB):49 

aquaporin (PDB ID: 1j4n), bacteriorhodopsin (1py6), outer membrane protein X - OMPX 

(1qj8), CXCR4 chemokine receptor (3odu), adenosine A2A receptor (3vg9), 

proteorhodopsin (4hyj), salmonella typhi outer membrane protein F - OMPF (4kr8), and 

delta opioid receptor (4n6h). Homology models for each protein were generated using 

structures from homologous proteins. Alignments were obtained from the Position-Specific 

Iterated Basic Local Alignment Search Tool (PSI-BLAST) web server50 and models were 

built using MODELLER version 9.1515 based on the sequence alignment provided by the 

PSI-BLAST server. The generated homology structures used as input here are available upon 

request. Table 1 provides an overview of the target and template proteins used in the 

homology modeling along with their reported resolution values in Å. The models from 

MODELLER were refined further using locPREFMD to improve the local stereochemistry. 

The resulting structures were the initial homology models used in this study. The homology 

models built in this manner deviated from the true native structures by Cα root mean square 

deviation (RMSD) values between 1.9 and 5 Å (see Table 2).

System setup for refinement

The initial models were oriented along the membrane with a Monte Carlo (MC) 

optimization protocol described in previous work40 using the Implicit Membrane Model 1 

(IMM1) energy function.51 Once optimally positioned and oriented, each protein was 

solvated either in cubic boxes of explicit water or in rectangular boxes with an explicit lipid 

bilayer of either dipalmitoylphosphatidylcholine (DPPC), dimyristoylphosphatidylcholine 

(DMPC), or dilauroylphosphatidylcholine (DLPC) and surrounded by explicit water on 

either side using the CHARMM-GUI Membrane Builder module.52–54 The sizes of the 

aqueous solvent systems varied between 68 and 77 Å allowing at least 9 Å between the 

proteins and the edge of the box. The lipid bilayer systems varied between 60 and 75 Å for 

the x- and y-dimensions and between 72 and 110 Å for the z-dimension depending of the 

protein size. A water layer of 10 Å was presented on either side of the membrane surface. 

We tested different variations of the refinement protocol with an explicit lipid bilayer, where 

we used either DPPC for all targets or varied the lipid type based on predicted hydrophobic 

lengths of the membrane proteins calculated using the MEMHLength program.55 The lipid 

choice followed the experimental hydrocarbon region thicknesses reported by Kucerka et al.;
56 21.7 Å for DLPC, 25.7 Å for DMPC (measured at a temperature of 30˚C), and 28.5 Å for 

DPPC (measured at a temperature of 50˚C). Hydrophobic lengths were predicted for 

homology models after equilibration in DPPC lipid bilayer (see Table 1). We also reported 

the values for the target crystal structure for comparison in Table 1. Hydrophobic lengths for 

target proteins were predicted to be in a reasonable range between 24 and 32 Å, except for 

4kr8. MEMHLength underestimates the thickness of 4kr8 as 11 Å in comparison to the 

experimental hydrophobic length of OmpF, which was reported to be around 20 Å.57 We 

note that the resulting values for the homology models significantly underestimate the 

hydrophobic lengths obtained from the native structures in some cases (see Table 1) as a 
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result of inaccuracies in the homology models. However, we used the hydrophobic lengths 

predicted from the homology models here to reflect the conditions of blind structure 

prediction. K+ or Cl− ions were added to the system for charge neutralization. The proteins, 

lipid, water and any ions were represented in atomistic detail using the CHARMM c36 force 

field for lipids58 and proteins59 and the TIP3P60 model for water.

The bilayer systems were first subjected to 3,000 steps of energy minimization consisting of 

1,500 steps of steepest descent (SD) and 1,500 steps of adopted basis Newton-Raphson 

(ABNR) algorithms. Minimization was followed by 400 ps equilibration as prescribed by 

the CHARMM-GUI server.52,53 A six-step equilibration procedure was applied with 

restraints for proteins, lipids, water molecules and ions. The systems were relaxed gradually 

by decreasing force constants from 10 to 0.1 kcal/mol/Å2 for protein backbones, from 5.0 to 

0.0 kcal/mol/Å2 for protein side chains, from 2.5 to 0.1 kcal/mol/Å2 for water and lipid 

molecules during the equilibration. For ions, restraints with a force constant of 10 

kcal/mol/Å2 were applied for the first 25 ps of the equilibration. Water restraints were 

applied to prevent water molecules from moving to the hydrophobic core of the bilayer. 

Lipid restraints were applied to keep lipid tails and head groups in the hydrophobic and 

polar regions, respectively. The first 50 ps of the equilibration were performed using 

Langevin dynamics at constant volume and temperature and the rest of the equilibration was 

run at constant pressure and temperature at a pressure of 1 bar and temperature of 323.15 K 

for DPPC and 303.15 K for DLPC and DMPC.

The systems in aqueous solvent were neutralized with Na+ or Cl− ions. The difference in 

cations between the bilayer and aqueous solvent systems reflects default counterions in 

CHARMM-GUI but is not expected to affect the refinement results. All systems were 

initially minimized with 50 steps of SD and 500 steps of ABNR algorithms while applying 

restraints on water and ions with a 5 kcal/mol/Å2 force constant. The systems were further 

equilibrated for around 30,000 steps by gradually heating to 298 K using restraints on Cα 
and Cβ atoms with a force constant of 0.5 kcal/mol/Å2. A time step of 1 fs was used for 

equilibration.

Sampling via molecular dynamics simulations

Molecular dynamics (MD) simulations were carried out to generate conformational 

ensembles for each target. For each system, ten replicas with a total of 2 μs simulation time 

were carried out, similar to the amount of sampling that we applied in the refinement of 

soluble proteins during CASP23. Cα atoms were restrained during the simulations with a 

force constant of 0.025 kcal/mol/Å2 to avoid large deviations from the initial structures. 

Lennard-Jones interactions were switched between 10 and 12 Å. The Particle-Mesh Ewald 

algorithm was used for the calculation of the long range electrostatic potentials. For lipid 

bilayer simulations, Langevin dynamics was applied with a friction term of 0.01 ps−1 under 

a semi isotropic NPT ensemble at a temperature of 323 K for DPPC and 303 K for DLPC 

and DMPC and a pressure of 1 bar using an MC Barostat. Simulations in water were 

performed using Langevin dynamics with a friction term of 0.01 ps−1 and a temperature of 

298 K. Lennard-Jones interactions were applied with a 9 Å cutoff switching between 8 and 9 

Å for the simulations in water. The SHAKE algorithm was used to constrain bonds involving 
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hydrogen atoms. All the simulations were performed using Chemistry at HARvard 

Molecular Mechanics (CHARMM)61 version c42a1 with OpenMM62 on GPU machines. 

The Multiscale Modeling Tools for Structural Biology (MMTSB) Tool Set63 was used to 

control the CHARMM simulations and also to carry out analysis of the generated models.

Structure selection via scoring and averaging

The same structure selection and averaging procedure that we used in CASP1025 and 

CASP1123 was also applied here. For each protein, 20,000 snapshots were extracted and 

scored. The scores were calculated using HDGBv3 and HDGBvdW-based scoring functions 

as well as RWplus and DFIRE for comparison. In all cases, energies were calculated for the 

oriented proteins as extracted from the simulations. For water simulations, the orientations 

of the models were optimized using the MC-based optimization protocol40 before HDGB 

scores were calculated. We note that RWplus and DFIRE are orientation-independent since 

they do not consider a membrane environment. HDGB and HDGBvdW scores were also 

calculated at the membrane widths matching with the hydrophobic lengths of the proteins 

calculated using MEMHLength program. Root mean squared deviations from the initial 

model (iRMSD) were calculated for each snapshot and used as a second scoring criterion. 

Structures were then filtered to extract those with the smallest normalized energy score and 

iRMSD values as described in our previous papers.23,25

The selected subsets of structures were then averaged to obtain a single structure. Each 

average structure was minimized with 1,000 steps of ABNR minimization with 2 

kcal/mol/Å2 restraints on Cα and Cβ atoms. In a final refinement step, the locPREFMD 

procedure was applied to improve the local structural quality without changing the position 

of the Cα atoms.

RESULTS AND DISCUSSIONS

In this study, we expanded our established protein structure refinement protocol for aqueous 

proteins to membrane proteins. We compared sampling via MD in aqueous solvent, the 

standard protocol for soluble proteins, with sampling in the presence of explicit lipid 

bilayers. When selecting structures from the MD simulations we tested implicit membrane-

based scoring functions as well as knowledge-based scoring functions that are commonly 

used for scoring soluble proteins. The refinement protocol was tested on eight targets where 

experimental structures are available and homology models could be built using related 

structures. We tested the protocol with using either DPPC lipids for all targets or adjusting 

the lipid type based on predicted hydrophobic lengths of the proteins. The main metrics for 

analyzing the results were Global Distance Test-High Accuracy (GDT-HA) scores and 

RMSD values after refinement with respect to the native structures. GDT-HA scores 

calculate the number of residues that are accurately superimposed within a set of short cutoff 

distances. In contrast to RMSD, GDT-HA is insensitive to large deviations of unstructured 

regions and it focuses on the similarity in the structured regions. In addition, we also report 

on MolProbity64 and SphereGrinder65 scores after refinement as additional metrics. The 

Molprobity score provides a quality assessment for the protein structures using various 

validation criteria based on known structures. SphereGrinder focuses on correct local 
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packing by evaluating the percentage of residues that are within a certain RMSD value from 

a reference structure in spheres around each of the residues.

Overall refinement success

Tables 2–4 summarize the overall results of the refinement protocol for the eight proteins 

studied in this work. Most structures could be refined with either sampling in aqueous 

solvent or lipid bilayer environments. On average, the models were refined by 2–3 GDT-HA 

units and 0.13–0.15 Å Cα RMSD. Refined models have low MolProbity scores (0.74–0.95 

on average) and exhibited modest improvements in SphereGrinder scores by 1–2 units. This 

is similar to what has been achieved in the refinement of soluble proteins23,24 and shows that 

structure refinement of membrane protein homology models via MD is also possible. The 

initial homology models and the refined structures, both superimposed onto the native 

structures, are shown in Figure 1. One structure (1qj8) was improved significantly by 9–12 

GDT-HA units and 0.3–0.5 Å Cα RMSD depending on the protocol. For 3vg9, the GDT-HA 

scores decreased after refinement in all protocol variants. For 4kr8, the GDT-HA scores 

decreased when sampling involved lipid bilayers. However, the crystal structures of these 

two proteins have the lowest resolutions (2.7 Å for 3vg9 and 3.1 Å for 4kr8, see Table 1) and 

therefore, the native reference structure is less reliable than for the other targets.

There does not appear to be a strong overall trend with respect to α-helical and β-barrel 

structures, suggesting that refinement via our protocol is equally suitable for both types of 

membrane proteins. To understand in more detail, how different secondary structural 

elements were refined, we calculated per-residue improvements in RMSD values as shown 

in Table 5. We find that the largest improvements are seen in the unstructured (coil) regions 

whereas β-sheets and α-helical structures were refined to a lesser degree. This finding is in 

contrast to our previous work, where we concluded that in the refinement of soluble 

proteins23 the improvement of unstructured regions was more difficult. It is not entirely clear 

why we come to different conclusions here, but one explanation could be that the initial 

homology models for membrane proteins have better-preserved α-helical and β-strand 

regions than typical homology models for soluble proteins. In support of this argument, 

initial RMSD values for the unstructured regions are around twice as large as those of the α-

helical and β-strand regions (see Table 5). Therefore, there is more room to improve the 

loops than the α-helical and β-strand regions. It may also be that at least in the simulations 

with the lipid bilayers, the presence of the lipids hinders rearrangements of the α-helices and 

β-strands whereas the sampling of unstructured regions that typically face the water are 

more easily accomplished.

Effect of simulation environment

Our original refinement protocol was established for water soluble proteins and therefore 

simulations were performed in a water environment. For membrane proteins, the natural 

environment consists of lipid membranes. Therefore, we ran MD simulations in the presence 

of lipid bilayers, but we also compared with simulations that were run in aqueous solvent 

without a lipid bilayer. The simulations with lipid bilayers were carried out initially with 

default DPPC bilayers for all proteins, but we also tested whether choosing different lipid 

types that match the predicted lengths of the hydrophobic regions in the proteins would lead 
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to different results. Based on the MEMHLength method developed by us, we predicted 

lengths of the hydrophobic regions that varied from 11 to 29 Å (see Table 1) so that there 

may be a significant mismatch with DPPC bilayers that have a hydrophobic width of 28.5 Å.

The results for simulations with DPPC lipid bilayers are given in Table 2. Refinement with 

lipid bilayers with different lipid types are compared with the DPPC results in Table 3, and 

results with only aqueous solvent are given in Table 4. Overall, the extent of refinement is 

very similar. There are slightly higher improvements in GDT-HA scores when sampling the 

protein structures in water only than in lipid bilayers, and the improvements in RMSD and 

SphereGrinder metrics are slightly lower in water while MolProbity scores are also slightly 

better in the refined models from the bilayer simulations. However, the differences are small 

compared to the statistical uncertainties. Replacing DPPC with shorter lipids for proteins 

with short hydrophobic lengths did also not significantly change the overall results, although 

the results for individual proteins did vary (see Table 3). Therefore, the main conclusion is 

that, at least within the context of our refinement protocol, the choice of the environment 

during the MD simulations is not critical.

We would have expected an advantage of running the MD simulations with lipid bilayers as 

the natural environment of the membrane environments. To understand better why the 

overall results did not bear this out, further analysis was carried out. Table 5 shows the 

improvements in per-residue RMSD values for residues within the membrane bilayer and in 

the water phase. Generally, the structural improvements were greater in the water-exposed 

parts of the structures Average improvements were −0.15 Å for residues in water vs. −0.06 

Å in the membrane with little overall difference between the bilayer and water simulations. 

However, the targets for which there were significant improvements in the membrane region 

(1j4n, 1py6, 1qj8, 3odu, 4n6h), based on average per-residues RMSD improvements of 

about −0.1 or better, the improvement was greater in the bilayer simulations. Especially 

1qj8, 3odu, and 4n6h were refined more in the membrane region in the bilayer simulations. 

On the other hand, for targets 4hyj and 4kr8, there were larger improvements for water-

exposed residues in the simulations without a bilayer. Figure 2 shows examples of improved 

parts for 4n6h and 4kr8 with both DPPC and water simulations. For 4n6h, the DPPC 

simulations provide more improvements in the membrane region, while for 4kr8, the water 

region was improved more with simulations using aqueous solvent only. It appears, 

therefore, that lipid bilayer environments may offer an advantage for the refinement of lipid-

facing regions. However, for some targets (4hyj and 4kr8), where neither water nor lipid 

bilayer environments led to improvements in lipid-facing residues, the structures actually 

became worse in the presence of the lipid bilayer. It is possible that the slow kinetics of 

rearrangements of structural elements within the membrane bilayer plays a role here and that 

much longer simulations are needed to realize improvements in the lipid-facing residues for 

these residues when simulating in the presence of a lipid bilayer. We also note, that, at least 

for the α-helical bundle 4hyj, the use of DMPC instead of DPPC to match a shorter 

hydrophobic length leads to more significant improvements in the structure (see Table 3). 

Based on this analysis, one additional conclusion may be that more significant refinement of 

lipid-facing residues in membrane proteins is more likely when the MD simulations are 

carried out with lipid bilayers.

Dutagaci et al. Page 8

Proteins. Author manuscript; available in PMC 2019 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We also performed a residue-based RMSD analysis for ligand binding sites of proteins that 

have ligands in the target crystal structures to determine whether those residues could be 

refined as much as the rest of the structure in the absence of such ligands. Table 5 shows 

that, on average, the ligand binding site environment did not change when sampling in the 

presence of a lipid bilayer and actually became worse with the aqueous solvent simulations. 

This is in contrast to modest improvements in the rest of the residues in both, bilayer and 

water environments as discussed above. Similar results were obtained in an earlier study, 

where even in the presence of ligands, refinement of the ligand binding site environment in 

G-protein coupled receptors (GPCRs) was less successful than other parts of the structures.
66 This suggests that it is challenging to refine more flexible parts of membrane proteins, 

such as ligand binding sites of GPCRs.

Effect of scoring function

The refinement protocol involves the selection of snapshots from the MD sampling for 

subsequent structure averaging. Unexpectedly, there is not a large difference with different 

scoring functions (see Tables 2–4). In particular, the knowledge-based scoring functions 

RWplus and DFIRE performed as good as or better than the HDGB-based functions but the 

differences are again not significant when considering the statistical uncertainties. The 

HDGBv3 and HDGBvdW variants performed similarly well and we did not find a 

significant effect of using either a membrane width corresponding to DPPC for all targets or 

using membrane widths corresponding to the predicted hydrophobic lengths of each protein 

(see Tables S1 and S2). The apparent lack of sensitivity of the results to the scoring function 

is an interesting finding. This suggests that at least in the context of our refinement protocol, 

the consideration of the membrane environment is not the most essential factor for selecting 

structures for ensemble averaging. One explanation may be that the use of restraints keeps 

all of the generated structures in sufficiently similar orientations and conformations relative 

to the membrane and the key distinguishing factor between different snapshots may be 

subtleties of internal packing arrangements, which is captured relatively well with 

knowledge-based potentials such as DFIRE and RWplus.67 To further analyze this point, we 

compared the scoring of all decoys extracted from the simulations vs. RMSD from the native 

structure. The resulting scatter plots are shown in Figure 3 and correlation coefficients for 

the relation between scores and RMSD are given in Table 6. Overall, there is not a strong 

correlation, which may be expected because of the limited sampling in the presence of weak 

positional restraints. However, to the degree that there is any correlation, RWplus and 

DFIRE actually gave significantly higher positive correlations (0.15 vs. 0.05 on average). 

This contrasts an earlier study, where we scored Rosetta-generated membrane-structure 

decoys that spanned a larger variety of conformations generated without consideration of the 

membrane40. In that case, the HDGB-based scoring functions were correlated significantly 

better with the distance from the native structure than DFIRE.

Amount of sampling vs. refinement

The analysis of our CASP10 and CASP11 results for soluble proteins suggested that 

combining sampling from multiple simulations provided benefits but that very long 

simulations did not necessarily increase the success of refinement. In CASP12, however, the 

analysis of 200 ns long simulations with a maximum of 20 replicas did result in increased 
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GDT-HA scores with longer sampling.46 In the case of membrane proteins, we expected that 

more sampling may be needed because of the slow relaxation of lipid molecules. Figure 4 

shows the changes in average ΔRMSD and ΔGDT-HA values as a function of simulation 

time and the number of simulations up to a maximum of 10 simulations over 200 ns each. 

Again, we find that multiple simulations are better than a single simulation and for DPPC 

simulations, there appears to be an additional benefit of running more than five replicates. In 

the DPPC simulations, sampling of 40 ns or more per replica gave similar improvements in 

GDT-HA scores, but RMSD values increased more significantly when simulations exceeded 

100 ns. Therefore, it may be that much longer simulations could provide additional benefits 

for simulations with lipid bilayers. However, the simulations with water show little 

difference beyond a few replicates simulated for 60 ns or more suggesting that much longer 

simulations may not offer additional advantages for the membrane proteins studied here.

CONCLUSION

In this study, we applied our refinement protocol for soluble proteins to eight membrane 

proteins covering both α-helical and β-barrel structures. We find that MD-based refinement 

of homology models for such membrane proteins is possible and results in similar 

improvements in terms of GDT-HA scores and RMSD values as seen in the refinement of 

soluble proteins in previous studies.23,25 Six out of eight proteins were refined, indicating 

furthermore consistent structural improvements. One structure was refined quite 

significantly, by around 11.5 units and no structure was made much worse than the initial 

model. This is also consistent with the refinement of soluble proteins seen previously.23,25

In order to reflect the different environment of membrane proteins, the sampling via MD 

included explicit lipid bilayers and the scoring of snapshots to select a subset for averaging 

involved implicit membrane-based scoring functions. We found, however, that within the 

context of our refinement protocol, sampling in simple aqueous solvent and scoring with 

knowledge-based functions RWplus and DFIRE resulted in similar degrees of refinement. 

However, based on a more detailed analysis it appears that the use of explicit bilayer may 

offer some benefit in the refinement of lipid-facing residues.

Overall, this study confirms the utility of physics-based refinement methods for protein 

structures and demonstrates that membrane protein structures can be subjected to such 

protocols with similar success. As in the refinement of soluble proteins, the degree of 

refinement still remains modest and a key challenge is how to expand sampling to achieve 

more significant refinement. The use of restraints has been necessary to prevent partial 

unfolding and larger deviations away from the native structure in longer simulations,
22–24,26,46 but the restraints are also limiting how much structures can be refined. 

Overcoming this challenge is expected to benefit the refinement of soluble proteins as well 

as the membrane proteins.

Protein structure prediction and refinement of membrane proteins has not been explored as 

widely as for soluble proteins. The lack of template structures has hindered comparative 

modeling efforts and CASP has not provided a large number of targets where prediction 

methods could be tested blindly. We hope that this situation will change as structural biology 
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efforts continue to focus on membrane structures and that there will be expanded 

opportunities to test and validate structure prediction and refinement methods for 

membranes such as the methods described here.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Native structures of target proteins (red) vs. homology models (yellow) and refined models 

(green) using the RWplus scoring function for filtering. ΔGDT-HA values indicate the 

change after refinement from the initial homology models with respect to the native 

structures. Six proteins out of eight give positive ΔGDT-HA indicating an improvement in 

the secondary structures. Examples of improved and unimproved structural parts inside the 

boxes are shown in more detail.
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Figure 2. 
Structures of target proteins (red), final models from the DPPC bilayer simulations (green), 

final models from the water simulations (blue) after the refinement using the RWplus 

scoring function for 4n6h (A) and 4kr8 (B). Details of the differences selected structure parts 

in the membrane and water regions are shown in the boxes.
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Figure 3. 
Score values vs. Cα RMSD from the native structure for each target with different scoring 

functions for snapshots extracted from the MD simulations with DPPC lipid bilayers. 

scattering plots. Scores are given relative to the respective minimum energy values. Energy 

values for the HDGB-based scores are given in units of kcal/mol.
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Figure 4. 
Average ΔRMSD (top) and ΔGDT-HA (bottom) values plotted over the simulation time 

against the number of trajectories for the simulations in DPPC lipid bilayer (left) and in 

water (right). The RMSD and GDT-HA values were calculated for the final structures using 

RWplus score for the structure selection and averaged over the proteins.
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