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The circadian glucocorticoid-Krüppel-like factor 15-branched-chain amino acid (GC-KLF15-BCAA) signaling path-
way is a key regulatory axis in muscle, whose imbalance has wide-reaching effects on metabolic homeostasis.
Spinal muscular atrophy (SMA) is a neuromuscular disorder also characterized by intrinsic muscle pathologies,
metabolic abnormalities anddisrupted sleeppatterns,which can influence or be influencedby circadian regulatory
networks that control behavioral and metabolic rhythms. We therefore set out to investigate the contribution of
the GC-KLF15-BCAA pathway in SMA pathophysiology of Taiwanese Smn−/−;SMN2 and Smn2B/− mouse models.
We thus uncover substantial dysregulation of GC-KLF15-BCAA diurnal rhythmicity in serum, skeletal muscle and
metabolic tissues of SMAmice. Importantly,modulating the components of theGC-KLF15-BCAApathway via phar-
macological (prednisolone), genetic (muscle-specific Klf15 overexpression) and dietary (BCAA supplementation)
interventions significantly improves disease phenotypes in SMA mice. Our study highlights the GC-KLF15-BCAA
pathway as a contributor to SMA pathogenesis and provides several treatment avenues to alleviate peripheral
manifestations of the disease. The therapeutic potential of targetingmetabolic perturbations by diet and commer-
cially available drugs could have a broader implementation across other neuromuscular and metabolic disorders
characterized by altered GC-KLF15-BCAA signaling.
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1. Introduction

Transcriptional regulation is one of the main control mechanisms
of metabolic processes [1]. Krüppel-like factor 15 (KLF15) is a
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transcription factor expressed in a multitude of metabolic tissues in-
cluding skeletal muscle [2] where it is involved in regulation of lipid
[3], glucose [4], and amino acid metabolism [5]. Specifically, KLF15 dis-
plays a diurnal pattern of expression, and regulates branched-chain
amino acids (BCAA) metabolism and utilization in a circadian fashion
[5]. BCAAs (isoleucine, leucine and valine) are a major source of essen-
tial amino acids in muscle (35%) [6]. Accumulating evidence in various
species suggest that BCAAs promote survival, longevity [7,8] and repair
of exercise- and sarcopenia-induced muscle damage [9,10]. Both KLF15
and BCAAs are modulated by circadian secretion of glucocorticoids
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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(GCs) and activity of the glucocorticoid receptor (GR) [11,12]. GCs are
also used surreptitiously by endurance athletes for their ergogenic
properties [13] and as treatment for genetic muscle pathologies [14].

The neuromuscular disease spinal muscular atrophy (SMA) is the
most common autosomal recessive disorder leading to infant mortality
[15]. It is characterized by degeneration of α-motoneurons in the ven-
tral horn of the spinal cord as well as progressive muscle weakness
and atrophy [16,17]. SMA is a monogenic disease caused by homozy-
gous deletions or mutations within the survival motor neuron 1
(SMN1) gene [18,19]. Complete loss of SMN is embryonic lethal in
mice [20]. However, humans have at least one copy of the highly homol-
ogous SMN2 gene, which generates a low amount of functional protein
that allows for embryonic development, while not being sufficient for
complete rescue in the event of SMN1 loss. This is due to a nucleotide
transition in SMN2 that favors alternative splicing of exon 7 and produc-
tion of a non-functional truncated protein [19,21,22].Whilst several cel-
lular functions for SMN have been defined [23–25], it remains elusive
why a lack of the ubiquitously expressed SMN results in the canonical
SMA phenotype.

Although motoneurons are the primary cellular targets in SMA, a
number of tissues outside the central nervous system (CNS) also con-
tribute to disease pathophysiology [26], with skeletal muscle being the
most prominently afflicted [27]. As muscle plays an important role in
maintaining systemic energy homeostasis [28], intrinsic muscle defects
can have severe consequences on whole-body metabolism. Various
studies in SMA animal models and patients report metabolic abnormal-
ities such as abnormal fatty acid metabolism [29–31], defects in glucose
metabolism and pancreatic development [32,33] and the coexistence of
diabetes mellitus and diabetic ketoacidosis in SMA patients [34,35]. The
observation that dietary supplementation improves lifespan of SMA
mice [36–38] further supports the hypothesis that metabolic perturba-
tions contribute to SMA pathology. We thus postulate that intrinsic
metabolic defects in skeletal muscle play a contributory role in whole-
body metabolic perturbations in SMA.

Here, we identify dysregulation of the GC-KLF15-BCAA pathway in
skeletal muscle as a key pathological event in SMA. Notably, we demon-
strate that pharmacological and dietary interventions that modulate this
pathway lead to significant phenotypic improvements in SMA mice. Our
results reveal the importance of the GC-KLF15-BCAA axis in SMA patho-
genesis and highlight its potential as a therapeutic target to attenuate
muscle and metabolic disturbances in SMA. The accessibility and ease of
administration of the dietary and drug treatments identified in our
study make them exciting clinical avenues to investigate not only in
SMA patients but also in individuals with other neuromuscular and neu-
rodegenerative diseaseswhere GC-KLF15-BCAA signalingmay be altered.

2. Materials and Methods

2.1. Animals

The Taiwanese Smn−/−;SMN2 (FVB/N background, FVB·Cg-
Smn1tm1HungTg(SMN2)2Hung/J, RRID: J:59313), Smn2B/− (C57BL/6
background, RRID: not available) and KLF15 MTg (C57BL/6 background,
RRID: not available) mice were housed either in individual ventilated
cages in the typical holding rooms of the animal facility or in circadian
isolation cages (12 h light:12 h dark cycle, LD12:12). Experiments
with the Smn−/−;SMN2 and Klf15 MTgmicewere carried out in the Bio-
medical Sciences Unit, University of Oxford, according to procedures au-
thorized by the UK Home Office (Animal Scientific Procedures Act
1986). Experiments with the Smn2B/− mice were carried out at the Uni-
versity of Ottawa Animal Facility according to procedures authorized by
the Canadian Council on Animal Care. Prednisolone (5 mg tablets,
Almus) was dissolved in water (1 tablet in 5 mL) and administered by
gavage on every second day starting at P0 until death in the severe Tai-
wanese Smn−/−;SMN2 SMAmousemodel. In the Smn2B/−mousemodel,
prednisolone or salinewas administered by gavage every twodays from
P0 to P20. For the Smn2B/− mouse model treatment, weaned mice were
given daily wet chow at the bottom of the cage to ensure proper access
to food. BCAA peptides (Myprotein)were diluted inwater (300mg in 2
mL) and administered to the severe Taiwanese Smn−/−;SMN2 SMA
mice by gavage starting at P5. Pip6a-PMO and Pip6a-scrambled com-
poundswere delivered by facial vein injections at P0 and P2 (10 μg/g di-
luted in 0.9% saline) to WT and severe Taiwanese Smn−/−;SMN2 SMA
mice. Prednisolone and BCAAs were administered to the animals
around the same time each day. Litters were randomly assigned to
treatment prior to birth. For survival studies, animals were weighed
daily and culled upon reaching their defined humane endpoint. To re-
duce total number of animals used, the fast-twitch tibialis anterior and
tricepsmuscles from the same animalwere used interchangeably for re-
spective molecular and histological analyses. Sample sizes were deter-
mined based on similar studies with SMA mice.

2.2. Peptide-PMO Synthesis

Pip6a Ac-(RXRRBRRXRYQFLIRXRBRXRB)-COOH was synthesized
and conjugated to a PMO chemistry as previously described [39]. The
full length SMN2 enhancing PMO (5′-ATTCACTTTCATAATGCTGG-3′)
and scrambled PMO (5′- TACGTTATATCTCGTGATAC-3′) sequences
were purchased from Gene Tools LLC.

2.3. qPCR

Skeletal muscles were harvested at several time-points during dis-
ease progression and immediately flash frozen. For circadian experi-
ments, liver, heart, white and brown adipose tissue (WAT and BAT),
spinal cord and tibialis anterior muscles were harvested from P2 and
P7 pups every 4 h over a 24 h period (ZT1 = 9 am, ZT5 = 1 pm, ZT9
= 5 pm, ZT13= 9 pm, ZT17= 1 am, ZT21= 5 am). RNAwas extracted
with the RNeasy MiniKit (Qiagen) except for WAT and BAT where the
RNeasy Lipid Tissue MiniKit (Qiagen) was used. Reverse transcription
was performed using the High-Capacity cDNA Reverse Transcription
Kit (ThermoFisher Scientific). qPCRwas performed either using TaqMan
Gene Expression Mastermix (ThermoFisher Scientific) or SYBR green
Mastermix (ThermoFisher Scientific) and primers were from Integrated
DNA Technologies (see Supplementary Experimental Procedures). For
SYBR green qPCRs, RNA polymerase II polypeptide J (PolJ), was used as a
validated housekeeping gene. PolJ has previously been demonstrated
as being stably expressed between tissues and in different pharmaco-
logical conditions [40]. For circadian experiments and TaqMan qPCRs,
housekeeping genes for each tissue were determined using the Mouse
geNorm Kit and qbase+ software (Primerdesign).

2.4. PCR Arrays

RNA from skeletal muscle was extracted using the RNeasy Microar-
ray Tissue Mini Kit (Qiagen). cDNA was made using RT2 First Strand
Kit (Qiagen). qPCRs were performed using Mouse Amino Acid Metabo-
lism I & II PCR arrays (PAMM-129Z and PAMM-130Z, SABiosciences).
Data was analyzed with the RT Profiler PCR Array Data Analysis version
3.5 and mRNA expression was normalized to the geometric average of
the two most stably expressed housekeeping genes between all
samples.

2.5. Immunoblots With Mouse Tissues

Triceps were isolated from P7 Smn−/−;SMN2 mice and healthy
control littermates and snap frozen in liquid nitrogen. The tissue
was lysed in 200 μL RIPA buffer (150 mM NaCl, 50 mM Tris, 0.5%
sodium deoxycholate, 0.1% TX-100, 5 mM sodium pyrophosphate,
2 mM β-glycerophosphate, 1 × EDTA-free protease inhibitor (Roche),
1 × PhosSTOP phosphatase inhibitor (Roche), pH 7.5) using Precellys
24 homogenizer (Stretton Scientific). Total protein (20 μg per lane)
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was resolved on Tris-glycine SDS-PAGE and transferred to PVDF mem-
brane. The following antibodies were used: p70 S6 kinase (#2708,
RRID: AB_390722), S6 Ribosomal Protein (#2217, RRID: AB_331355),
Phospho-S6 Ribosomal Protein (Ser235/236, #2211, RRID: AB_331679)
(all 1:1000, Cell Signaling Technology), and goat anti-rabbit IRDye
800CW (#827–08365, LI-COR Biosciences, RRID: AB_10796098). The
membranes were imaged and quantified using ImageStudio and LI-
COROdyssey Fc (LI-COR Biosciences). Band intensities were normalized
to total protein as determined by Fast Green (FG) stain (125 μM Fast
Green FCF, 6.7% acetic acid, 30% methanol) [41]. Each biological sample
(n) was run in 3–4 technical replicates and the average of all technical
replicates was used to determine the final relative expression for each
biological sample.

2.6. Corticosterone ELISA

Analysis of corticosterone content in serum was performed with an
ELISA kit (#ab108821, Abcam) following the manufacturer's instruc-
tions. Serum samples were diluted 1:10.

2.7. BCAA Content in Muscle and Serum

Levels of valine, leucine and isoleucine were measured in muscle
and serum by high-performance liquid chromatography (HPLC)
(AltaBiosciences, Birmingham, UK). Skeletal muscles were pooled to
reach a minimum weight of 100 mg and sera were pooled to reach a
minimum volume of 150 μL.

2.8. Neuromuscular Junction (NMJ) Immunohistochemistry

NMJs were stained as previously described [42]. Briefly, whole
tibialis anteriormusclewas harvested and fixed in 4% paraformaldehyde
(PFA) for 15 min. Muscles were incubated with α-bungarotoxin (α-
BTX) conjugated to tetramethylrhodamine (#BT00012, Biotium,
1:100, RRID: not available) at RT for 30 min with ensuing PBS washes.
Muscles were incubated in blocking solution (0.2% Triton-X, 2% BSA,
0.1% sodium azide) at RT for 1 h. Nerve terminals were stained with an-
tibodies against synaptic vesicle 2 (#SV2 (Supernatant 1 mL), Develop-
mental Studies Hybridoma Bank, 1:100, RRID: AB_2315387) and
neurofilament NF-M (#2H3, Supernatant 1 mL), Developmental Studies
Hybridoma Bank, 1:100, RRID: AB_2314897) overnight at 4 °C. Follow-
ing three PBS washing steps, the tissue was incubated with an Alexα
Fluor 488 goat anti-mouse antibody (#A-21141, Molecular Probes,
1:500, RRID:AB_141626) at RT for 1 h. Finally, 2–3 thin filets permuscle
were sliced andmounted in Fluoromount-G (Southern Biotech). Images
were taken with a confocal microscope, with a 20× objective, equipped
with filters suitable for FITC/Cy3 fluorescence. The experimenter quan-
tifyingNMJmorphology and innervationwas blinded to the genotype of
the animals until all measurements were finalized.

2.9. Human Samples

Skeletal muscle biopsies from SMA patients and controls were ob-
tained from two different biobanks (Fondazione IRCCS Istituto
Neurologico “C. Besta” and Fondazione Ospedale Maggiore Policlinico
Mangiagalli en Regina Elena, IRCCS) [43]. As previously described, pro-
tein was extracted in RIPA buffer with 10% protease inhibitor cocktail
(Sigma). Equal amounts of total proteinwere loaded and blocked in Od-
yssey buffer (LI-COR Biosciences). Membranes were incubated over-
night with the primary antibody goat anti-KLF15 (#ab2647, Abcam,
1:1000, RRID: AB_303232). The secondary antibody was rabbit anti-
Goat IgG (H+ L) DyLight 800 (#SA5–10084, Thermo Fisher Scientific,
RRID: AB_2556664). Membranes were imaged on a LI-COR Odyssey FC
imager and analyzed with Image StudioTM software (LI-COR Biosci-
ences). Coomassie staining of the gel was used to visualize total protein,
which was used as a normalization control.
2.10. Statistics

All statistical analyses were performed using GraphPad Prism ver-
sion 6.0 h software. When appropriate, a student's unpaired two-tailed
t-test, a one-way ANOVA followed by a Tukey's multiple comparison
test or a two-way ANOVA followed by a Sidak's multiple comparison
test was used. Outliers were identified via the Grubbs' test and subse-
quently removed. For the Kaplan-Meier survival analysis, a log-rank
test was used and survival curves were considered significantly
different at p b 0.05 where *p b 0.05, **p b 0.01, ***p b 0.001 and
****p b 0.0001.

3. Results

3.1. Dysregulation of the GC-KLF15-BCAA Axis in Severe SMA Mice

We first investigated the GC-KLF15-BCAA pathway in skeletal mus-
cle from severe Smn−/−;SMN2 SMA mice [44]. Muscles were selected
based on their vulnerability to neuromuscular junction (NMJ) denerva-
tion (from most vulnerable to resistant: triceps N gastrocnemius
(gastro) N tibialis anterior (TA) N quadriceps femoris (quad)) [45]. Mus-
cles were harvested from Smn−/−;SMN2 and wild type (WT) mice at
several time-points during disease progression (post-natal day (P) 0:
birth, P2: pre-symptomatic, P5: early symptomatic, P7: late symptom-
atic, P10: end stage). As GCs exert their influence on KLF15 via GR, we
assessed expression of the two GR isoforms α and β [46] in muscle of
P2 and P7 mice. GRα is thought to be a key mediator of GC-dependent
target gene transactivation, while GRβ inhibits GRα and induces GC re-
sistance [47]. Interestingly, we observed a significant downregulation of
GRα mRNA in P2 and upregulation of GRβ mRNA in P7 Smn−/−;SMN2
mice compared to WT (Fig. 1a, b), with the exception of P7 quad
where GRβ is significantly decreased in SMA animals. Both, GRβ and
GRα mRNA levels are not significantly different between Smn−/−;
SMN2 and WT mice at P2 and P7, respectively (Supplementary Fig. 1a,
b), with the exception of P7 gastro where GRα is significantly decreased
in SMA animals.

We next examined the expression profile of Klf15mRNA during dis-
ease progression and found the same pattern in all four muscles: de-
creased levels in P2 and increased levels in P7 Smn−/−;SMN2 mice
compared to WT animals (Fig. 1c).

Interestingly, the peak expression of Klf15mRNA inWTmuscles oc-
curs at P2while in SMAmuscles, it is observed at P5 or later, reflecting a
potential developmental delay, which has previously been reported for
myogenic regulatory factors (MRFs) [27,48]. To evaluate if similar de-
velopmental delays also occurred for GRa and GRb mRNA expression,
we further determined their expression profiles at all time-points
during disease progression. Interestingly, we observed peak levels at
P2 for both GRa and GRbmRNAs for most WT muscles (Supplementary
Fig. 2). However, in SMA muscles, GRa and GRb mRNA levels either
remained similar throughout or displayed a slight downregulation/
upregulation in symptomatic stages (Supplementary Fig. 2). Thus, the
expression profiles of GRα and GRβ mRNAs are distinct from that of
Klf15mRNA.

We next wanted to determine if the increased Klf15 mRNA expres-
sion corresponded to previously reported differential Smn expression
during neonatal muscle development in a different severe SMA mouse
model [49]. We find that Smn mRNA levels do not significantly change
in WT muscles from P0 to P10, with the exception of a significant in-
crease in P2 quad (Supplementary Fig. 3). Our findings are consistent
with another study demonstrating that Smn protein levels in hindlimb
muscles from WT animals are relatively high and similar from P0 to
P10, followed by a dramatic decrease from P10 onwards [27].

Seeing as aberrant Klf15 expressionmay alter BCAA metabolism, we
performed commercially available Amino Acid Metabolism PCR arrays
on P2 and P7 triceps (Supplementary Table 1).We observed that the ex-
pression of a number of effectors of BCAAmetabolismwere significantly

nif-antibody:AB_390722
nif-antibody:AB_331355
nif-antibody:AB_331679
nif-antibody:AB_10796098
nif-antibody:AB_2315387
nif-antibody:AB_2314897
nif-antibody:AB_141626
nif-antibody:AB_303232
nif-antibody:AB_2556664
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downregulated in P2 and upregulated in P7 Smn−/−;SMN2 mice com-
pared to WT animals (Fig. 1d). These included Bcat2 mRNA, the major
catabolic enzyme of BCAAs [6], previously shown to be regulated by
KLF15 activity [5]. We next evaluated Klf15 mRNA expression in heart
and liver of P2 and P7 animals, two metabolic tissues highly influenced
by KLF15 activity [4,50]. Klf15 mRNA levels were unchanged in tissues
from P2 mice but were significantly increased in heart and liver from
P7 Smn−/−;SMN2 mice compared to WT animals (Fig. 1e). Therefore,
our results suggest that the decreased activity of the GC-KLF15-BCAA
pathway in pre-symptomatic SMA mice is limited to skeletal muscle,
whereas the increased activity in symptomatic SMA animals may be a
more widespread phenomenon.

Maintenance of muscle function and mass throughout life depends
on the balance between protein synthesis and degradation regulated
by mammalian target of rapamycin (mTOR) [51]. Amino acid availabil-
ity, particularly the BCAA leucine, stimulates mTOR complex 1
(mTORC1) protein synthesis in muscle [51]. KLF15 thus interferes
with mTOR protein synthesis by promoting BCAT2 activity and subse-
quent degradation of leucine [12]. We therefore investigated mTOR ac-
tivity in skeletal muscle (triceps) of P7 Smn−/−;SMN2 mice and control
littermates, which, to the best of our knowledge, has not yet been per-
formed in the Taiwanese SMA mouse model. Ribosomal protein S6 ki-
nase beta-1 (S6 K1) is phosphorylated (p) following mTOR activation
and subsequently directly phosphorylates the S6 ribosomal protein
(S6) [51]. As direct downstream effectors, both S6 K1 and S6 were
therefore used to assess mTOR activity. Immunoblot analysis revealed
that protein levels of S6 K1, p-S6 and S6 are significantly downregulated
in triceps of Smn−/−;SMN2 mice compared to healthy littermates
(Fig. 1f, g). Thus, the mTOR-dependent protein synthesis is significantly
downregulated in SMA muscle, which could be directly linked to the
upregulated Klf15 mRNA levels.

We also obtained humanmuscle biopsies (gastrocnemius) from con-
trol non-SMA individuals and SMAType I-III patients (most severe to less
severe: Type I N Type II N Type III) of varying ages (3 mths-27 yrs).
Western blot analysis of KLF15 protein revealed a trend for increased
KLF15 levels in SMA muscle samples (Fig. 1h, Supplementary Fig. 4).
These protein expression patterns therefore prompt further detailed
studies of GC-KLF15-BCAA signaling in SMA patients.

Finally, we wanted to assess if dysregulation of Klf15, GRα and GRβ
mRNAs was linked to SMN levels. To do so, we used muscle from
Smn−/−;SMN2 mice that received facial vein injections at P0 and P2 of
our previously published Pip6a-phosphorodiamidate oligomer (PMO)
compound that promotes full length SMN production from the human
SMN2 gene [39]. P7 TAs from Pip6a-PMO-treated Smn−/−;SMN2 mice
were compared to age-matched tissues fromWT animals as well as un-
treated and Pip6a-scrambled-treated Smn−/−;SMN2mice. Interestingly,
we find that Klf15 mRNA is significantly reduced in in both Pip6a-PMO
and Pip6a-scrambled-treated muscles (Supplementary Fig. 5a), sug-
gesting an SMN-independent normalization of Klf15 mRNA levels. In-
deed, our combined qPCR, transcriptomics and proteomics analysis of
these tissues shows that while the Pip6a-scrambled compound does
not increase FL SMN2mRNA expression, numerous transcripts and pro-
teins are significantly differentially regulated compared to muscle from
Fig. 1. Dysregulation of the GC-KLF15-BCAA pathway in severe SMA mice and human SMA patie
gastrocnemius (gastro), tibialis anterior (TA) and quadriceps femoris (quad)) of post-natal day (P) 2
per group; two-tailed t-test; triceps: p=0.0113; gastro: p=0.0487; TA: p=0.0176; quad: p=
mice compared to WT animals. Data represent mean± SD; n=3–4 animals per group; two-tail
analysis of Klf15mRNA in four different skeletal muscles of Smn−/−;SMN2mice compared to WT
two-way ANOVA; ***p b 0.001, ****p b 0.0001. d. BCAA metabolism effector genes (mRNA) dysreg
fold up- or downregulation with p N 0.05. e. qPCR analysis of Klf15mRNA in heart and liver of P2
animals per group, two-way ANOVA; **p b 0.01, ****p b 0.0001. f. Quantification of total S6 K1
protein was visualized with Fast Green (FG) stain. Images are representative immunoblots
g. Quantification of phosphorylated (p)-S6 and total S6/total protein in triceps of P7 Smn−/−;SMN
stain. Images are representative immunoblots. Data represent mean± SD, n= 5–7 animals per
protein/total protein in human gastrocnemius muscle samples from non-SMA control individuals
untreated SMAmice (data not shown). The aberrant expression of Klf15
mRNA and its restoration in Pip6a-treated muscle may therefore be
more related to overall muscle and whole-bodymetabolic state and ac-
tivity [52,53]. Both Pip6a-PMO and Pip6a-scrambled had no normaliza-
tion effects on GRα mRNA levels (Supplementary Fig. 5b) while similar
SMN-independent effects were observed for GRβmRNA levels (Supple-
mentary Fig. 5c).

3.2. Altered Diurnal Expression of the GC-KLF15-BCAA Pathway in Severe
SMA Mice

All components of the GC-KLF15-BCAA pathway display functional
and regulatory circadian expression patterns [5,54]. As our analysis so
far corresponds to a single time-point during a 24 h period, we next
assessed the circadian rhythmicity of the GC-KLF15-BCAA axis in SMA
mice. Upon pairing, breeding pairs were entrained to a 12 h light:12 h
dark cycle (LD12:12) and ensuing litters maintained in that environ-
ment. Serum, TA and triceps were harvested from P2 and P7 Smn−/−;
SMN2 and Smn+/−;SMN2 control littermates every 4 h (Zeitgeber
time, ZT) over a 24 h period (ZT0 = 8 am, ZT1 = 9 am, ZT5 = 1 pm,
ZT9 = 5 pm, ZT13 = 9 pm, ZT17 = 1 am, ZT21 = 5 am). Corticoste-
rone (major mouse GC) levels in serum were measured by ELISA at
ZT5 (day) and ZT17 (night) and show significantly dysregulated levels
in Smn−/−;SMN2 mice defined by elevated release in the dark phase
compared to control littermates (Fig. 2a). Assessment of GR gene ex-
pression in TA shows that the diurnal pattern of GRαmRNA is relatively
similar between Smn−/−;SMN2 mice and control littermates (Fig. 2b).
However, GRβ mRNA displays significant changes in amplitude,
whereby we observe similar oscillation patterns but with differential
expression at specific ZTs in both P2 and P7 Smn−/−;SMN2 mice com-
pared to control littermates (Fig. 2c). The overall upregulation of GRβ
known tomediate metabolic GC resistance [46,47] may be a compensa-
tory mechanism to counteract the aberrant GC regulation identified in
Fig. 2a. Analysis of diurnal expression ofKlf15mRNAalso shows changes
in amplitude with a general downregulation in P2 and upregulation in
P7 Smn−/−;SMN2 mice compared to control littermates (Fig. 2d). The
fact that GRα/β and Klf15 levels are similar between groups at certain
ZTs could suggest that the defect lies in circadian regulation and not
overall expression aswell as highlights discrepancies in data interpreta-
tion that can arise when circadian effectors are analyzed at one single
time-point.

To determine if circadian BCAA metabolism was impacted, valine,
leucine and isoleucine levels were measured by high-performance
liquid chromatography (HPLC) in serum and triceps of P2 and P7
Smn−/−;SMN2mice and control littermates over a 24 h period. In mus-
cle, we report diurnal cycling of BCAAs in P2 and P7 mice with changes
in phase (distinct oscillation patterns) and amplitude at both time-
points between Smn−/−;SMN2 mice and control littermates (Fig. 2e),
with the exception of isoleucine at P7. Similar observations were
made when looking at serum BCAA levels, where the 24 h cycling be-
haviour in P2 and P7 Smn−/−;SMN2 mice demonstrates differences in
phase and amplitude compared to control littermates (Fig. 2f), with
the exception of isoleucine at P2. Of particular interest is the generalized
nts. a. qPCR analysis of GRαmRNA in four different skeletal muscles (triceps brachii (triceps),
Smn−/−;SMN2mice compared toWT animals. Data represent mean±SD; n=3–4 animals
0.0042. b. qPCR analysis of GRβmRNA in four different skeletal muscles of P7 Smn−/−;SMN2
ed t-test; triceps: p=0.0075; gastro: p=0.004; TA: p=0.0352; quad: p=0.0008. c. qPCR
animals at P0, P2, P5, P7 and P10. Data represent mean± SD; n=3–4 animals per group;
ulated in triceps of P2 and P7 Smn−/−;SMN2 animals compared to WT mice. Data represent
and P7 Smn−/−;SMN2mice compared to WT animals. Data represent mean± SD, n=3–4
/total protein in triceps of P7 Smn−/−;SMN2 mice compared to healthy littermates. Total
. Data represent mean ± SD, n= 5–7 animals per group, two-tailed t-test; p= 0.0325.
2mice compared to healthy littermates. Total protein was visualized with Fast Green (FG)
group, two-tailed t-test; p-S6: p=0.0024; total S6: p=0.0024. h. Quantification of KLF15
and SMA Type I-III patients.
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depletion of all BCAAs in the serum of P7 Smn−/−;SMN2 animals
(Fig. 2f), which may reflect the high use in skeletal muscle due to in-
creased Klf15 expression at the same time-point (Fig. 2d).
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Finally, to assess if aberrant circadian expression of Klf15mRNAwas
specific to skeletal muscle, we evaluated its rhythmicity in variousmet-
abolic tissues (white adipose tissue (WAT), brown adipose tissue (BAT),
liver andheart) and spinal cord (SC) fromP2 and P7 Smn−/−;SMN2mice
and control littermates (Supplementary Fig. 6). We find changes in
phase and amplitude in all P2 tissues except for SCwhile at P7, all tissues
display significant phase and amplitude alterations highlighted by an
overall significant increase in Klf15 mRNA expression. These systemic
alterations in Klf15 expression could further influence the serum deple-
tion of BCAAs observed in P7 Smn−/−;SMN2 mice (Fig. 2f). Combined,
our results demonstrate a dysregulated circadian regulation of the GC-
KLF15-BCAA pathway in Smn−/−;SMN2mice, which is specific to skele-
tal muscle in the pre-symptomatic stage and evolves to a whole-body
phenomenon as disease progresses.

Altogether, our analysis of GC-KLF15-BCAA signaling during disease
progression (Fig. 1) and over a 24 h period (Fig. 2), demonstrate an
overall downregulated activity in pre-symptomaticmuscle and upregu-
lated activity in symptomatic muscle (Fig. 3), which could potentially
have distinct effects on the development and/or maintenance of muscle
and metabolic pathologies in SMA.

3.3. Modulating Upstream GC-KLF15-BCAA Signaling With Prednisolone
Improves Phenotype of Severe SMA Mice

Wenext set out to determine if aberrant regulation of Klf15mRNA in
Smn−/−;SMN2mice has a physiological impact onmajor disease pheno-
types. Firstly, to counteract themuscle-specific downregulation of Klf15
mRNA in pre-symptomatic Smn−/−;SMN2 mice (Fig. 1c, 2d), we used
the pharmacological compound prednisolone, a synthetic GC previously
demonstrated to specifically induce Klf15mRNA expression [55,56].We
administered prednisolone by gavage to Smn−/−;SMN2 mice and con-
trol littermates every 2 days starting at P0. A dose-response assessment
of prednisolone (2.5, 5 and 10mg/kg) determined the optimal dose of 5
mg/kg (Supplementary Fig. 7). We firstly validated the direct action of
prednisolone on the GC-KLF15-BCAA pathway in muscle of P2 and P7
Smn−/−;SMN2 mice and control littermates. We found that the expres-
sion of total GRmRNA (Nr3c1, GRα+GRβ) is significantly reduced in P2
and P7 prednisolone-treated mice compared to untreated animals
(Fig. 4a), most likely attributed to a GC-mediated downregulation of
GR gene transcription [57]. Further analysis revealed that this downreg-
ulation was specifically attributed to a decreased expression of GRα
mRNA as GRβ mRNA levels were unchanged (Fig. 4b). As total GRβ
mRNA levels are consistently significantly less abundant than GRα
mRNA levels, the latter will therefore have greater impact on total GR
(Nr3c1) mRNA levels. As expected, Klf15 mRNA levels are significantly
enhanced in P2 Smn−/−;SMN2 mice and control littermates treated
with prednisolone compared to untreated animals (Fig. 4c). At P7 how-
ever, Klf15 mRNA is significantly upregulated in prednisolone-treated
control littermates compared to untreated mice while no changes are
seen in prednisolone-treated Smn−/−;SMN2 mice (Fig. 4c), suggesting
that Klf15 signaling in SMAmice becomes less responsive to GCs as dis-
ease progresses, potentially as a result of the increased expression of
Fig. 2. Circadian rhythmicity of the GC-KLF15-BCAA axis is dysregulated in severe SMA
mice. a. Corticosterone levels in serum of post-natal day (P) 2 and P7 Smn−/−;SMN2mice
compared to healthy control littermates at the Zeitgeber time (ZT) 5 and ZT17. Data
represent mean ± SD; n = 3–4 animals per group, two-way ANOVA; *p b 0.05 b. qPCR
analysis of diurnal expression of GRα mRNA in the tibialis anterior (TA) of P2 and P7
Smn−/−;SMN2 mice compared to healthy controls. c. qPCR analysis of diurnal expression
of GRβ mRNA in the TA of P2 and P7 Smn−/−;SMN2 mice compared to healthy controls.
d. qPCR analysis of diurnal expression of Klf15 mRNA in the TA of P2 and P7 Smn−/−;
SMN2 mice compared to healthy controls. b-d: Data represent mean ± SD; n = 3–5
animals per group, two-way ANOVA; *p b 0.05, **p b 0.01, ****p b 0.0001; # indicates
cycling ZT1 data is duplicated. e. Levels of the BCAAs valine, leucine and isoleucine in
triceps of P2 and P7 Smn−/−;SMN2 and healthy controls. f. Levels of the BCAAs in serum
of P2 and P7 Smn−/−;SMN2 and healthy control animals. e–f: each data point represents
the pooling of 5–15 animals.



Fig. 3. Schematic summarizing the activity of the glucocorticoid (GC)- glucocorticoid
receptor (GR, α and β)-Klf15-BCAT2-branched-chain amino acid (BCAA) signaling
cascade in normal muscle (a), pre-symptomatic muscle from Smn−/−;SMN2 SMA mice
(b) and symptomatic muscle from Smn−/−;SMN2 SMA mice (c).
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GRβ (Fig. 1b, 2c). Finally,mRNA levels of the direct transcriptional target
of KLF15, Bcat2 [4] were unchanged in P2 Smn−/−;SMN2mice and con-
trol littermates (Fig. 4d), most likely reflecting the delayed increase of
Bcat2 expression following Klf15 induction [12]. Indeed, we detected a
significant upregulation of Bcat2 mRNA in muscles from P7 predniso-
lone-treated Smn−/−;SMN2 mice and control littermates compared to
untreated animals (Fig. 4d).

Importantly, we demonstrate that Smn−/−;SMN2 animals display a
significant increased weight gain (Fig. 4e) and an enhanced lifespan
after prednisolone administration (Fig. 4f). In contrast, control litter-
mates mice show a significant weight reduction when treated with
prednisolone (Fig. 4g), which could be attributed to the typical muscle
wasting effect of prolonged exposure to GCs [58]. Thus, our results sug-
gest that modulating GC-KLF15-BCAA signaling with a synthetic GC is a
valid therapeutic strategy for SMA.

3.4. Modulating GC-KLF15-BCAA Signaling With Prednisolone Improves
Phenotype of Intermediate SMA Mice

To investigatewhether the observed dysregulation in theGC-KLF15-
BCAA axis is present in other SMA mouse models, we repeated key ex-
periments in the intermediate Smn2B/− mice [59,60]. Similar to the se-
vere SMA mouse model, Smn2B/− mice display a significant reduction
in Klf15 mRNA expression in pre-symptomatic muscle (TA) followed
by a significant upregulation during disease progression compared to
age-matched WT animals (Fig. 5a). Using commercially available
Amino Acid Metabolism PCR arrays (Supplementary Table 1), we also
demonstrate perturbed expression of BCAA metabolism effectors, par-
ticularly in symptomatic Smn2B/− mice, where several genes are signifi-
cantly increased compared to WT animals (Fig. 5b). Interestingly, we
noted a comparable upregulation of Bcat2, Oxct2a, Acat1, Acadsb and
Mut mRNAs in symptomatic severe Smn−/−;SMN2 and intermediate
Smn2B/− SMA mice (Fig. 5c). Importantly, we also administered
prednisolone (5mg/kg) by gavage to Smn2B/−mice and Smn2B/+ control
littermates every 2 days from P0 to P20. This dosing regimen had a sig-
nificant beneficial effect onweight gain (Fig. 5d) and led to an enhanced
lifespan (Fig. 5e) of treated Smn2B/− mice compared to saline-treated
animals. Prednisolone had no significant impact on weight of Smn2B/+

control littermates (Fig. 5f). We thus show a dysregulated Klf15 path-
way in muscle of two distinct SMA mouse models, and importantly
demonstrate that modulating the GC-KLF15 signaling cascades via ad-
ministration of prednisolone improves weight and survival in both
Smn−/−;SMN2 and Smn2B/− mice.
3.5. Prednisolone Improves Neuromuscular Phenotype of Severe SMA Mice

Having shown that GC treatment ameliorates SMA disease
progression in intermediate and severe SMA mouse models, we
further analyzed the effects of prednisolone on neuromuscular pa-
thology in P7 Smn−/−;SMN2 mice and control littermates. We first
assessed the effect of prednisolone on the expression of MuRF-1
and atrogin-1 mRNAs, ubiquitin ligases involved in muscle atrophy
[61] and typically induced by chronic administration of GCs [62]. Ex-
pression of mRNA of both atrogenes is significantly increased in
treated control littermates compared to untreated control animals
while no differences are found between prednisolone-treated and
untreated Smn−/−;SMN2 mice (Fig. 6a, b). The GC induction of
MuRF-1 and atrogin-1 mRNAs in healthy animals only may explain
the reduced weights specifically observed in prednisolone-treated
control littermates (Fig. 4g).

We next investigated the impact of prednisolone on expression of
MyoD, myogenin and parvalbumin mRNAs, determinants of muscle
health previously involved in SMA muscle pathology [27,43,48].
MyoD and myogenin are myogenic regulatory factors (MRFs) that
modulate commitment to muscle lineage and muscle-specific gene
expression [63]. Parvalbumin is a marker for neuromuscular pertur-
bations as its expression is decreased in denervated muscles [64] and
in symptomatic muscle of SMA patients and Smn−/−;SMN2 mice
[43]. We found that MyoD mRNA expression is significantly
enhanced in muscle of prednisolone-treated Smn−/−;SMN2 mice
compared to untreated animals while GCs did not impact MyoD
mRNA levels in control littermates (Fig. 6c). In contrast, predniso-
lone caused a significant reduced expression of myogenin mRNA in
control littermates while no significant changes in expression were
observed between treated and untreated Smn−/−;SMN2 mice
(Fig. 6d). The downregulation of myogenin mRNA in control
littermates treatedwith prednisolonemay reflect the increased atro-
phy signaling [65] (Fig. 6a, b) and weight loss (Fig. 4g) specifically
observed in this experimental cohort. Interestingly, comparison
of parvalbumin mRNA expression in Smn−/−;SMN2 mice and control
littermates shows that prednisolone significantly increases
parvalbumin mRNA levels in both groups (Fig. 6e), which in SMA
mice has previously been associated with improved muscle health
[43].

We then wanted to determine if molecular changes generated by
prednisolone administration would ameliorate the denervation pathol-
ogy and developmental defects at the NMJ [66]. Assessment of NMJs in
TAs of P7 animals showed a significant reduction inmotor endplate area
of untreated Smn−/−;SMN2 mice compared to untreated control litter-
mates, which remained unchanged in prednisolone-treated Smn−/−;
SMN2 animals (Fig. 6f). Interestingly, treated control animals display a
significantly smaller endplate area compared to untreated control litter-
mates (Fig. 6f), again depicting the adverse impact of prednisolone on
muscle of control animals. Next, we examined endplate morphology
by distinguishing between plaque-like and perforated endplates,
whereby in the maturation process, their shape changes from plaque-
like at P0, to perforated at P5, and finally to pretzel-like at P10 [67].
We find that both treated and untreated Smn−/−;SMN2 mice display
significantly more immature appearing endplates compared to treated
and untreated control littermates (Fig. 6g). Finally, we quantified the in-
nervation status of endplates and demonstrate that prednisolone signif-
icantly increases the number of fully innervated NMJs in Smn−/−;SMN2
mice compared to untreated animals (Fig. 6h). Interestingly, predniso-
lone has previously been demonstrated to play a beneficial role in the
pre-synaptic compartment of the NMJ, by preventing a drug-induced
neuromuscular blockade [68]. The improved NMJ innervation may
also be associated with the increased parvalbumin expression observed
in muscle of prednisolone-treated Smn−/−;SMN2mice (Fig. 6e), known
to reflect the denervation status ofmuscle [64]. Taken together, ourmo-
lecular and histopathological analyses reveal a differential response to
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Fig. 4.Prednisolone treatment improves disease phenotypes in severe SMAmice. qPCR analysis of (a)Nr3c1, (b)GRα andGRβ (c) Klf15 and (d) Bcat2mRNAs in tibialis anterior (TA)muscle
of post-natal day (P) 2 and P7 untreated and prednisolone-treated Smn−/−;SMN2mice and control littermates. a-d:Data representmean±SD; n=3–4 animals per group; two-way ANOVA;
*p b 0.05, **p b 0.01, ****p b 0.0001; ns=not significant. e.Weight curves of prednisolone-treated Smn−/−;SMN2mice vs. untreated animals. Data represent mean±SD; n=10–16 animals
per group; *p b 0.05, **p b 0.01. f. Lifespan of prednisolone-treated Smn−/−;SMN2mice vs. untreated animals. Data represent Kaplan-Meier curves; n= 10–16 animals per group; Log-rank
(Mantel-Cox) test; p=0.0009. g.Weight curves of prednisolone-treated healthy controls vs. untreated animals. Data represent mean±SD; n=9–18 animals per group; ****p b 0.0001.
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prednisolone between Smn−/−;SMN2 mice and control littermates.
Muscles from control animals undergo a GC-induced atrophy, while
this pathway is not activated in SMAmice. Rather, Smn−/−;SMN2mus-
cles show a myogenic response and a restoration of fully innervated
endplates, which potentially explain the ameliorated phenotype of
prednisolone-treated Smn−/−;SMN2 mice.
3.6. Synergistic Effect of Prednisolone and Klf15 Overexpression on Muscle
Pathology of SMA Mice

To better evaluate the impact of prednisolone-dependent Klf15 in-
duction in SMA animals, we generated transgenic Smn−/−;SMN2 mice
that overexpress Klf15 specifically in skeletal muscle by crossing the
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SMA line with the previously described KLF15 MTgmice [55]. The ensu-
ing F1 litters generated Smn−/−;SMN2, Smn+/−;SMN2, Smn−/−;SMN2;
KLF15 MTg and Smn+/−;SMN2;KLF15 MTg mice that were on a mixed
background of C57BL/6 (KLF15 MTg line) and FVB/N (Smn−/−;SMN2
line). We first assessed the activity of the skeletal muscle specific
enhancer/promoter (muscle creatine kinase (MCK)) driving Klf15
expression in P2 and P7 tissues. We found a significant increased
expression of Klf15 mRNA in the quadriceps muscle of both P2 and
P7 Smn−/−;SMN2;KLF15 MTg and Smn+/−;SMN2;KLF15 MTg mice
(Fig. 7a). To determine how this upregulation of Klf15 affected GC-
KLF15-BCAA signaling, we analyzed the expression of total GR (Nr3c1,
GRα + GRβ) and Bcat2 mRNAs in quadriceps from P7 animals. While
total GRmRNA expression is lower in SMA animals, it is not influenced
by Klf15 overexpression (Fig. 7b). Here again, the decreased expression
of total GR mRNA levels in SMA mice reflects the more abundant GRa
mRNA, which is also significantly decreased in Smn−/−;SMN2 and
Smn−/−;SMN2;KLF15 MTg mice (Fig. 7c), and not that of the GRβ
mRNA isoform, which is similar between all groups (Fig. 7d). However,
Bcat2mRNA is similarly increased in both Smn−/−;SMN2;KLF15MTg and
Smn+/−;SMN2;KLF15 MTg mice (Fig. 7e), suggesting that increased
KLF15 activity directly impacts BCAA metabolism. We next determined
if overexpression of Klf15 influenced markers of muscle atrophy and
pathology in the quadriceps of P7 animals. We observed that the
mRNA expression of atrogenes atrogin-1 and MurRF-1 was not signifi-
cantly different between Smn−/−;SMN2 and Smn−/−;SMN2;KLF15 MTg
(Fig. 7f, g). Interestingly, overexpression of Klf15 in control littermates



Fig. 6. Prednisolone treatment improves neuromuscular phenotypes in severe SMAmice. Smn−/−;SMN2mice and healthy littermates were treatedwith 5mg/kg prednisolone every second
day beginning from P0. qPCR analysis of (a)MuRF-1, (b) atrogin1, (c)MyoD, (d)myogenin and (e) parvalbuminmRNAs in triceps of P7 Smn−/−;SMN2mice and healthy littermates treated
with prednisolone compared to untreated animals. a-e: Data represent mean± SD; n=3–4 animals per group; two-way ANOVA; *p b 0.05, **p b 0.01, ***p b 0.001, ****p b .0001; ns=not
significant. f.Motor endplate area in TAs of untreated and prednisolone-treated P7 Smn−/−;SMN2mice and healthy littermates. Data represent scatter plot ± SD; n=424–711 endplates
from 4 animals per group; one-way ANOVA; ****p b 0.0001; ns= not significant. g. Quantitative analysis of motor endplate morphology (plaque-like or perforated) in TAs of untreated
and prednisolone treated P7 Smn−/−;SMN2 mice and healthy littermates. Representative image of endplates where arrow indicates perforated and arrowhead indicates plaque-like. h.
Quantitative analysis of the innervation status of motor endplates in TAs of untreated and prednisolone-treated P7 Smn−/−;SMN2 mice and healthy control littermates. Representative
image of NMJs from untreated and prednisolone-treated Smn−/−;SMN2 mice where arrowhead indicates incomplete innervation. g-h. Data represent mean ± SD; n= 4 animals per
group; two-way ANOVA; **p b 0,01; ns=not significant.
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Fig. 7. Synergistic effects of Klf15 overexpression and prednisolone on disease phenotypes of severe SMAmice. a. qPCR analysis of Klf15mRNA in skeletal muscle (quadriceps) from post-
natal day (P) 2 and 7 Smn−/−;SMN2, Smn+/−;SMN2, Smn−/−;SMN2;KLF15MTg and Smn+/−;SMN2;KLF15MTgmice. Data representmean±SD; n=3–8 animals per group; two-way ANOVA;
**p b 0.01, ***p b 0.001, ****p b 0.0001. qPCR analysis of (b) Nr3c1, (c) GRα, (d) GRβ, (e) Bcat2, (f) atrogin-1, (g)MuRF-1, (h)Myod, (i)myogenin and (j) parvalbuminmRNAs in quadriceps of
P7 Smn−/−;SMN2, Smn+/−;SMN2, Smn−/−;SMN2;KLF15 MTg and Smn+/−;SMN2;KLF15 MTg mice. b-j: Data represent mean± SD; n=6–8 animals per group; one-way ANOVA; *p b 0.05,
**p b 0.01, ***p b 0.001, ****p b 0.0001, ns= not significant. k. Lifespan of untreated and prednisolone-treated Smn−/−;SMN2 and Smn−/−;SMN2;KLF15 MTg mice. Data represent Kaplan-
Meier curves; n=11–36 animals per group; Log-rank test; *p b 0.05, ***p b 0.001. l. Weight curves of untreated and prednisolone-treated Smn−/−;SMN2 and Smn−/−;SMN2;KLF15 MTg
mice. Data represent mean± SD; n=7–10 animals per group; two-way ANOVA; *p b 0.05, **p b 0.01, ***p b 0.001, ****p b 0.0001. m.Weight curves of untreated and prednisolone-treated
Smn+/−;SMN2 and Smn+/−;SMN2;KLF15 MTgmice. Data represent mean±SD; n=7–10 animals per group; two-way ANOVA; *p b 0.05, **p b 0.01, ***p b 0.001, ****p b 0.0001.
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did not increase atrogin-1 orMuRF-1mRNA levels (Fig. 7f, g), whichwas
observed in prednisolone-treated Smn+/−;SMN2 mice (Fig. 6a, b). The
GC-dependent induction of atrophy in control littermates is therefore
most likely KLF15-independent. We also did not observe any KLF15-
dependent changes inMyod andmyogeninmRNA expression (Fig. 7h, i),
suggesting that the difference observed in prednisolone-treated
Smn−/−;SMN2 mice (Fig. 6c, MyoD mRNA) and control littermates
(Fig. 6d, myogenin mRNA) are probably due to KLF15-independent
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effect of the synthetic GC. Finally, we find a partial restoration of
parvalbumin mRNA expression in Smn−/−;SMN2;KLF15 MTg animals
compared to Smn−/−;SMN2 mice and control littermates (Fig. 7j).

Given that our results highlight potential KLF15-dependent and-
independent effects of prednisolone, we next compared weight and
survival of untreated and prednisolone-treated Smn−/−;SMN2,
Smn+/−;SMN2, Smn−/−;SMN2;KLF15 MTg and Smn+/−;SMN2;KLF15
MTg mice. We firstly observed that Smn−/−;SMN2;KLF15 MTg mice
have a significantly greater lifespan than Smn−/−;SMN2 animals
(Fig. 7k), highlighting a KLF15-dependent impact on disease
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phenotypes. Interestingly, prednisolone-treated Smn−/−;SMN2;KLF15
MTg mice have a significantly longer lifespan than Smn−/−;SMN2;
KLF15 MTg mice and Smn−/−;SMN2 mice treated with prednisolone
(Fig. 7k), suggesting a synergistic effect of transgenic Klf15 overexpres-
sion and prednisolone. Comparison of weight curves indeed reflects
this, whereby Smn−/−;SMN2;KLF15 MTg mice weigh significantly
more than Smn+/−;SMN2 animals during disease progression (Fig. 7l)
and prednisolone-treated Smn−/−;SMN2;KLF15 MTg mice show an
overall increased weight gain compared to both Smn−/−;SMN2;KLF15
MTg and prednisolone-treated Smn−/−;SMN2 animals (Fig. 7l). Finally,
weight curves from control littermates show a small but significant
weight loss in prednisolone-treated Smn+/−;SMN2;KLF15 MTg mice
compared to Smn+/−;SMN2 and Smn+/−;SMN2;KLF15 MTg animals
(Fig. 7m). Thus, prednisolone most likely acts via KLF15-dependent
and independent mechanisms, potentially in a tissue-specific and sys-
temic manner. These results therefore identify the GC and the KLF15
component of the GC-KLF15-BCAA pathway as separate but interacting
therapeutic targets for SMA.

3.7. Modulating Downstream GC-KLF15-BCAA Signaling With BCAAs
Improves Phenotype in Severe SMA Mice

Having addressed the functional impact ofmodulating the upstream
signaling cascade of the GC-KLF15-BCAA pathway on SMA pathology,
we next wanted to evaluate if modifying downstream activity would
display similar benefits. As KLF15 is an activator of BCAA degradation
by transcriptional upregulation of Bcat2, the first step in BCAA
catabolism [4], supplementation of dietary BCAAs may counteract the
upregulation of Klf15 in symptomatic Smn−/−;SMN2 mice (Fig. 2d,
Supplementary Fig. 6). To examine this, Smn−/−;SMN2mice and control
littermates received daily BCAA supplementation (1.5 mg/kg) by
gavage, starting at P5, an early symptomatic time-point. We found
that Smn−/−;SMN2 mice treated with BCAAs display a significant
increase in body weight (Fig. 8a) and lifespan (Fig. 8b) compared to
untreated mice. Healthy controls also reveal an increased weight gain
when treated with BCAAs (Fig. 8c), albeit to a lesser extent.

Similar to our analysis with prednisolone treatment, we assessed the
impact of BCAA supplementation on neuromuscular parameters. We
first determined the effect of BCAAs on GC-KLF15-BCAA signaling and
found that expression of total GR mRNA receptor (Nr3c1, GRα + GRβ)
was unchanged between groups (Fig. 8d). Interestingly, further analysis
revealed a small but significant downregulation of GRα mRNA levels in
BCAA-treated healthy controls (Fig. 8e) while GRβ mRNA levels
remained similar between groups (Fig. 8f). Whilst Bcat2 mRNA levels
are unchanged between groups (Fig. 8h), Klf15mRNA levels are specif-
ically upregulated in muscle from BCAA-treated Smn−/−;SMN2 mice
(Fig. 8g). Finally, BCAA supplementation did not influence MuRF-1
(Fig. 8i), atrogin-1 (Fig. 8j), MyoD (Fig. 8k), myogenin (Fig. 8l) and
parvalbumin (Fig. 8m) mRNA expression in Smn−/−;SMN2 mice and
control littermates.

Interestingly, analysis of endplates reveals a BCAA-induced reduc-
tion of area in both healthy controls and Smn−/−;SMN2mice compared
to untreated animals (Fig. 8n). However, the decreased endplate area
did not impact endplate morphology and NMJ innervation as these
remained unchanged between BCAA-treated and untreated animals,
Fig. 8. BCAA supplementation improves disease phenotypes of severe SMAmice. Smn−/−;SMN2
curves of BCAA-treated Smn−/−;SMN2mice vs. untreated animals. Data represent mean± SD;
Lifespan of BCAA-treated Smn−/−;SMN2 mice vs. untreated animals. Data represent Kaplan-M
Weight curves of BCAA-treated healthy controls vs. untreated animals. Data represent mean±
of (d) Nr3c1, (e) GRα, (f) GRβ, (g) Klf15, (h) Bcat2, (i) MuRF-1, (j) atrogin-1, (k) MyoD, (l) m
SMN2 mice and healthy controls compared to untreated animals. d-m: Data represent mean
Motor endplate area in TAs of BCAA-treated P7 Smn−/−;SMN2 mice and healthy littermates co
from 4 animals per group; one-way ANOVA; **p b 0.01, ****p b 0.0001; ns = not significant
Smn−/−;SMN2 mice and healthy controls compared to untreated animals. Representative im
littermates. p. Innervation status of motor endplates in TAs of BCAA-treated P7 Smn−/−;SMN
NMJs from untreated and BCAA-treated Smn−/−;SMN2 mice. o-p. Data represent mean± SD;
whereby healthy controls displayed significantly more mature perfo-
rated endplates and fully innervated NMJs (Fig. 8o, p). We have previ-
ously demonstrated that the size of an endplate does not correlate
with its morphology [59]. Combined, our results demonstrate that
symptomatic BCAA supplementation leads to significant benefits to a
severe SMA mouse model at both a molecular and phenotypic level.
While there is an obvious need for a better understanding of the effect
of BCAAs on developing muscle and how this may be altered in SMA
muscle and other metabolic tissues, we nevertheless provide key evi-
dence that a dietary intervention, implemented at a stage when the
neuromuscular decline has begun, can improve disease pathogenesis.

4. Discussion

SMA patients and animal models display diverse metabolic abnor-
malities [29–35]. Here, we demonstrate that aberrant expression of
the GC-KLF15-BCAA pathway in SMA muscle during disease progres-
sionmay contribute tomuscle andwhole-bodymetabolic perturbations
[69]. Indeed, circadian dysregulation of the GC-KLF15-BCAA axis points
to intrinsic and systemic metabolic dyshomeostasis. Importantly,
through pharmacological and dietary interventions that target GC-
KLF15-BCAA signaling, we were able to significantly improve disease
phenotypes in 2 distinct SMA mouse models (Fig. 9).

GC activity is mediated via the GR, which is alternatively spliced into
two major isoforms: GRα and GRβ [70]. GRα is thought to be a key me-
diator of GC-dependent target gene transactivation, while GRβ inhibits
GRα and induces GC resistance [46]. Recent studies have also uncovered
distinct downstreameffectors for GRα andGRβ [71], including a specific
role for GRβ in skeletalmuscle in the promotion ofmyogenesis and pre-
vention of atrophy [47]. Our observed increased expression of GRβ
mRNA in muscle of symptomatic SMA mice (Fig. 1b), may thus be a
compensatory attempt to reduce the activity of catabolic pathways
(e.g. MuRF-1 and atrogin-1) that accompanies muscle pathology in
these mice. In light of SMN's well described housekeeping role in
mRNA splicing [72], loss of SMN could have a direct role on the splicing
of GR isoforms. However, our analysis of SMAmuscle tissuewhere SMN
expression was restored did not reveal an SMN-dependent normaliza-
tion of GRα and GRβ mRNA expression (Supplementary Fig. 5b, c). The
dysregulated expression of GR isoforms may therefore result from the
altered metabolic and pathological status of SMA muscle.

A dysregulated metabolic state may also be responsible for the sys-
temic increased Klf15 mRNA expression in symptomatic SMA mice. In-
deed, Klf15 activity is directly regulated by GCs, whose key role is to
maintain metabolic homeostasis [73]. Several metabolic perturbations
have been reported in SMA animal models and patients [74], highlight-
ing an existing metabolically stressed environment that could contrib-
ute to the aberrant KLF15 activity in SMA muscle. Seeing as KLF15 is
also aberrantly regulated in themuscle diseaseDuchennemuscular dys-
trophy (DMD) [55], this transcription factor could act as a key integrator
and/or biomarker of the metabolic and pathological state of muscle.

It has previously been demonstrated that increased Klf15 in muscle
promotes catabolic pathways by inhibiting the anabolic mTOR signaling
[12]. Our observation that the mTOR pathway is significantly downreg-
ulated in muscle from symptomatic Smn−/−;SMN2 mice (Fig. 1f, g) is
consistent with this pathological consequence of Klf15 overexpression.
mice and healthy controls were treated with BCAAs (1.5mg/kg) starting at P5. a.Weight
n=12–16 animals per group; two-way ANOVA; *p b 0.05, ***p b 0.001, ****p b 0.0001. b.
eier curves; n = 10–16 animals per group; Log-rank (Mantel-Cox) test; p= 0.0159. c.
SD; n=14–18 animals per group; two-way ANOVA; *p b 0.05, **p b 0.01. qPCR analysis

yogenin and (m) parvalbumin mRNAs expression in triceps of BCAA-treated P7 Smn−/−;
± SD; n = 3–4 animals per group; two-way ANOVA; **p b 0.01; ns = not significant. n.
mpared to untreated animals. Data represent scatter plot ± SD; n=198–324 endplates
. o. Motor endplate morphology (plaque-like or perforated) in TAs of BCAA-treated P7
ages of endplates from untreated and BCAA-treated Smn−/−;SMN2 mice and healthy
2 mice and healthy controls compared to untreated animals. Representative images of

n= 4 animals per group; two-way ANOVA; *p b 0.05, ***p b 0.001; ns= not significant.



Fig. 9. Schematic summarizing the aberrant effectors of the glucocorticoid (GC)-Klf15-
branched-chain amino acid (BCAA) signaling cascade targeted by a pre-symptomatic
administration of prednisolone (a) and symptomatic BCCA supplementation (b) and the
observed effects on molecular, histological and behavioral disease phenotypes.
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This is concurrently accompanied by an increased expression of
atrogenes (e.g. Fig.6a, b) [75]. Interestingly, increased mTOR activity
may be linked to decreased muscle pathology in milder forms of SMA
[76] and loganin-induced benefits in SMA mice are associated with in-
creased mTOR protein synthesis signaling in muscle [77].

Chronic GC administration is known to induce adversemetabolic ef-
fects, including wasting of skeletal muscle [78]. An interesting finding
throughout this study is the differential effects of GCs, whereby atrophy
signalingwas induced in healthy animals and ergogenic effects occurred
in SMAmice. This dual role of GC administration has previously been re-
ported in DMD mdx mice, where GCs had a similar specific benefit on
diseased muscle [55]. The absence of phenotypic rescue following the
genetic deletion of atrogin-1 and MuRF-1 in SMA mice [79] may thus
be partly explained by the altered responsiveness of atrophy signaling
in SMA muscle. Furthermore, it was recently demonstrated that the
dosing regimen itself can influence the balance between catabolic and
anabolic effects of GCs in skeletal muscle. Indeed, intermittent dosing
of GCs significantly improved skeletal muscle repair and function in
mouse models of DMD and Limb-Girdle Muscle Dystrophy while daily
administration of GCs promoted muscle atrophy [56,80]. Thus, our
dosing regimen of once every two days may also have enhanced the
anabolic effects of prednisolone.

In addition, GCs are reported to have gender-specific effects in both
adult rodents and humans [81,82]. While SMA is not regarded as a gen-
der-specific disorder, several gender-specific disease modifiers have
been reported [83–85]. Furthermore, there is also evidence to support
that certain treatment strategies for SMA have gender-specific out-
comes based on themodel used [83]. However, in studies where neona-
tal rodents and horses were exposed to GCs, gender did not influence
GC-dependent effects on glucosemetabolism (systemic or skeletalmus-
cle), body weight, locomotor activity or motor function (rotarod and
grip strength) [86,87]. As we did not discriminate between female and
male neonates in our study, we cannot ascertain if prednisolone admin-
istration had gender-specific effects in the Taiwanese and Smn2B/− SMA
mice, which would require a more in-depth investigation with larger
sample sizes and independent animal models.

To the best of our knowledge, there has never been a clinical trial of
GCs in SMA patients. Interestingly, SMA patients in the adeno-associated
virus serotype 9 (AAV9)-SMN1 gene therapy clinical trial also received
prednisolone (1mg/kg) one day pre-gene therapy and for 30 days there-
after [88]. Although prednisolone was used for its immunosuppressive
properties, our study suggests that it could have caused additional bene-
fits. There therefore remains a need to better understand the molecular
effectors and pathways induced byGCs in healthy, diseased, adult, devel-
oping and regenerating muscle of both males and females.

Given the upregulation of KLF15 across multiple metabolic tissues
and spinal cord of SMA mice, BCAA supplementation may have benefi-
cial effects beyond what we observed in skeletal muscle. The decrease
of serum BCAA content in symptomatic SMA animals suggests that the
metabolic tissues are taking them up in an attempt to compensate for
increased Klf15 activity. BCAAs and aromatic amino acids are precursors
of neurotransmitters serotonin and catecholamines, respectively, which
compete with each other at the blood-brain barrier to enter the CNS as
they use the same transporter [89]. Reduced BCAA levels in SMA serum
may increase CNS uptake of aromatic amino acids, directly affecting the
synthesis and release of neurotransmitters and overall function.

Prednisolonemay also have beneficial effects beyond skeletal muscle,
which is highlighted by the observed synergistic benefits of muscle-
specific Klf15 overexpression and systemic prednisolone administration.
There is indeed precedence for a role of prednisolone in the pre-synaptic
compartment of the NMJ [68], which is reflected in the improved
endplate innervation in our prednisolone-treated SMA mice. The anti-
inflammatory properties of prednisolone could potentially also modu-
late aberrant neuroinflammation and immune organ dysfunction
recently reported in SMA animals [90–92]. Nevertheless, our observed
striking upregulation of Klf15 expression in muscle following predniso-
lone administration suggests a very specific impact on KLF15 signaling.
Indeed, the beneficial effect of glucocorticoid treatment in muscle
atrophy has long been used in patients suffering from DMD [93]. This
ergogenic impact has previously been attributed to the induction of
the GC-KLF15 axis [55]. Interestingly, a recent report has identified a
synergistic effect of the RhoA/ROCK and GC pathways in muscle of a
DMD mouse model [94]. Given that we have previously demonstrated
beneficial effects of pharmacological RhoA/ROCK inhibition on survival
and neuromuscular phenotype of SMA mice [42,95], the RhoA/ROCK
and GC signaling cascades may equally contribute to muscle and meta-
bolic pathologies in SMA muscle. Seeing as therapeutic modulation of
the RhoA/ROCK pathway also improves disease phenotypes in neurode-
generativemodels such as amyotrophic lateral sclerosis and Parkinson's
disease [96,97], the perturbed GC-KLF15-BCAA activity may not be lim-
ited to SMA and DMD. Thus, investigations on the GC-KLF15-BCAA axis
and related therapeutic strategies may have significant repercussions
on several neuromuscular and neurodegenerative pathologies.

A surprising observation in ourwork is that dietary supplementation
of BCAAs at a time-point when neurodegenerative and muscle atrophy
events have begun is sufficient to significantly improve weight gain and
survival in severe SMA mice. Previous studies have shown an influence
of diet on SMA disease phenotype but these were fed to the mother or
implemented at birth [36–38]. Interestingly, several SMA patients and
their families have adopted an amino acid (AA) diet (http://www.
aadietinfo.com/), composed of elemental free form amino acids,

http://www.aadietinfo.com
http://www.aadietinfo.com
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including BCAAs. The claimed benefits of the AA diet in SMA patients
may thus be reflected in the improved phenotype of SMA mice supple-
mented with BCAAs and be explained by a perturbed GC-KLF15-BCAA
signaling. We are currently planning a small pilot study to investigate
BCAA cycling and serum levels of SMA patients and healthy siblings
and evaluate how this is influenced by the AA diet. BCAAs have been
demonstrated to increase survival and longevity [7,8] as well as pro-
mote exercise- and sarcopenia-induced muscle damage repair [9,10].
As such, BCAA supplementation is used by athletes [98] and prescribed
for weight regulation [99] and management of sarcopenia [9]. Dysregu-
lated serum levels of BCAAs have also been observed in neurodegener-
ative diseases such as Huntington's [100], Parkinson's [101] and
Alzheimer's [102]. Thus, regulated BCAA supplementation or consump-
tionmay havewide-reaching benefits in several neurodegenerative and
neuromuscular disorders.

Our work has identified a key role for the GC-KLF15-BCAA axis in
SMA pathogenesis, thereby identifying molecular targets to alleviate
muscle and metabolic perturbations in SMA. Future therapeutic en-
deavors should consider a combination of pharmacological and
dietary interventions to restore GC-KLF15-BCAA-dependent muscle
and metabolic homeostasis alongside SMN-specific treatment strategies
[103–107]. Importantly, the possibility that the GC-KLF15-BCAA
pathway may be disrupted in numerous degenerative and metabolic
pathologies characterized by muscle loss and wasting combined with
the commercial availability of targeted dietary and drug treatment
strategies makes it an attractive therapeutic molecular mechanism to
further investigate.
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