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Engineers and researchers are boosting human induction and deduction
skills assisted by computers, and this is one of the main drivers of prog-
ress in cardiovascular sciences and health care. This claim builds on two
core ideas: machine learning' as the vehicle for inductive reasoning, and
computational cardiac models® as the tool for deductive reasoning, both
illustrated in Figure 1.

Machine learning refers to the ability of computers to gain knowledge
without being explicitly programmed for it: the computer extracts pat-
terns from the data and thus ‘learns’ a statistical model that will perform a
given task (i.e. disease classification and prediction3 or segment the myo-
cardium in an image™). The logic process followed here is inductive, since
the machine makes broad generalizations from specific observations it
has learned from. The availability of new sources of data (i.e. omics or
continuous monitoring systems), the digitalization of the health record,
and the recent advances in machine learning technology now offer the
opportunity to reveal new patterns and new signatures of cardiovascular
health and disease.’

On the other hand, computational cardiac models are the representa-
tions of our knowledge of the physiology of the heart pump and circula-
tory system governed by fundamental laws of physics and biochemistry.
Computers are explicitly programmed to represent this knowledge into
mechanistic models and use them to perform a given task (i.e. estimate
myocardial stiffness,” identify the fibrosis patterns that lead to persistent
re-entrant drivers in atrial fibrillation,® or compute the risk of drug
toxicity7). The logic process followed here is deductive, since the

machine reaches conclusions based on the concordance of multiple
premises and assumptions. The availability of rich anatomical and func-
tional data and the recent advances in computational cardiology technol-
ogy now offer, through the process of model personalization, two
opportunities: the ability to present an integral and cohesive diagnostic
picture of the patient and the possibility to simulate and predict the evo-
lution of a condition or the impact of a treatment.*®

Both statistical and mechanistic models are thus rendering very en-
couraging perspectives and expectations, but these should be handled
with caution.

Machine learning, as a tool for inductive reasoning, does not provide
us with a conclusive proof of causal connections. Accordingly, the pat-
terns observed in the data will not necessarily continue to exist in the fu-
ture (or simply in other studies or individual cases). This translates into
the specific problem of the generalizability of the model learned, which is
in compromise with its complexity (i.e. in essence, the number of fea-
tures or parameters to be learned from the data). As a consequence, if
the problem to be solved requires a large number of features in order to
make accurate predictions, then many more training examples are
needed to ensure a valid generalization.

Computational cardiac models, as tools for deductive reasoning, rely
on the validity of the premises and assumptions they are built on. Models
are always a simplification of the reality, we simply cannot capture the
entire complexity of the natural world. Consequently, the biomarkers
and predictions extracted from models will always have a degree of
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Figure 1 Conceptual representation of the synergy between mechanistic and statistical computational models as the pathway towards precision

medicine.

uncertainty caused by the impact of assumptions and of the limitations
of the data inputted into the model. And similarly with statistical mod-
els, mechanistic models present a compromise between complexity
and uncertainty: the larger the number of model parameters the prob-
lem requires to make accurate predictions, the richer the dataset
from an individual patient is required to ensure a valid personalized
estimation.

An exciting perspective is the combination of inductive and deductive
reasoning of statistical and mechanistic models. Machine learning can be
informed by the features learned from mechanistic models.” Our knowl-
edge or the cardiovascular system is vast and should definitely guide the
identification of valid data pieces to build the optimal statistical model.
Revisiting the physical principles that underpin key clinical decisions can
improve the accuracy and precision of well-recognized diagnostic bio-
markers used in clinical guidelines, such as the pressure gradient caused
by aortic stenosis."°

On the other hand, statistical models can be built from a population of
mechanistic models,11 and mechanistic explanations can originate from,
or can validate, the findings of statistic models—an example is the identi-
fication of the anatomical signature of heart failure to predict response
to cardiac resynchronization therapy.' Arguably the most attractive
area of synergy between statistical and mechanistic models is the redefi-
nition of patient classes, with early success stories in hypertrophic car-
diomyopathy based on the electrocardiogram phenotype,’ in heart
failure with preserved ejection fraction,™ or the proposal of the three
main mechanistic substrates that explain the potential impact of a
resynchronization therapy in heart failure.'

Guidelines and quality assurance in this emerging field is an important
consideration. Medical devices that do not have any precedent are much
more challenging to get regulatory approval, and there are early cases of
success in this process such as the prediction of the fractional flow re-
serve using mechanistic simulations.'® Earlier in the research process,
analysis standards and reporting guidelines help the field to mature as a
discipline, where an excellent example is the Comprehensive In vitro
Proarrhythmia Assay initiative."”

My personal vision is that the most significant impact will be the solu-
tion of the tension between clinical guidelines and the actual decisions
with each individual patient: machine learning, equipped with the right
population data, will identify the most relevant existing cases (similar to
the individual) to trigger the inductive reasoning; computational cardiac
models, equipped with the right data of the individual patient, will identify
of the most sensible set of plausible parameters (those that explain the
data of the subject) to trigger the deductive reasoning; and their combi-
nation will be the actual pathway towards the concept of the precision
medicine,'® where computational tools will assist the cardiologists in the
definition of the optimal diagnosis and therapy planning for the individual
patient.
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