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Doc2b Protects 3-Cells Against Inflammatory Damage

and Enhances Function
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Loss of functional B-cell mass is an early feature of type 1
diabetes. To release insulin, B-cells require soluble
N-ethylmaleimide-sensitive factor attachment protein re-
ceptor (SNARE) complexes, as well as SNARE complex
regulatory proteins like double C2 domain-containing
protein B (Doc2b). We hypothesized that Doc2b defi-
ciency or overabundance may confer susceptibility or
protection, respectively, to the functional p-cell mass.
Indeed, Doc2b*/~ knockout mice show an unusually severe
response to multiple-low-dose streptozotocin (MLD-STZ),
resulting in more apoptotic B-cells and a smaller B-cell
mass. In addition, inducible B-cell-specific Doc2b-
overexpressing transgenic (BDoc2b-dTg) mice show
improved glucose tolerance and resist MLD-STZ~induced
disruption of glucose tolerance, fasting hyperglycemia,
B-cell apoptosis, and loss of B-cell mass. Mechanisti-
cally, Doc2b enrichment enhances glucose-stimulated
insulin secretion (GSIS) and SNARE activation and pre-
vents the appearance of apoptotic markers in response
to cytokine stress and thapsigargin. Furthermore, ex-
pression of a peptide containing the Doc2b tandem C2A
and C2B domains is sufficient to confer the beneficial
effects of Doc2b enrichment on GSIS, SNARE activation,
and apoptosis. These studies demonstrate that Doc2b
enrichment in the B-cell protects against diabetogenic
and proapoptotic stress. Furthermore, they identify
a Doc2b peptide that confers the beneficial effects of
Doc2b and may be a therapeutic candidate for protecting
functional p-cell mass.

In the U.S,, type 1 diabetes currently affects an estimated
1.25 million people, and its prevalence is predicted to rise

to 5 million Americans by 2050 (1-3). Type 1 diabetes is
characterized by hyperglycemia caused by autoimmune
destruction of islet B-cells, leading to a decline in B-cell
function and mass. Increasing evidence shows that B-cell
dysfunction precedes the clinical onset of type 1 diabetes
(4,5). Indeed, multiple clinical trials show that patients
with type 1 diabetes who display even minimal (3-cell func-
tion at the onset of the study exhibit decreased microvas-
cular complications, including retinopathy and neuropathy
(6,7). Currently, the only therapy for patients with type 1
diabetes is exogenous insulin replacement. The danger in this
approach, however, is that normal, glucose-dependent re-
lease of endogenous insulin is lost and that life-threatening
hypoglycemic episodes and progressive destruction of -cell
mass persist. Thus, there is a high demand for alternate/
adjuvant therapies that can preserve B-cell mass and
function.

Normal B-cell function/insulin secretion is dependent
on intact insulin secretory machinery, termed the soluble
N-ethylmaleimide—sensitive factor attachment protein re-
ceptor (SNARE) complex. The SNARE complex consists
of two target membrane (t-SNARE) proteins, syntaxin
(STX) and SNAP25, and one vesicle-associated (v-SNARE)
protein, VAMP (8-11). Upon glucose stimulation, one
v-SNARE binds with two cognate t-SNARE proteins in
a 1:1:1 heterotrimeric ratio (9). SNARE proteins facilitate
biphasic insulin secretion using different requisite SNARE
protein isoforms (12,13). The first phase of insulin secre-
tion (first 5-10 min after glucose stimulation) uses STX1A,
STX4, SNAP25 or SNAP23, and the v-SNARE VAMP2,
whereas second-phase insulin secretion (>10 min after
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glucose stimulation) uses STX4, SNAP25 or SNAP23, and
VAMP?2 (11,14-19). Another v-SNARE protein, VAMPS, also
functions in insulin secretion and is selectively required
for glucagon-like peptide 1 (GLP-1)-enhanced insulin release
(20). Assembly of the B-cell SNARE complex is regulated
by accessory binding proteins, such as double C2 domain-
containing protein 3 (Doc2b). Upon glucose stimulation, STX
binds VAMP2, permitting SNARE complex assembly and
fusion of insulin granules with the plasma membrane
(21,22). Doc2b is essential for this mechanism to occur
(22-24).

We recently showed that Doc2b levels are reduced in the
residual islet B-cells from new-onset human type 1 diabetes
donor pancreata; Doc2b deficiency was recapitulated by
treatment of nondiabetic human islets with proinflamma-
tory cytokines, ex vivo (25). Proinflammatory cytokines
are used to mimic the diabetogenic milieu by promoting
loss of B-cell mass, given that loss of B-cell mass in the
context of type 1 diabetes is linked to apoptosis (26,27).
Whether Doc2b plays a role in B-cell survival or apoptosis
remains unknown.

Doc2b is a ubiquitously expressed, 46-50-kDa protein
that localizes to the plasma membrane in B-cells and
muscle/fat cells (22,28,29). Doc2b contains an N-terminal
Munc13-interacting domain (MID) linked to C-terminal
tandem C2 domains (C2A and C2B), which are motifs
known to bind Ca®* and phospholipids. Several laborato-
ries have shown that overexpression of Doc2b enhances
insulin secretion by 30-40% in vitro (24,29). Moreover,
transgenic mice overexpressing Doc2b (simultaneously in
the pancreas, skeletal muscle, and adipose tissue) show
enhanced whole-body glucose homeostasis and insulin
sensitivity, with enhanced islet glucose-stimulated in-
sulin secretion (GSIS) ex vivo, but have normal fasting
insulin levels (28). These data suggest that Doc2b en-
richment is beneficial, although the investigation of de-
tailed mechanisms for Doc2b actions in the B-cells has
been limited by the use of a global transgene expression
system. Doc2b-null knockout mice harbor dysfunctional
islets (30,31), consistent with the observed low Doc2b
transcript levels in islets of diabetic rodents (25,32).
However, it remains unknown whether Doc2b deficiency
is causal or consequential to the loss of (3-cell function
and diabetes onset.

In this study, we tested the hypothesis that Doc2b
deficiency underlies B-cell dysfunction and susceptibility
to diabetes and that selective B-cell Doc2b enrichment is
sufficient to confer protection against proinflammatory
stimuli. Data gained from classic whole-body Doc2b het-
erozygous knockout mice, inducible -cell-specific trans-
genic Doc2b overexpressing (BDoc2b-dTg) mice, and Doc2b
overexpression in clonal -cells provide strong support for
this hypothesis. Furthermore, we show that enrichment of
a peptide containing the Doc2b tandem C2 domains
(C2AB) is sufficient to confer the GSIS-boosting effect
of full-length Doc2b and protects against thapsigargin-
induced B-cell apoptosis.
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RESEARCH DESIGN AND METHODS

Materials

The rabbit anti-Doc2b antibody used for detection of
endogenous Doc2b levels and detection of hDoc2b-DDK
was purchased from Proteintech (1:1,000 dilution, catalog
no. 20574-1-AP; Rosemont, IL). The rabbit anti-cMyc
antibody (1:1,000 dilution, catalog no. sc-40) and mouse
antiglucagon (1:200 dilution, catalog no. sc-13091) anti-
bodies were purchased from Santa Cruz Biotechnology
(Dallas, TX). The rabbit anti-STX4 antibody used in the
pulldown binding assay was generated in house (33). Anti-
bodies to cleaved caspase 3 (CC3; 1:1,000 dilution, catalog
no. 9661), CHOP (1:1,000 dilution, catalog no. 2895),
PARP (1:1,000 dilution, catalog no. 9532), phospho-elF2a
(p-elF2a), and total elF2a (1:1,000 dilution, catalog nos.
9721 and 9722, respectively) were purchased from Cell
Signaling (Danvers, MA). The tubulin antibody was pur-
chased from Abcam (1:5,000 dilution, catalog no. ab56676;
Cambridge, MA). The guinea pig anti-insulin was from
Dako/Agilent (1:100 dilution, catalog no. A0564; Santa Clara,
CA). The goat anti-rabbit- and anti-mouse-horseradish
peroxidase secondary antibodies were purchased from Bio-Rad
(catalog nos. 1706515 and 1706516, respectively; Hercules,
CA). Thapsigargin was purchased from Sigma-Aldrich (cata-
log no. T9033). Glutathione sepharose 4B agarose beads were
obtained from GE Life Sciences (Pittsburgh, PA). Enhanced
chemiluminescence was purchased from Amersham Bio-
sciences (Pittsburg, PA). Humulin R was obtained from Eli
Lilly and Co. (Indianapolis, IN). The rat (r)Doc2b-GFP and
rC2AB-GFP plasmids were gifts from U. Ashery (Tel-Aviv
University, Ramat-Aviv, Israel). The rat CaMut-GFP plasmid
was a gift from E. Chapman (University of Wisconsin).

Animals and In Vivo Experiments
Animals were maintained under protocols approved by the
Institutional Animal Care and Use Committees at Indiana
University School of Medicine and the City of Hope, accord-
ing to the Guidelines for the Care and Use of Laboratory
Animals. Doc2b*~ knockout mice were generated as de-
scribed previously (30). The rat Doc2b ¢cDNA tagged with
a C-terminal myc-his tag was subcloned into the 5’ Pmel and
3’ BamH1 restriction sites in the pTRE-pIRES-eGFP vector
(gift from Drs. S. Afelik and J. Jenssen, Cleveland Clinic),
downstream of the tetracycline response element (TRE), to
provide tetracycline/doxycycline (Dox) inducibility. The lin-
earized plasmid was microinjected into C57BL/6J oocytes
(Transgenic Core, Indiana University School of Medicine). Of
two founders, one transmitted the transgene to offspring and
was shipped to the City of Hope Animal Research Center for
colony expansion. TRE-Doc2b™/* offspring crossed to rat
insulin promoter (RIP)-rtTA~’* mice (purchased from Jax
Laboratories) produced Dox-inducible B-cell-selective ex-
pression in the double transgenic offspring (BDoc2b-dTg)
mice. The mice were generated and maintained on the
C57BL/6J genetic background.

Female 3 Doc2b-dTg mice and single transgenic controls were
fasted for 6 h (0800-1400 h) before the intraperitoneal
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glucose tolerance test (IPGTT; 2 mg/mL of glucose) and
intraperitoneal insulin tolerance test (IPITT, insulin dose =
0.75 units/kg body weight), as previously described (30).
Male Doc2b*' ™ and wild-type (Wt) littermate mice (7 weeks
old) were used for streptozotocin (STZ) studies; a pre-
STZ IPGTT was performed on day 0. On days 1-5, mice
were injected intraperitoneally in multiple low doses with
freshly prepared STZ (35 mg/kg body weight, as previously
described [34]). A post-STZ IPGTT was performed on day
10. Male mice were used for STZ experiments, as they are
reportedly more sensitive to STZ treatment (35). Male
BDoc2b-dTg mice (aged 9-10 weeks) were provided Dox-
treated (2 mg/mL) or standard drinking water for 3 weeks
prior to multiple-low-dose (MLD) STZ (35-40 mg/kg
doses); IPGTT was assessed on day 24. On day 25, serum
samples and tissues were collected, and the pancreata were
fixed and paraffin embedded for TUNEL staining. Non-
STZ-treated male and female mice were used for tissue
harvest and evaluation of protein/mRNA expression. Se-
rum insulin levels were measured via radioimmunoassay

(Millipore).

Immunofluorescence and TUNEL Staining
Paraffin-embedded pancreatic tissue sections were pre-
pared and assessed as previously described (36). To assess
B-cell specificity, pancreatic sections were immunostained
with guinea pig anti-insulin (1:100, catalog no. A0564;
DAKO, Agilent Technologies, Santa Clara, CA), rabbit anti-
myc (1:100, catalog no. C3956; Sigma-Aldrich, St. Louis,
MO), and mouse anti-glucagon (1:100, catalog no. G2654;
Sigma-Aldrich). Alexa Fluor 568 goat anti-rabbit (1:200,
catalog no. A11011; Thermo Fisher Scientific), 488 goat
anti-guinea pig (1:100, catalog no. A11073; Thermo Fisher
Scientific), and 647 goat anti-mouse IgG (Heavy + Light
Chains [H+L], 1:100, catalog no. A21236; Thermo Fisher
Scientific) were used to detect myc, insulin, and glucagon,
respectively. Slides were counterstained to mark the nuclei
using 4',6-diamidino-2-phenylindole (DAPI) (Vectashield;
Vector Laboratories, Burlingame, CA) and viewed using
a Keyence BZ X-700 fluorescence microscope (Leica Micro-
systems, Deerfield, IL), and images were acquired using
the 20X objective. To assess GLUT2 staining, pancreatic
sections were immunostained with goat anti-GLUT2
(1:100, catalog no. sc-7580; Santa Cruz Biotechnology,
Inc., Dallas, TX) and guinea pig anti-insulin (1:100,
catalog no. A0564; DAKO, Agilent Technologies). Cy3
anti-goat (1:200, catalog no. 715-166-147, Jackson
ImmunoResearch) and Alexa Fluor 488 goat anti-guinea
pig (1:100, catalog no. A11073; ThermoFisher Scientific,
Waltham, MA) were used to detect GLUT2 and insulin,
respectively.

To assess apoptosis, the pancreatic sections were immu-
nostained with guinea pig anti-insulin, and the TUNEL In
Situ Cell Death Detection Kit, Fluorescein (Roche, Mannheim,
Germany) was used to stain apoptotic cells. The Alexa Fluor
488 goat anti-guinea pig IgG (H+L) (1:500 dilution, catalog no.
A11073; Thermo Fisher Scientific) secondary antibody was
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used for detection of insulin. Sections were scanned using
the Zeiss Axio Observer and LSM 700 microscopes and
analyzed using Image-Pro Software (Media Cybernetics,
Rockville, MD). The results are expressed as the percentage of
cells positive for TUNEL staining relative to the total number
of insulin-positive cells.

Cell Culture, Transfections, GSIS, and Binding Assays
Human Doc2b (hDoc2b) adenovirus was generated
by insertion of the hDoc2b-mycDDK cDNA from the
pCMVhDoc2bmycDDK plasmid (OriGene Technology,
Inc., Rockville, MD) into the pAd5CMVmpA adenoviral
vector. The adenoviruses were packaged with EGFP to
enable visualization of infection efficiency, and then were
amplified and purified for use by Viraquest, Inc. (North
Liberty, IA). Rat INS-1 832/13 -cells (gift from C.B. New-
gard, Duke University, Durham, NC, and P. Fueger, City of
Hope; passage 70-80) were cultured in RPMI 1640 medium
as previously described (37) and transduced with Ad5-
CMV-hDoc2b prior to treatment with a cytokine mixture
(10 ng/mL TNF-a, 100 ng/mL IFN-y, and 5 ng/mL
IL-1B; ProSpec, East Brunswick, NJ) for 16 h, as pre-
viously described (38). For evaluation of thapsigargin-
induced apoptosis, INS-1 832/13 B-cells were transfected
with rDoc2b-GFP, rC2AB-GFP, and rCaMut-GFP. Cells
were transfected using the K2 Transfection System (Biontex,
Munchen, Germany) and treated with 1 pmol/L thapsigargin
for 6 h prior to harvest; concurrently, cells were treated
with 1 mmol/L EGTA as a negative control. The cells were
harvested in 1% NP-40 lysis buffer, and cleared deter-
gent lysates were used for immunoblotting for apoptosis/
endoplasmic reticulum (ER) stress markers.

Glutathione S-transferase (GST)-VAMP2 interaction
assays were conducted as previously described (33). In
brief, GST-VAMP?2 protein conjugated to sepharose beads
was mixed with cleared detergent cell lysates prepared
from MING6 B-cells that had been preincubated in serum-
free media for 2 h and were harvested in 1% NP-40 lysis
buffer, as previously described (39). Recombinantly expressed
and purified Doc2b protein or C2AB peptide were added
to the reactions, and reactions were rotated at 4°C for 2 h,
beads were pelleted, and proteins were eluted for resolution
on SDS-PAGE and immunoblotting.

GSIS analysis was performed as previously described
(38). In brief, rat INS-1 832/13 B-cells and MIN6 -cells
were prepared for GSIS analysis using the K2 Transfection
System (Biontex). INS-1 832/13 cells were placed in low-
glucose/low-serum medium overnight prior to starvation
in Krebs-Ringer bicarbonate buffer for 1 h and treated with
glucose (basal: 2.8 mmol/L; glucose stimulated: 20 mmol/L)
for 30 min. The MIN6 cells were serum starved in mod-
ified Krebs-Ringer bicarbonate buffer for 1 h prior to
glucose treatment (basal: 2.8 mmol/L; glucose stimulated:
20 mmol/L). The supernatants were collected for mea-
surement of insulin content using the Rat Insulin ELISA
(Mercodia, Uppsala, Sweden) or Mouse Insulin ELISA
(Alpco, Salem, NH).



diabetes.diabetesjournals.org

Quantitative Real-time PCR

Total RNA was isolated from mouse islets, hypothalamus,
and cerebellum using the Qiagen RNAeasy Plus Mini Kit
(Qiagen, Valencia, CA) and assessed using the QuantiTect
SYBR Green RT-PCR kit (Qiagen). Primers used for the
detection of rDoc2b-myc are as follows: forward 5'-ACTGTCT-
GAAGAACAAGGACAAGAG-3' and reverse 5'-GAGTTTTTGTTC-
TACGTAAGCTTGG-3'. Hypoxanthine-guanine phosphoribosyl-
transferase primers were used for normalization: forward
5'-AAGCCTAAGATGAGCGCAAG-3' and reverse 5'-TTAC-
TAGGCAGATGGCCACA-3'. Primers used for the detection of
rat/mouse Doc2b (nontagged) are as follows: forward 5’'-
CCAGCAAGGCAAATAAGCTC-3' and reverse 5'-GTTGGG-
TTTCAGCTTCTTCA-3'.

Islet Morphometry

Islet morphometry was conducted using anti-insulin-
stained pancreatic sections, as previously described (38).
The percentage of B-cell area was calculated using Keyence
BZX-Analyzer software (Keyence Corporation, Itasca, IL).
The data shown are representative of three pancreatic
sections per mouse. The B-cell mass was calculated by
multiplying the percentage of the -cell area by the pan-
creas weight.

Statistical Analysis

All data are expressed as the mean * SD for all figures,
except those representing IPGTT/IPITT or area under the
curve (AUC) (mean *= SEM). The data were evaluated for
statistical significance using Student t test for comparison of
two groups, or ANOVA and Tukey post hoc test (GraphPad
Software, La Jolla, CA) for more than two groups.

RESULTS

Doc2b*/~ Mice Are Highly Susceptible to STZ-Induced
Glucose Intolerance

To assess whether Doc2b abundance impacts (-cell sus-
ceptibility to diabetogenic insults, we studied Doc2b™~
mice prior to and after MLD-STZ induction of diabetes.
Prior to MLD-STZ treatment, young 7-week-old male
Doc2b*’~ and Wt littermate mice showed no differences in
blood glucose levels (Fig. 1A and B) and B-cell mass and
harbored the expected 50% reduction in Doc2b protein
(Supplementary Fig. 1A and B). Ten days after the first STZ
injection, the Doc2b” ™ mice showed significantly higher
blood glucose levels than Wt mice (Fig. 1C and D). One
day later, all pancreata were collected and processed for
TUNEL staining, and the Doc2b* ™ mice showed greater
than threefold higher levels of 3-cell apoptosis than the Wt
mice (Fig. 1E). Although the number of islets was similar in
the Doc2b*’ ™ and Wt mice, the percentage of the islet area
occupied by B-cells was decreased in the Doc2b” ™ mice,
which also resulted in a reduced B-cell mass (Fig. 1F and G).
Consistent with this, serum insulin levels in the Doc2b*/~
were lower than Wt mice post-STZ treatment, whereas
prior to STZ, levels were similar to Wt mice (Supplementary
Fig. 2). The body weights of Doc2b” ™ and Wt mice were
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equivalent before and after the brief STZ treatment (Sup-
plementary Table 1).

Enhanced Glucose Tolerance in Doxycycline-Inducible
B-Cell-Specific Doc2b-Overexpressing Transgenic
Mice
To determine whether B-cell-specific overexpression of
Doc2b is sufficient to enhance whole-body glucose toler-
ance, we generated a Dox-induced, B-cell-specific double
transgenic mouse model (BDoc2b-dTg) (Fig. 24). The Doc2b
mRNA abundance in islets isolated from female mice
was approximately four- to fivefold higher in Dox-induced
BDoc2b-dTg mice (same for male mice, data not shown)
than in non-Dox-treated fDoc2b-dTg control mice (Fig. 2B
and Supplementary Fig. 3), and the presence of the myc-
tagged Doc2b protein was clearly detectable (Fig. 2C). No
transgene overexpression was detected in the hypothala-
mus or cerebellum, indicating no aberrant expression due
to the RIP-rtTA (Fig. 2D). Immunofluorescent analysis of
BDoc2b-dTg islets shows B-cell-specific overexpression of
Doc2b-myc in Dox-treated fDoc2b-dTg mice (Fig. 2E).
Changes to whole-body glucose homeostasis were
assessed by IPGTT in the BDoc2b-dTg mice. Dox-induced
dTg mice showed significantly lower blood glucose levels
(i.e., improved glucose tolerance) after glucose injection;
basal fasting blood glucose levels were similar to those of
non-Dox-treated dTg control mice (Fig. 3A and B) or single
transgenic mice (Supplementary Fig. 4). Consistent with
this, the serum insulin levels in Dox-treated BDoc2b-dTg
mice were higher than controls within the first 10 min
after glucose injection during IPGTT, but they were not
statistically different under basal (time O in the IPGTT)
conditions (Fig. 3C). No differences were seen between Dox-
treated and non-Dox-treated BDoc2b-dTg mice in IPITTs,
suggesting no changes to peripheral insulin sensitivity (Fig.
3D and E). BDoc2b-dTg mice had similar body weight and
tissue weights relative to the control Dox" or noninduced
(Dox ) single transgenic mice and noninduced dTg mice
(Supplementary Table 2). These data suggest that enrich-
ment of Doc2b selectively in adult pancreatic islet -cells is
sufficient to improve whole-body glucose homeostasis.

BDoc2b-dTg Mice Are Protected From STZ-Induced
Glucose Intolerance and B-Cell Apoptosis
Male BDoc2b-dTg mice were subjected to a longer (24-day)
MLD-STZ protocol to determine if 3-cell Doc2b enrichment
protects islets from diabetogenic stress. IPGTT assessments
at 24 days after initiation of the STZ protocol reveal in-
creased blood glucose levels, with fasting levels ~300 mg/dL
in non-Dox-treated dTg mice (Fig. 4A and B). In contrast,
Dox-induced BDoc2b-dTg mice were largely protected, even
though the longer time after STZ treatment would be expected
to increase B-cell destruction. Body weights of the Dox" and
non-Dox-treated mice were similar both before and after
MLD-STZ treatment (Supplementary Table 3).

To determine if the improved glucose tolerance, robust
serum insulin response, and protection from STZ-induced
glucose intolerance in the fDoc2b-dTg mice were related
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Figure 1—Doc2b*~ deficient mice are more susceptible to STZ-induced glucose intolerance and B-cell apoptosis. A: Prior to treatment with
STZ (day 0), young 7-week-old male Wt and Doc2b™~ mice were fasted 6 h and subjected to IPGTT; n = 13 mice/group. B: Quantification of
AUC for pre-STZ IPGTT. C: Doc2b*~ and Wt littermates were then injected daily on days 1-5 with STZ (35 mg/kg body weight), and on day
10 were subjected to a post-STZ IPGTT; n = 8 mice/group. D: Quantification of AUC for post-STZ IPGTT. E: TUNEL immunofluorescence
staining and quantification of TUNEL-positive B-cells (indicated by arrows in images, expressed as % of total B-cells) were conducted on
fixed pancreas sections from STZ-treated Doc2b™~ and Wt mice; n = 5 mice/group. Bar = 20 pm. Islet B-cell area (F) and islet B-cell mass (G)
were calculated from fixed Doc2b*’~ and Wt pancreata immunostained for insulin content; n = 3 mice/group (three sections per mouse). Data
for A-D are shown as mean = SEM and for E-G as mean = SD. *P < 0.05; **P < 0.01; **P < 0.001.
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Figure 2— Generation of BDoc2b-dTg mice. A: Schematic design of RIP-rtTA™’* mice crossed to new TRE-Doc2b~/* mice. B: rDoc2b-myc
mRNA, in islets isolated from female double transgenic (8Doc2b-dTg) mice. Dox-induced expression of Doc2b-myc and endogenous Doc2b
protein in isolated islets (C) and lack of overexpression of rDoc2b-myc mRNA in the hypothalamus or cerebellum of the BDoc2b-dTg mice (D).
IB, immunoblot. E: Immunofluorescence imaging of Doc2b overexpression in the islets of BDoc2b-dTg mice treated with or without Dox.
Arrows denote the same position in each horizontal panel to show positive or negative c-Myc staining within a B-cell. Shown are the mean =+

SD of at least three mice per group. *P < 0.05. Bar = 50 pm.

to changes in B-cell apoptosis, pancreata from the STZ-
treated dTg mice were assessed by TUNEL staining. Islets
from Dox-treated Doc2b-dTg mice contained ~58%
fewer apoptotic cells than islets from non-Dox-treated
dTg mice (Fig. 4C). Although the islet numbers were similar
in both groups (data not shown), the Dox-treated BDoc2b-
dTg mice had a larger (-cell area, corresponding to higher
B-cell mass, compared with non-Dox-treated dTg mice
(Fig. 4D and E). Consistent with this, Dox-induced dTg
mice had serum insulin levels similar to Wt mice pre-STZ,
whereas non-Dox-treated dTg mice showed loss of insulin
(Supplementary Fig. 5). GLUT2 expression in Dox" and
Dox~ BDoc2b-dTg mice was unchanged (Supplementary
Fig. 6). These data suggest that overexpression of Doc2b
protects islet B-cells against STZ-induced B-cell death.

Doc2b Overexpression Protects Against Cytokine-
Induced Apoptosis and Reduces ER Stress

To date, all studies of Doc2b overexpression in islets and
in vivo function have used rat Doc2b; hDoc2b has yet to
be tested. Toward this, we generated adenoviral particles
encoding hDoc2b tagged on the C terminus with DDK.
Ad-hDoc2b-DDK was packaged with GFP and was detected
in =70% of rat INS-1 832/13 cells after viral transduction
(Supplementary Fig. 7); the Ad vector control transduced
~100% of cells. Treatment of Ad-hDoc2b—expressing INS-1
832/13 cells with proinflammatory cytokines for 16 h resulted
in a 45% reduction in CC3 and >50% reduction in deaved
PARP, as compared with control cells (Fig. 5). Additionally, the
levels of ER stress markers CHOP and p-elF2a were reduced by
~50% and ~60%, respectively, in Doc2b-overexpressing
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Figure 3—pBDoc2b-dTg mice have enhanced glucose tolerance and glucose-stimulated serum insulin content. A: Female Doc2b-dTg mice
at 12-13 weeks of age were fasted 6 h and subjected to an IPGTT; n = 5 mice/group. B: Quantification of the AUC for IPGTT. C: Serum insulin
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Data for A, B, D, and E are shown as mean = SEM and for C are shown as mean = SD. *P < 0.05; **P < 0.01.

B-cells (Fig. 5). These data show that Doc2b protects cells
from apoptotic stimuli and reduces ER stress.

The Doc2b Peptide C2AB Is Sufficient to Protect
Against Thapsigargin-Induced ER Stress Via Calcium
Handling

Doc2b is composed of three primary domains, MID, C2A,
and C2B (Fig. 6A); the C2 domains are known calcium-sensing

domains, binding two calcium ions each and contributing to
Doc2b’s function. To further investigate Doc2b’s antiapoptotic
actions and the role of the C2 domains in alleviating ER stress,
GFP-tagged plasmids were generated that encode rDoc2b
(Doc2b-GFP), a fragment containing an N-terminal truncation
of the MID domain (C2AB-GFP), and CaMut-GFP, a mutated
form of Doc2b-GFP carrying D—N substitutions in the amino
acids implicated in calcium handling in the C2 domains (40)
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Figure 4—pDoc2b-dTg mice are protected from STZ-induced glucose intolerance, fasting hyperglycemia, and B-cell apoptosis. A: Male
BDoc2b-dTg mice aged 12-13 weeks were injected daily on days 1-5 with STZ (35-40 mg/kg body weight), and on day 24 were fasted 6 h
and subjected to an IPGTT. AUC quantification for IPGTT; n = 3 BDoc2b-dTg Dox™ and n = 5 BDoc2b-dTg Dox™ mice. B: Fasting blood
glucose of STZ-treated BDoc2b-dTg mice; n = 3 BDoc2b-dTg Dox™ and n = 5 BDoc2b-dTg Dox* mice. C: Immunofluorescence staining
and quantification of TUNEL-positive B-cells (indicated by arrows in images, expressed as % of total B-cells) were conducted on fixed
pancreata of BDoc2b-dTg Dox™ and BDoc2b-dTg Dox* mice; n = 3 BDoc2b-dTg Dox™ and n = 5 Doc2b-dTg Dox™. Bar = 20 pm. Islet g-cell
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**P < 0.01. Data for A are shown as mean * SEM and for B-E are shown as mean = SD.

(Fig. 6A). INS-1 832/13 cells were treated with the ER stress
inducer and SERCA2b pump inhibitor thapsigargin. Treatment
of Doc2b-GFP- and C2AB-GFP-overexpressing INS-1 832/13
cells with 1 wmol/L thapsigargin for 6 h decreased the levels of
CHOP and CC3, compared with control (GEP)-treated cells (Fig.
6B). These decreased levels were similar to the levels of CHOP
in cells treated with the calcum chelator EGTA (Fig. 6B). The
benefit of expressing Doc2b-GFP or C2AB-GFP was absent
when the cells were transfected with the caldum binding-
deficient mutant form of Doc2b, CaMut-GFP (Fig. 6A and

B). These data suggest that Doc2b’s calcium binding capacity
within the C2AB tandem domains is linked to its protective
effect against ER stress and apoptosis.

The Doc2b Peptide C2AB Is Sufficient to Enhance
Insulin Exocytosis

Because the C2AB peptide was sufficient to protect 3-cells
against thapsigargin-induced apoptosis, we investigated
the capacity of C2AB to enhance B-cell function. Full-
length rDoc2b-GFP expression in MING6 cells recapitulated
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the enhancement of GSIS seen with rDoc2b in prior reports
(24,28,29) (Fig. 7A). Remarkably, C2AB enhanced GSIS by
approximately two- to threefold, similar to full-length
Doc2b (Fig. 7A). Neither C2A or C2B expression alone
enhanced GSIS, despite confirmed expression of each
peptide; if anything, the C2AB-GFP protein expression
levels were slightly lower than those of the other proteins
(Fig. 7B). The insulin content was also similar among all
treatment groups (Supplementary Fig. 84). These results
were recapitulated when the constructs were tested in INS-
1 832/13 cells (Fig. 7C and D and Supplementary Fig. 8B).
Doc2b is required for SNARE complex formation in B-
cells, possibly via increasing STX4 activation (i.e., interac-
tion with its cognate v-SNARE partner, VAMP2 [28]). To
determine if C2AB can replicate the underlying mechanism,
the C2AB and Doc2b proteins (untagged) were tested
for the ability to increase STX4 binding to GST-VAMP2
(Fig. 7E). Notably, the C2AB protein fully recapitulated the
Doc2b-induced activation of STX4. These data suggest that
C2AB includes a minimal region of Doc2b that is sufficient
to confer enhanced GSIS, STX4 activation, and protection
against apoptosis.

DISCUSSION

The data presented here demonstrate an important role
for Doc2b in maintaining (3-cell mass and function. We
propose that Doc2b deficiency leaves B-cells more suscep-
tible to diabetogenic damage and that overexpression
of Doc2b in the 3-cell enhances whole-body glucose homeo-
stasis and prevents B-cell apoptosis and ER stress. We

also show that C2AB comprises a minimal Doc2b region
that is required for enhanced insulin secretion and that
its antiapoptotic effects are linked to known sites of
calcium binding within the C2AB region. Hence, delivery
of C2AB could represent a novel candidate therapeu-
tic strategy to promote and protect functional B-cell
mass.

To our knowledge, this study is the first report showing
protective, antidiabetic properties of Doc2b. We found
that reducing the Doc2b levels in mice (Doc2b+/ 7)) in-
creases susceptibility to MLD-STZ-induced B-cell destruc-
tion and glucose intolerance. On the other hand, enhancing
Doc2b levels in the B-cell (BDoc2b-dTg) decreases suscepti-
bility to MLD-STZ-induced B-cell destruction and glucose
intolerance. INS-1 832/13 {3-cells transduced to overex-
press hDoc2b also exhibit protection from proinflammatory
cytokine and thapsigargin-induced apoptosis, indicating that
Doc2b protection occurs at the level of the B-cells, and the
protective effect is not dependent upon interislet non—3-cell
communication, nor is it due to a circulating factor in vivo.
The role of Doc2b or other exocytosis proteins in (-cell
survival mechanisms still remains largely unexplored; how-
ever, recent reports have shown involvement of exocytosis
proteins, such as VAMPS, in B-cell proliferation (20). Also, in
neurons, Doc2b has been implicated in proliferation and
differentiation during early embryogenesis (41,42). How-
ever, the B-cell area and insulin content in islets from mice
with increased or decreased Doc2b levels are similar to Wt
mice without diabetogenic stimuli (28,30,31); these data do
not support the hypothesis that Doc2b overexpression acts
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band.

via promoting proliferation or differentiation in the B-cell
per se. The data reported here suggest that Doc2b over-
expression promotes [3-cell survival and protects 3-cell mass
from apoptosis and ER stress, with the protection occurring
at the level of the (-cell itself. This hypothesis is supported
by our data showing the antiapoptotic actions of hDoc2b
overexpression in clonal B-cell lines.

Doc2b is a C2 domain—containing protein in a family of
proteins that includes Muncl3, synaptotagmins, ferlins,
rabphilin 3A, and RIM1/2 (43-45). These proteins have
two aspects in common: all are calcium regulated/calcium
sensing, and all are implicated in vesicle trafficking/
exocytosis. The role of Doc2b as a calcium sensor in 3-cells
has been reported (24), and the tandem C2 domain region of
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Doc2b, referred to here as the C2AB, is sufficient to support
membrane fusion in cell-free assays and shows stronger
liposome binding than either of the isolated C2A and C2B
domains (42). Indeed, our data show that C2AB can fully
recapitulate the antiapoptotic effects of full-length Doc2b,
likely through calcium handling. The CaMut form of C2AB
has been previously reported to abolish Doc2b’s calcium
binding capacity (40). ER stress mechanisms are known to
be calcium-dependent events, and thus we propose that
Doc2b may sequester calcium, resulting in reduced CC3,
PARP, CHOP, and p-elF2a.

C2AB also recapitulated the GSIS enhancement seen
with full-length Doc2b, whereas the C2 domains individ-
ually did not. Interestingly, the C2AB protein also reca-
pitulated the activating effect of full-length Doc2b upon
STX4, consistent with prior work showing Doc2b to pro-
mote SNARE protein assembly (21,23,24,46). C2AB may
confer its SNARE complex—promoting effect, in part, by
acting directly on the membrane, as recent work shows that
C2AB is sufficient to assemble in a ring-like oligomer (47)
and act directly on membranes to regulate hemifusion events
in neurons (48). These findings are important starting points
for further mechanistic investigation of how the exocytotic
function of Doc2b might protect B-cell function.

In summary, the data presented here show a novel,
antiapoptotic role for Doc2b in the B-cell. We propose
that B-cell-specific overexpression of Doc2b is sufficient
to enhance whole-body glucose homeostasis and to pro-
tect the B-cell mass against type 1 diabetes-related stress.
Furthermore, we show that the tandem C2AB domain is
sufficient to enhance insulin secretion and protect against
apoptosis and that this may be due to calcium handling.
Doc2b thus carries the potential to be a therapeutic target
for prevention/management of type 1 diabetes.
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