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The early to mid-1980s were an inflection point in the
history of type 1 diabetes research. Two landmark events
occurred: the initiation of immune-based interventions
seeking to prevent type 1 diabetes and the presentation
of an innovative model describing the disorder’s natural
history. Both formed the basis for hundreds of subsequent
studies designed to achieve a dramatic therapeutic goal—
a means to prevent and/or reverse type 1 diabetes. How-
ever, the need to screen large numbers of individuals and
prospectively monitor them using immunologic and met-
abolic tests for extended periods of time suggested such
effortswould requirea large collaborative network. Hence,
the National Institutes of Health formed the landmark
Diabetes Prevention Trial-Type 1 (DPT-1) in the mid-
1990s, aneffort that led toType1DiabetesTrialNet. TrialNet
studies have helped identify novel biomarkers; delineate
type 1 diabetes progression, resulting in identification of
highly predictable stages defined by the accumulation of
autoantibodies (stage 1), dysglycemia (stage 2), and
disease meeting clinical criteria for diagnosis (stage 3);
and oversee numerous clinical trials aimed at preventing
disease progression. Such efforts pave the way for stage-
specific intervention trials with improved hope that a
means to effectively disrupt the disorder’s development
will be identified.

One of the most preeminent dogmas regarding type 1 di-
abetes is that the disorder results from a chronic pro-
gressive autoimmune destruction of the insulin-producing

pancreatic b-cells (reviewed in refs. 1 and 2). Indeed, an
abundant body of clinical and preclinical literature sup-
ports this claim. However, recent studies of individuals at
varying levels of risk for developing the disease highlight
the need for modification of this model. This includes
several emerging notions: b-cells themselves play an im-
portant role in pathogenesis (3), the rate of b-cell dys-
function is not linear, and there is heterogeneity in disease
among those with type 1 diabetes.

Indeed, these and other findings have precipitated re-
cent discussions of how to define type 1 diabetes as
a clinical entity, given the potential for various pathways
to disease development and, importantly, the likelihood
that more precise therapeutic targeting will be necessary to
effectively intervene in this disease for purposes of pre-
vention and/or reversal. Hence, the goal of this Perspective
is to convey an emerging body of information emanating
from studies of the disorder’s progression combined with
outcomes from trials of immunotherapy as disease-
modifying agents, with a focus on the efforts in Type 1 Di-
abetes TrialNet that are leading to key changes in thoughts
regarding the disorder.

WHAT DO WE KNOW AND, MORE IMPORTANTLY,
WHAT DO WE NOT KNOW REGARDING THE
NATURAL HISTORY OF TYPE 1 DIABETES?

The most fundamental concept of the Eisenbarth model—
that autoimmunity and b-cell dysfunction precede clinical
disease—has been repeatedly demonstrated (4) and has
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served as a remarkable road map for research investigation
and clinical trials over the decades. However, certain com-
ponents of the model have also been difficult to prove, too
simplistic in their original thought, or were unfortunately
with time shown to be erroneous (1). As a result, concepts
from this model that have stood the test of time (i.e., what
we know) have beenmodified to whatmay represent reality
(i.e., what we think we know) or to what needs additional
information (i.e., what we don’t know), facets of which are
summarized in Table 1.

Irrespective of the model’s original accuracy, many
noteworthy accomplishments have resulted from its test-
ing and subsequent refinement. Among the most note-
worthy of the notions that will be stressed throughout this
Perspective is that type 1 diabetes is largely a predictable
disease, which was discovered through long-term prospec-
tive analyses of individuals without type 1 diabetes but
who had a series of genetic, immunologic, and metabolic
markers associated with the disorder (5–7). Indeed, the
degree of prediction has become so sound that the natural
history of type 1 diabetes can now be divided into a series
of stages (Fig. 1) (8) that serve as a useful guide for future
therapeutic interventions.

TYPE 1 DIABETES PREDICTION—WHAT’S NEW
AND WHERE HAVE WE FALLEN SHORT?

As an international network of physicians and research
scientists at academic institutions and hospitals, TrialNet
offers risk screening for relatives of patients with type 1
diabetes to facilitate natural history studies of the disease
as well as to identify suitable individuals for entry into
clinical trials aimed at preserving insulin production at
all stages of disease. Unique opportunities are made pos-
sible by large programs (such as TrialNet) that identify
autoantibody-positive relatives through screening across
the age spectrum of 1–45 years (9,10), as well as those
testing baby cohorts, such as Diabetes Autoimmunity Study
in the Young (DAISY) (11,12), BABYDIAB (13), Type 1
Diabetes Prediction and Prevention (DIPP) (14), and The
Environmental Determinants of Diabetes in the Young
(TEDDY) (15,16). Each afford the opportunity to follow
individuals over many years based on genetic risk or from
the first development of autoantibodies to overt hypergly-
cemia and clinical disease, providing groundbreaking in-
formation to better understand type 1 diabetes from
inception and throughout progression, which was not
possible only a short time ago. The insights from these
clinical studies are complemented by the ever-growing
number of novel observations using pathologic specimens
provided by the Network for Pancreatic Organ Donors
with Diabetes (nPOD) (17,18).

Collectively, these studies suggest that there are in-
flection points in disease progression. First, it is increas-
ingly apparent that the factors predicting the initiation of
autoimmunity (defined as seroconversion to autoantibody
positivity) (8,19) may be different from those associated
with progression from autoantibody positivity to clinical

disease (20–26). Similarly, it is well known that family
members of patients with type 1 diabetes have a 15-fold
increased risk compared with the general population
(27–29), yet the increased risk for family members is
associated with the initiation of autoimmunity (i.e., sero-
conversion) and not necessarily subsequent progression to
clinical type 1 diabetes (8). This raises the question of
whether stochastic or environmental events may precip-
itate disease progression after initial seroconversion, with
external factors perhaps playing a role in type 1 diabetes
etiopathogenesis at later stages than previously hypothe-
sized. A second inflection point is the time after autoim-
munity when glucose dysregulation occurs. Data regarding
this transition are robust enough that abnormal glucose
tolerance is already used as a clinical trial end point of
disease-modifying therapy. Evaluation of longitudinal
insulin secretion data suggests the possibility of other
inflection points in disease progression. In contrast to
the Eisenbarth model, which posited a steady and linear
change in secretion over time, data suggest relative sta-
bility in b-cell function and b-cell glucose sensitivity (slope
of correlation between insulin secretion and glucose
values) until a rapid fall 6–12 months prior to clinical
diagnosis (30). Analysis of b-cell functional data and
measurements of b-cell killing with an assay that measures
b-cell–derived INS DNA in individuals enrolled in TrialNet
clinical trials after disease onset also illustrated a biphasic
fall in secretion with more rapid changes closer to clinical
diagnosis (31,32). Preliminary analysis (unpublished data,
Type 1 Diabetes TrialNet Clinical Study Group) from the
Long-Term Investigative Follow-Up in TrialNet (LIFT) study
suggests that the 6–12 months on either side of clinical
diagnosis constitute a period of rapid change inb-cell function,
with implications both for the timing of clinical trials to
interrupt this process and the identification of another gap
in ourmechanistic understanding during this period of disease
progression. Importantly, recent data from TrialNet ancillary
studies found an increase of both b-cell death (32,33) and
abnormal insulin processing (26) during this period of
significant functional changes, offering the possibility of
using unmethylated INS DNA or fasting serum proinsulin–
to–C-peptide ratio as biomarkers to determine timing for
intervention or as outcomes of trials of disease-modifying
therapy. These data also suggest a hypothesis (Fig. 2)
whereby there are two processes occurring in disease
progression—underlying chronic b-cell failure upon which
periodic flares result in an acute wave of destruction.

Improved disease prediction is an iterative process;
the availability of longitudinal data and samples allow
for refinement of models as new data emerge. For example,
TrialNet now incorporates screening for ZnT8 autoanti-
bodies (34). TrialNet samples have been used to evaluate
the contribution of electrochemiluminescence assays,
which detect autoantibody affinity, to predict risk of progres-
sion. TrialNet also continues to screen for islet cell antibodies
(ICA), measured by immunofluorescence in pancreatic
islets, as the risk conferred by ICA positivity is additive
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to antibodies to known autoantigens (35,36), such as
insulin, ZnT8, GAD, and the tyrosine phosphatase, IA-2.
Understanding what other antigens contribute to ICA
formation is an important scientific gap and will likely
improve risk prediction in the future.

Previously, multiple autoantibody–positive relatives with
normal glucose tolerance were considered to have a 3- to
5-year symptomatic disease risk of 35–50%, and those with
abnormal glucose tolerance, about 60–80%. Combined
efforts from multiple longitudinal studies now demonstrate
that once multiple autoantibodies are present there appears
to be a relentless cumulative progression to disease, partic-
ularly in younger patients. For individuals with or without

a family history of type 1 diabetes who are identified to have
multiple (i.e., two or more) islet cell autoantibodies, it is no
longer a question of if they will develop disease but only
when it will occur (7). This realization has resulted in
a consensus paper, with support from the major entities
associated with diabetes care (including the American
Diabetes Association), that suggested a new definition of
stages of type 1 diabetes that better reflect the autoimmune
nature of the disorder (8) and hopefully will provide a the-
oretical framework for us to intervene early in the disease
when we can do the most good (Fig. 1).

Within this effort, stage 1 disease is defined as having two
or more autoantibodies (8). It is expected that interventions

Figure 1—Stages of diabetes progression (8,62). Genetic risk of type 1 diabetes (T1D) progression precedes immune activation and
seroconversion. The appearance of two or more autoantibodies defines stage 1 disease. Type 1 diabetes progression and loss of b-cell
mass/function (indicated by loss of cells depicted in the circles) occurs as subjects develop abnormal blood glucose levels (stage 2) and,
finally, meet American Diabetes Association criteria for clinical diagnosis (stage 3).

Figure 2—Proposed model suggesting the hypothesis that the peri-diagnostic period is the optimal time for intervention. The model posits
acute flares of disease superimposed upon chronic underlying tissue (i.e., b-cell) injury.

diabetes.diabetesjournals.org Greenbaum and Associates 1219



aimed at this stage would be particularly effective as they
would prevent the development of impaired glucose tol-
erance and clinical diabetes. Stage 2 reflects the metabolic
dysfunction that begins to become evident and the con-
tinuing destruction of pancreatic islet b-cells. Stage 3 rep-
resents overt hyperglycemia and what previously would be
defined as the beginning of type 1 diabetes by long-
standing criteria (37). Perhaps one reason our clinical
trials in patients with recent-onset type 1 diabetes (dis-
cussed below) have not been as effective as originally
hoped is simply that interventions were begun too late
in the disease course to fully restore both immune balance
and metabolic function. Stage 4 is the postdiagnosis period
of long-standing disease, a period that still represents
a time to intervene as many individuals continue to main-
tain detectable levels of C-peptide for many years after
diagnosis (38,39). This paradigm shift involving staging
affords us a unique opportunity to move therapeutic efforts
into the treatment of autoimmunity rather than the re-
versal of clinically overt disease, which, as noted, likely
represents a more difficult problem.

MOVING BEYOND STAGES OF DIABETES

Defining stages of diabetes has provided firm ground for
understanding of the disease and for the design of clinical
trials, yet this approach pays little attention to heteroge-
neity in clinical course. Not all individuals follow the
sequence described above, and there is wide variation in
the rate of progression. For example, some infants fol-
lowed from birth have multiple autoantibodies at their
first assessment (40–42). Later in the disease course, there
are some autoantibody-positive individuals who have sig-
nificantly impaired first-phase insulin secretion before
abnormalities are seen in glucose tolerance. Recent work
highlights significant variation in functional b-cell mass,
even among those with multiple autoantibodies and low
first-phase insulin response (43). The heterogeneity seen
in disease progression is also highlighted in studies from
nPOD, where organ donor specimens exhibit wide varia-
tion in residual b-cell mass and immune infiltration
(44–47).

As the only large-scale longitudinal study of autoanti-
body-positive individuals across a wide age range, TrialNet
data clearly demonstrate that age is an important, yet
unexplained factor in heterogeneity of disease progression
at every stage (8,10,48,49). However, age itself cannot fully
explain heterogeneity as illustrated in studies exploring
the transition from a single to multiple autoantibodies.
Overall, within a 5-year period, the majority of individuals
with a single autoantibody do not progress to diabetes, but
about 20% develop stage 1 diabetes (multiple autoanti-
bodies) (22). Not unexpectedly, these individuals tend to
be younger children. Recent analyses emphasized the
complexity: for those with single insulin autoantibodies,
the risk for progression is greatest in those ,8 years of
age, whereas for those with single GAD autoantibodies,
the risk continues among older age-groups (50). The

interaction of age, type of autoantibody, and HLA type
was also found in the analysis of baby cohorts. The order of
autoantibody first appearance (16,51) and age at which
autoantibodies first appear (42) are both HLA associated.
Efforts to understand mechanisms underlying autoantigen/
epitope spreading must take this heterogeneity into
account. Similarly, although there is little effect of in-
creased BMI on disease progression overall, a greater risk
was observed among obese teenagers in the years sur-
rounding pubertal transition (23), raising the possibility
of targeted intervention in this cohort.

It is also important to note that the concept of stages of
diabetes came from studies of individuals with genetic risk
(either through genetic screening in infancy or by virtue of
being a family member of a patient with type 1 diabetes)
and autoantibodies. Factors associated with progression in
these populations have a high positive predictive value
(i.e., proportion of individuals with a particular character-
istic who will develop autoimmunity or clinically diagnosed
type 1 diabetes), which is useful in the design of clinical
trials to provide a better risk–benefit ratio for therapy and
a smaller target sample size. It is important to note that
there is little information regarding the natural history of
individuals who develop type 1 diabetes without these
characteristics. Whether or not type 1 diabetes in individ-
uals without known genetic risk or autoantibodies or in
much older populations represents a fundamentally dif-
ferent disease is unknown.

ALTHOUGH WE CAN RELIABLY DESCRIBE THE
NATURAL HISTORY OF DISEASE, THERE REMAIN
QUESTIONS REGARDINGMECHANISTIC FACTORS
THAT DETERMINE THE RATE OF DISEASE
PROGRESSION

TrialNet has provided ancillary samples from its studies
that have resulted in observations pointing to changes
seen at various time points during development of clinical
disease. Differences in inflammatory pathways, miRNA
(52), innate immunity (53), b-cell death (32), and anergic
(54) and autoreactive B lymphocyte populations (55) as
well as alterations in invariant (56), regulatory (Treg), and
effector T-cell number and function (57) have each been
reported in autoantibody-positive as compared with con-
trol individuals, yet the variance observed within these
groups highlights that a given individual could exhibit all
or only a few of these features. Specifically, IL-1b and IL-6
responses to Toll-like receptor ligation were dysregulated
in younger subject cohorts but not in adults with diabetes-
related autoantibodies (53). Similarly, a subset of individuals
with autoantibodies and new-onset type 1 diabetes exhibited
low frequencies of polyreactive anergic B cells, indicating
a potential causative role for impaired B-cell tolerance in
certain individuals (54). Data from human donor tissues
suggest that developmental, morphologic, functional, and
molecular heterogeneity exists among b-cell subpopulations
(reviewed in ref. 58) and that specific subpopulations may
have enhanced resistance to autoimmune killing (59).
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Beyond this, impaired Treg signaling and function and
aberrant coexpression of FOXP3 and IL-17 are detectable
prior to type 1 diabetes onset and driven by specific genetic
polymorphisms in a subset of autoantibody-positive subjects
(60). Other genetic studies have also provided mechanistic
clues. It has long been known that HLA genes drive a great
deal of the genetic risk for type 1 diabetes and that much of
the effect of HLA class II genotype on the risk for diabetes
involves the initiation of autoimmunity; the hierarchal risk
conferred by these genes for development of autoantibodies
mimic the risk for type 1 diabetes. TrialNet data confirmed
that the protection afforded by HLA-DRB1*15:01-DQA1*
01:02-DQB1*06:02 is largely due to markedly less autoim-
munity. However, protection from disease progression
was also evident among autoantibody-positive relatives
of patients with type 1 diabetes (21), and as previously
noted, HLA has a role in risk of progression from one to
multiple autoantibodies. It is unknown whether the mech-
anism by which HLA type influences autoimmunity is
different than its role in further disease progression. A
recent key observation demonstrates that much of the
genetic risk for progression from autoimmunity to clinical
disease may be due to non-HLA single nucleotide poly-
morphisms (61): how and why this is the case are unknown.

These mechanistic studies point toward new directions
for targeted therapies to alter disease course. Yet, for each
of these immune, metabolic, or b-cell measures, there is
significant variance within the at-risk population, empha-
sizing mechanistic heterogeneity between individuals and
thus the challenges to date in translating these findings to
clinical trial. Moreover, as yet each mechanistic study has
been conducted and analyzed independently; significant
efforts are now being directed toward combining data from
multiple assays together to determine if individuals cluster
around specificmechanistic pathways (62). It is also expected
that observations from natural history studies will comple-
ment mechanistic insights gained from intervention studies
as described below.

IMMUNE THERAPIES CAN ALTER DISEASE
COURSE

In the past decade, TrialNet alone, or in cooperation with
the National Institutes of Health Immune Tolerance Net-
work (ITN), has conducted more than 11 clinical trials with
the aim of altering the natural history of b-cell dysfunc-
tion/destruction in individuals recently diagnosed with
type 1 diabetes. Four of these trials, with different putative
mechanisms of action, have demonstrated a delay in the fall
of b-cell function. Importantly, mechanistic studies from
these trials have provided insights into changes in immune
cell subsets that might be targeted in future therapies.

Among such insights, the TrialNet Abatacept Prevention
Study was undertaken with the notion that the agent
selectively binds to CD80 and CD86 blocking costimulation
of T cells. Abatacept-treated patients with type 1 diabetes
showed a statistically significant delay of approximately 9.6
months in the decline of C-peptide over thefirst 2 years of the

disease. There was a reduction in the CD4+CD45RO+CD62L+

central memory (CD4+CM) T-cell population and a compen-
satory increase in naive CD4+ T cells, whereas in the placebo-
treated group, an increase in CD4+CM T cells preceded b-cell
functional decline (63). However, there was a broad range
of metabolic and immunologic responses to the biologic
therapy, with the greatest therapeutic benefits observed in
younger subjects (i.e., those ,18 years of age), consistent
with the notion of heterogeneity in disease mechanisms
and in therapeutic response/nonresponse among individ-
ual patients (Fig. 3). These efforts indicate that future stud-
ies need to address whether therapeutic targeting of
specific CD4+ T-cell subsets will alter disease course in type 1
diabetes.

TrialNet’s The Effects of Rituximab on the Progression of
Type 1 Diabetes in New Onset Subjects study provided
a window into the potential role of B cells in type 1 diabetes.
Failures of B-cell tolerance, both in central and peripheral
checkpoints as well as in loss of anergic B cells, have been
associated with progression to diabetes using samples from
TrialNet studies (64,65). Rituximab treatment depletes
circulating CD20+ B cells, with a recovery initially dominated
by the appearance of transitional and naive B cells. In the
TrialNet rituximab study, C-peptide in patients with type 1
diabetes was significantly improved at 1 year after study
entry, but the effect was not maintained at the 2-year mark.
Importantly, the B cells that arose after therapy were newly
derived and, as before treatment, contained an increased
percentage of autoreactive B cells relative to those in healthy
control subjects (55). Thus, a single course of rituximab
therapy did not durably modify the defect in B-cell central
tolerance seen in type 1 diabetes. B-cell depletion did, how-
ever, prevent the development of new antibody responses to
exogenous insulin. Primary and secondary responses were
absent immediately after B-cell depletion when subjects were
given PhiX or hepatitis A vaccines. Yet, response to vaccina-
tion recovered with B-cell repopulation, demonstrating that
exposure to the antigen during B-cell depletion did not
induce tolerance or lead to a permanent defect in response
to vaccines (66). Compared with effects on insulin antibodies,
the differences in titer of protective IgG mounted to prior
vaccines and GAD65, IA-2, and ZnT8 autoantibodies were
modest (67). With respect to T-cell responses, neither T-cell
populations nor the proliferative response to control antigens
changed with rituximab therapy as compared with placebo-
treated individuals. However, subgroups of rituximab-
treated individuals had an increased response to islet
antigens and T-cell gene expression (68,69). These data
suggest several possibilities involving interactions between
T cells and recovering B cells after anti-CD20 monoclonal
antibody treatment. Importantly, they also suggest that
therapy with both B- and T-cell targeting agents could be
synergistic.

The rituximab study also identified differences in res-
ponders that highlight the importance of considering
heterogeneity between subjects in evaluating type 1 diabe-
tes therapies. In a subgroup analysis, individuals,18 years
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of age (particularly those between 13 and 17 years) showed
themost robust responses to the drug, as did those in whom
HLADR3/DQ2 was absent. Those with intermediate levels
of C-peptide (0.54 to 0.81 pmol/mL) showed better res-
ponses than those with higher or lower levels, despite
findings from other settings in which those with the highest
levels of C-peptide at baseline showed the most robust
responses. Subjects with multiple autoantibodies at the
time of entry also exhibited better responses than those
with a single autoantibody, supporting a requirement for
seropositivity in enrollment criteria for future B-cell directed
trials at early stages of disease.

The AbATE (Autoimmunity-Blocking Antibody for Tol-
erance in Recently Diagnosed Type 1 Diabetes) trial of the
non-FcR binding anti-CD3 monoclonal antibody teplizu-
mab, also performed in collaboration between TrialNet and
ITN, noted a significant improvement in C-peptide and
a delay in its decline by 15.9 months (70). A post hoc
analysis was used to identify responders based on a com-
parison with the control group in which all subjects lost at
least 40% of their baseline C-peptide levels. With this, 45%
of the drug-treated group were designated as responders.
Long et al. (71) found that responders had an increased
frequency of CD8+EOMES+TIGIT+KLRG1+ cells following
drug treatment. These cells, with features of partially
“exhausted” CD8+ T cells, showed induction of inhibitory
molecules when activated in vitro, suggesting that

teplizumab treatment had likely reprogrammed the cells.
The observation that exhausted cells are important in
disease progression and response to therapy is consistent
with elegant studies by McKinney et al. (72) of chronic
viral infections and other autoimmune diseases. Chal-
lenges remain in finding ways to augment and sustain
these beneficial exhaustion phenotypes.

In a stage 4 pilot study, patients with established type 1
diabetes received antithymocyte globulin (ATG; thymoglo-
bulin), a polyclonal immunodepleting agent, in combina-
tion with granulocyte-colony stimulating factor (G-CSF),
which promotes hematopoietic mobilization (73,74). Com-
bination therapy preserved C-peptide secretion and de-
pleted CD4+ T cells with compensatory increases in CD19+

B-cell and CD8+ T-cell frequencies. Treatment also in-
creased FOXP3+Helios+ Treg frequency. Importantly, these
immunologic effects remained detectable 12–24 months
following therapy. A lower dose ATG plus G-CSF trial is
ongoing in patients with recent-onset disease to expand on
these findings, with results anxiously expected.

The most recent effort to prevent or delay disease
progression in those with stage 1 disease (multiple auto-
antibodies, normal glucose tolerance) via treatment with
oral insulin proved to be ineffective in the primary study
cohort. However, disease progression to stage 3 (clinical
onset) was significantly delayed in a secondary cohort
of individuals with normal glucose tolerance and low

Figure 3—Schematic of heterogeneity in clinical presentation and disease course. Left: Theoretical 3D landscape depicting the risk of
type 1 diabetes in an individual (vertical dimension) driven by the complex relationships between both known and unknown factors, including
genetics, immunity, and metabolic and b-cell parameters (horizontal dimensions). Right: Individual risk landscapes are modified by sources
of variation such as age andBMI. Each individual’s risk continues to vary due to environmental exposures and the passage of time, increasing
the overall heterogeneity of subject cohorts.
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first-phase insulin response at the time of randomization
(75). Efforts are ongoing to investigate the mechanisms
underlying the apparent beneficial outcome seen by this
latter group of study participants.

THE PATHWAY FORWARD

TrialNet’s mission is to slow or even reverse disease pro-
gression by protecting b-cells through the course of dis-
ease. Advances in disease prediction and insights from
mechanistic analyses hopefully will provide direction for
future studies. Success in the mission, however, will re-
quire directly tackling disease heterogeneity. Each dimen-
sion associated with disease progression—demographic,
clinical, genetic, metabolic, and immunologic—has varying
contributions to b-cell dysfunction and death in a given
group of individuals (Fig. 3). Thus, multidimensional data
analysis is key to future studies. At the same time, existing
analysis of natural history, clinical trial, and mechanistic
data already supports next steps for trials.

Heterogeneity in therapeutic responses observed in
past trials suggests that identification of potential res-
ponders prior to trial initiation might greatly improve the
efficiency and safety of clinical studies. An important
advance capitalizes on cross-trial data; given an individual’s
baseline C-peptide value and their age, we can predict their
expected C-peptide response (76) and define responders as
those whose observed values are above expected values. This
approach can be used to explore whether common mecha-
nisms underlie responses to different therapies and whether
there are common sets of immunologic measures at baseline
that can predict response. A robust biomarker of the initial
responses to treatment may enable the identification of likely
responders at an early time point in the treatment course. In
this way, a “test dose” of drug and prespecified analyses
might enable investigators to avoid long-term treatment
of individuals who are not likely to benefit from therapy.
The robust and reproducible results from multiple trials
can also allow for design and evaluation of single-arm
studies to select those most promising for randomized
trials.

Another primary consideration is the emerging ability
to rationally design combination therapies. Mechanistic
data from the four trials highlighted above suggest that the
effects of single agents are not sufficient to avoid recur-
rence of disease. In the case of rituximab, T-cell responses
were largely unaffected. With abatacept alone, changes in
T-cell compartments were transient, even with continuous
administration of the study drug. The failure to affect the
autoreactive T-cell compartment with rituximab would
suggest that combination with an agent that blocks
T-cell responses (e.g., abatacept), potentially sequentially,
might control resurgence of autoimmune responses when
B lymphocytes recover. In addition, the analyses of T cells
from anti-CD3 monoclonal antibody–treated subjects
showed that changes induced in cellular subsets were
not permanent and therefore suggest maintenance of
the immunologic effects of that therapy will require either

repeated dosing or use of another agent. Therefore, com-
binations that can inhibit recovery of autoreactive T-cell
function, which may occur in response to inflammatory
mediators or other cell growth factors, such as IL-7, form
a potential combination to consider.

CONCLUDING THOUGHTS

In summary, studies of the natural history of type 1 di-
abetes from TrialNet and other sources have identified
disease heterogeneity in individuals based on demographic,
clinical, metabolic, genetic, and immunologic factors. This
heterogeneity initially made clinical trials more complicated as
the disease course and responses to therapies are not uniform.
At the same time, insights into the diversity of responses have
provided an opportunity to develop new clinical studies that,
moving forward, will combine therapies with synergistic
mechanisms and select subjectswho aremost likely to respond
to the interventions. With this information, an approach of
precision medicine can be instituted that will improve efficacy
and safety. In this way, development of treatments to prevent
and stop progression of the disease can be hastened.
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