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Abstract

The functional connectome has gained increased attention in the neuroscience community. In 

general, most network connectivity models are based on correlations between discrete-time series 

signals that only connect two different brain regions. However, these bivariate region-to-region 

models do not involve three or more brain regions that form a subnetwork. Here we propose a 

learning-based method to explore subnetwork biomarkers that are significantly distinguishable 

between two clinical cohorts. Learning on hypergraph is employed in our work. Specifically, we 

construct a hypergraph by exhaustively inspecting all possible subnetworks for all subjects, where 

each hyperedge connects a group of subjects demonstrating highly correlated functional 

connectivity behavior throughout the underlying subnetwork. The objective function of 

hypergraph learning is to jointly optimize the weights for all hyperedges which make the 

separation of two groups by the learned data representation be in the best consensus with the 

observed clinical labels. We deploy our method to find high order childhood autism biomarkers 

from rs-fMRI images. Promising results have been obtained from comprehensive evaluation on the 

discriminative power and generality in diagnosis of Autism.

1 Introduction

The brain can be partitioned into different regions according to various functions, and 

connectivity networks can be composed where information is continuously processed 

Correspondence to: Guorong Wu.

HHS Public Access
Author manuscript
Mach Learn Med Imaging. Author manuscript; available in PMC 2018 June 22.

Published in final edited form as:
Mach Learn Med Imaging. 2016 October ; 10019: 1–9. doi:10.1007/978-3-319-47157-0_1.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between these functionally linked brain regions [1]. In order to understand the pathological 

underpinnings of neurological disorder, many functional neuroimaging studies have been 

developed to investigate abnormal alternations among these brain connections. Recently, 

researchers have also used functional connectivity networks for diagnosing brain disease at 

individual level [2].

The brain is complex and oscillatory activities behind cognition are essentially the large-

scale collaborative work among millions of neurons through multiple brain regions. The 

bivariate region-to-region interactions do not capture high order network architecture 

patterns that involve three or more brain regions in a subnetwork architecture. Recently, 

there is overwhelming evidence that brain network displays hierarchical modularity, making 

the investigation of high order network patterns more attractive to neuroscience and clinical 

practice than ever before.

Here, we propose a novel learning-based method to discover high order network connectome 

biomarkers that can be used to distinguish two clinical cohorts. Without doubt, there are 

thousands of high order connectome patterns varying from the number and combination of 

the involved brain regions. Considering the computational cost, we propose the following 

criteria to promote one high order network connectome to the biomarker: (a) Small 
subnetwork architecture. Since a triangle is one of the simplest types of subnetwork, we take 

a first step to discover high order connectome patterns that end up in the functional 

connectivity throughout the triangle cliques. (b) Entire functional connectivity flow. We 

examine the functional connectivity behavior throughout the subnetwork. Therefore, the 

connectome pattern is considered as a biomarker only if the entire functional connectivity 

flow inside the subnetwork, instead of particular predominant connection link, shows 

significant difference between two clinical cohorts.

To achieve it, we first construct a subnetwork repository that consists of all possible triangle 

cliques. The native solution is to measure and sort the significance of each triangle cliques 

via the independent statistical t-test. Since the subnetworks are highly correlated (e.g., large 

amount of overlap of edges among triangle cliques), independent statistical test can hardly 

be effective in looking for the critical subnetworks.

We utilize hypergraph technique to jointly find a set of the most significant high order 

connectome biomarkers by investigating subject-to-subject relationships based on functional 

connectivity flows in all possible subnetwork architectures. Specifically, each individual 

subject is treated as a vertex in the hypergraph. For each subnetwork architecture, a 

hyperedge is formed for each subject at a time that includes other subjects with similar 

functional connectivity flows throughout the same subnetwork architecture. Thus, the 

hypergraph eventually encodes a wide spectrum of high order connectome patterns in the 

population. The next step is to find the most significant biomarkers hiding behind thousands 

of subnetworks. Since each subject has the clinical label, the problem of seeking for high 

order biomarkers turns to the optimization of the weights on hyperedges such that the 

separation of subjects by the learned data representation (encoded by hypergraph) 

maximally agrees with the observed clinical labels. Intuitively, the learned weights reflect 

the significance in distinguishing two clinical cohorts. We have applied our learning-based 
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method to discover the high order functional connectome patterns for childhood autism 

spectrum disorders (ASDs) and identify ASD individuals from ABIDE dataset. Promising 

classification results have been achieved which demonstrate the power of learned high order 

connectome patterns.

2 Method

Method Overview—Figure 1 illustrates the intuition behind our proposed learning-based 

method. For clarity, we assume there are three subjects in one cohort (top left in Fig. 1) and 

two subjects in anther cohort (bottom left in Fig. 1). Only two possible subnetworks (triangle 

cliques in purple and red) are under investigation. The goal is to find out which subnetwork 

is able to separate subjects from two groups more accurately than the other, based on the 

functional connectivity flow inside the subnetwork. Eventually, the selected subnetworks are 

considered as biomarkers to identify other individual subjects.

Hypergraph is employed to measure the high order subject-wise relationships based on the 

functional connectivity flow running inside each subnetwork. Specifically, subjects are 

considered as vertices (v1–v5 in Fig. 1) in the hypergraph. In general, a set of subjects fall 

into the same hyperedge only if their functional connectivity flows in the same subnetwork 

show high correlations. Thus, hyperedge can accommodate high order relationship that is 

beyond two subjects in the conventional graph technique. For example, subject v2 and v3 

stay in the same hyperedge e1 with v1 since their functional connectivity flows (designated 

by the black arrows) are very similar inside the purple triangle clique. The standard way to 

construct hyperedges is to exhaustively visit each subject per each subnetwork. As the 

example shown in Fig. 1, we obtain four hyperedges (e1–e4) that are displayed by curves. 

Note, the identical hyperedges are discarded and the color on each hyperedge indicates the 

associated subnetwork.

A hypergraph learning technique is used to jointly quantify the significance of each 

subnetwork based on the ground truth clinical label on each subject. Intuitively, the more 

label discrepancies occur within the hyperedges related to the underlying subnetwork, the 

lower the significance of that particular subnetwork becomes. Finally, the subnetworks with 

high overall significance value across related hyperedges are regarded as the biomarkers 

from rs-fMRI image. As shown in the left panel of Fig. 1, the labels in e1 and e2 (purple 

curves) are highly consistent, suggesting that the functional connectivity flow running on the 

purple triangle clique is a good biomarker to separate the subjects from two different groups. 

On the contrary, the functional connectivity flow inside the red triangle clique fails to be the 

biomarker since there are hyperedges built on the red triangle clique having subjects with 

different clinical labels, e.g., v1 and v4 are both in the hyperedge e3.

2.1 Encode Subject-Wise Relationship in Hypergraph

Given a training set of N subjects {vn|n = 1, …, N}, where each subject has already been 

partitioned to R anatomical regions. Without loss of generality, we use ‘+1’ and ‘−1’ to 

distinguish the label for two clinical groups, and thus form a column vector y =[y1, y2, …, 

yN]T. Considering the computational cost and efficiency, we first construct the pool of all 
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possible subnetworks Δ = {Δj|j = 1, …, C}, where each triangle clique Δj is formed by three 

brain regions randomly picking up from totally R regions. Therefore, there are C = R
3

combinations in total. Given subject vn and particular subnetwork Δj, we can obtain a three-

element vector of functional connectivity flow αn, j = [αn, j
1 , αn, j

2 , αn, j
2 ], where each element in 

αn,j is eventually the Pearson’s correlation degree of the mean rs-fMRI signals, from subject 

vn, between any two brain regions within the triangle clique Δj.

Construct Hypergraph—Next, we construct hypergraph, as denoted by G =(V, E), where 

the hypergraph vertex set V = {vn|n = 1, …, N} includes all subjects in the population. We 

use star-expansion algorithm to build a set of hyperedges by exhaustively visiting each 

vertex vn for particular subnetwork Δj, thus forming the hyperedge set E = {en,j|n = 1, …, N, 

j = 1, …, C}. For each hyperedge en,j, we examine the similarity between functional 

connectivity flow αn,j at current vertex vn and αn′,j (n′ = 1, …, N, n′ ≠ n) at all others 

vertices. The criteria of allowing vn′ be in the hyperedge en,j (i.e., vn′ ∈ en,j) are (a) the 

Euclidian distance d j(n, n′) = ‖αn, j − αn′, j‖2
2 between αn,j and αn′,j should be smaller than 

certain threshold; and (b) αn′,j should be within the k-nearest neighborhood in terms of dj(n, 

n′).

Encode Hypergraph in Incidence Matrix—In a conventional graph based method, the 

relationships among graph vertices are encoded in a N × N affinity matrix. In hyper-graph, 

instead, the relationships between vertices are encoded using an incidence matrix H, with 

the row and column denoting the vertices and hyperedges, respectively. Since each 

hyperedge en,j is related with both vertex vn and subnetwork Δj, we use the column index θ 
to delegate the bivariate index (n, j), i.e., θ ↔ (n, j), where θ ranges from 1 to Θ = N · C. 

Thus, H is a N × Θ matrix. For each entry h(n, θ), we set h(n, θ)=1 if the vertex vn is in 

hyperedge e(n, j). Otherwise, h(n, θ)=0. The example of incidence matrix is shown in the 

right panel of Fig. 1. Apparently, the incidence matrix conveys more information than the 

affinity matrix used in conventional approaches based on simple graphs.

Hyperedge Weights—For convenience, we use eθ denote the particular hyperedge in the 

following text, instead of en,j. Each hyperedge eθ has a non-negative weight wθ. 

Furthermore, we construct a Θ × Θ diagonal matrix W where each diagonal element is the 

hyperedge weight wθ. Given H and W, we can define the vertex degree 

d(n) = ∑θ = 1
Θ wθh(n, θ) for each vn and the hyperedge degree δ(θ) = ∑n = 1

N h(n, θ) for each eθ.

2.2 Discover High Order Brain Connectome Patterns by Hypergraph Learning

Our learning-based method aims to find out the biomarkers by inspecting the performance of 

each hyperedge in separating subjects from two groups. To that end, we first assume the 

label on each subject is not known yet. Thus, we use hypergraph learning technique to 

estimate the likelihood fn for each subject vn, which is driven by (a) the minimization of 

discrepancies between ground truth label vector y and the estimated likelihood vector f =[f1, 

f2, …, fN]T, and (b) the consistency of clinical labels within each hyperedge. The 

consistency requirement can be defined as:
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Ωf(W) = ∑θ = 1
Θ ∑n, n′ = 1

N wθh(n, θ)h(n′, θ)
δ(θ)

f n
d(n) −

f n′
d(n′)

2
. (1)

The regulation term Ωf (W) penalizes the label discrepancy by encouraging the difference 

between the normalized likelihoods f n/ d(n) and f n′/ d(n′) to be as small as possible if vn 

and vn′ are in the same hyperedge eθ. It is clear that the regularization term Ωf(W)is a 

function of both W and f, which eventually makes the optimization of W reflect the quality 
of each hyperedge being the biomarker. In order to avoid over-fitting, we use Frobenius 

norm on the weighting matrix W. Therefore, the objective function to look for high order 

connectome patterns is:

arg minW, f Ωf(W) + λ‖y − f‖2
2 + μ‖W‖F

2 . (2)

where λ and μ are two scalars controlling the strength of data fitting term and Frobenius 

norm on the weighting matrix W, respectively.

Optimization—Ωf(W)in Eq. (2) is called as hypergraph balance term in [3] and can be 

reformulated into a matrix form: Ωf(W)=fT (I − Λ)f = fTℒf, where ℒ is the normalized 

hypergraph Laplacian, I is the identity matrix, and Λ = Dv
− 1

2HWDe
−1HTDv

− 1
2 . Note, Dv = 

diag(d(n)) and De = diag(δ(θ)) are the diagonal matrices of the vertex degrees and the 

hyperedge degrees, respectively. It is clear that the objective function in Eq. (2) is not jointly 

convex with respect to W and f. Hence, we propose the following solution to find W and f, 
alternatively.

Solve Likelihood Vector f—Fixing W, the objective function becomes:

arg minf ϕ(f) = fT ℒf + λ‖y − f‖2
2 . (3)

Conventional hypergraph inference method can be used to estimate f by letting ∂ϕ
∂f = 0, 

which leads to the deterministic solution: f = I + 1
λℒ −1y.

Optimize the Hypergraph Weight W—After discarding unrelated terms w.r.t. W in Eq. 

(2), we derive the objective function for hypergraph weight as:

arg minW φ(W) = fT ℒf + μ∑θ = 1
Θ (wθ)2 . (4)
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Since each wθ in W is independent, we can yield the optimized hyperedge weight as 

wθ = max
fTDv

− 1
2HIθDe

−1HTDv
− 1

2 f
2μ , 0  by letting the derivative ∂φ

∂wθ
= 0 and projecting ŵθ to 

meet the non-negative constraint. Note, Iθ is the Θ × Θ selection matrix which is zero 

everywhere except at entry (θ, θ).

Discover High Order Connectome Biomarkers—Since W and f are coupled in Eq. 

(2), the estimated hypergraph weights in W is driven to achieve (a) the least discrepancy 

between ground truth y and estimated likelihood f, and (b) highest label consistency within 

each hyperedge, which exactly matches with the important properties of imaging 

biomarkers. In our method, we sort the significance of the subnetworks according to the 

mean hyperedge weight over all subjects, i.e., w j = ∑n = 1
N w(n, j). After that, a set of the 

critical subnetworks P = {Δj|j = 1, …, C, ŵj>ε}, as long as their mean hyperedge weights 

beyond certain threshold ε, are considered as the biomarkers where the functional 

connectivity flows running inside have significant difference between two clinical cohorts.

3 Experiments

3.1 Critical Subnetworks Learned by Hypergraph Inference

In this section, we applied our learning-based method to find critical subnetworks P based 

on 45 ASD and 47 typical control (TC) subjects from the NYU site of Autism Brain 

Imaging Data Exchange (ABIDE) database [4]. The first 10 obtained rs-fMRI images of 

each subject are removed to ensure magnetization equilibrium. After slice timing and head 

motion correction, the images are normalized into MNI space and then segmented into 116 

regions-of-interest (ROIs) according to Automated Anatomical Labeling (AAL) template. 

Following this, the images underwent signal detrending and bandpass filtering (0.01–0.08 

Hz). For each subject, the mean time series of each ROI is obtained by averaging the rs-

fMRI time series over all voxels in that particular ROI. Note, the total number of possible 

subnetworks is 
116
3 = 253, 460. We jointly find the best parameters for λ and μ in Eq. (2) 

using the line search strategy with range from 0.1 to 10.0.

Figure 2 shows the top 10 most critical subnetworks (white triangle cliques) out of 253,460 

candidates between ASD and TC cohorts. The color on each vertex differentiates the 

functions in human brain. It is clear (a) most of the brain regions involved in the selected top 

10 critical subnetworks locate the key areas related with ASD, such as amygdala, middle 

temporal gyrus, superior frontal gyrus; and (b) most of the selected subnetworks travel cross 

the subcortical and cortical regions, which is in consensus with the recent discover of autism 

pathology in neuroscience community [5].

3.2 Identification of ASD Subjects with the Learned Subnetwork

In the following experiments, we use functional connectivity flows on top 200 critical 

subnetworks as the feature representation (feature dimension: 200 × 3) to classify ASD and 
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TC subjects. Then traditional Support Vector Machine (SVM) [6] is adopted to train the 

classifier directly based on the concatenated feature vector, denoted as Subnetwork-SVM. 

Since the functional connectivity flow comes from each subnetwork, it is straightforward to 

organize them to a tensor representation and use advanced Support Tensor Machine (STM) 

[7] to take advantage of the structured feature representation, denoted as Subnetwork-STM 
in the following experiments. In order to demonstrate the advantage of subnetwork over the 

conventional region-to-region connection in brain network, we compare with two 

counterpart methods Link-SVM (use the Pearson’s correlations on each link as the feature) 

and Toplink-SVM (select top 600 links by t-test and use the Pearson’s correlation on the 

selected links to form the feature vector).

Evaluation on Discrimination Power—In this experiment, we use 10-fold cross 

validation strategy to evaluate the classification accuracy (ACC), sensitivity (SEN), 

specificity (SPE), positive predictive value (PPV), and negative predictive value (NPV) on 

45 ASD and 47 TC subjects from NYU site in ABIDE database. As the classification 

performance plots and the ROC curves shown in Fig. 3, the classifiers trained on 

connectome features from our learned subnetworks have achieved much higher classification 

performance than those trained by the same classification tool but based on the connectome 

features from the conventional region-to-region connection links. Also, the substantial 

classification improvements by Subnetwork-STM over Subnetwork-SVM indicate the 

benefit of using structured data presentation in classification where such high order 

information is clearly delivered in the learned subnetworks.

Evaluation on Generality—To verify the generality of learned subnetworks, we directly 

apply the subnetworks learned on the NYU dataset to the classification of 44 ASD and 53 

TC subjects from the UM (University of Michigan) site in ABIDE database. The accuracies 

obtained by Link-SVM and Toplink-SVM are 0.6086 and 0.6253, respectively, which is 

comparable to that in reference [8]. Our Subnetwork-SVM and Subnetwork-STM can 

improve the accuracy up to 0.6469 and 0.6610, respectively. Again, the classification 

methods using the features extracted from the learned top subnetworks achieve much higher 

classification accuracy than the counterpart Link-SVM and Toplink-SVM methods.

4 Conclusion

In this paper, we propose a novel learning method to discover high order brain connectome 

biomarkers which are beyond the widely used region-to-region connections in conventional 

brain network analysis. Hypergraph technique is introduced to model complex subject-wise 

relationships in terms of various subnetworks and quantify the significance of each 

subnetwork based on the discrimination power across clinical groups and consistency within 

each cohort. We apply our learning-based method to find the subnetwork biomarkers 

between ASD and TC subjects. The learned top subnetworks are not only in consensus with 

the recent clinical findings, but also able to significantly improve accuracy in identifying 

ASD subjects, strongly supporting their potential use and impact in neuroscience study and 

clinic practice.
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Fig. 1. 
The overview of our learning-based method to discover high order brain connectome 

patterns by hypergraph inference. (Color figure online)
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Fig. 2. 
The top 10 selected subnetworks (white triangle cliques) where the functional connectivity 

flow running inside has significant difference between ASD and TC cohorts. (Color figure 

online)
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Fig. 3. 
Classification performance of four different classification methods.
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