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Abstract

The widespread adoption of electronic medical records (EMRs) in healthcare has provided vast 

new amounts of data for statistical machine learning researchers in their efforts to model and 

predict patient health status, potentially enabling novel advances in treatment. In the case of sepsis, 

a debilitating, dysregulated host response to infection, extracting subtle, uncataloged clinical 

phenotypes from the EMR with statistical machine learning methods has the potential to impact 

patient diagnosis and treatment early in the course of their hospitalization. However, there are 

significant barriers that must be overcome to extract these insights from EMR data. First, EMR 

datasets consist of both static and dynamic observations of discrete and continuous-valued 

variables, many of which may be missing, precluding the application of standard multivariate 

analysis techniques. Second, clinical populations observed via EMRs and relevant to the study and 

management of conditions like sepsis are often heterogeneous; properly accounting for this 

heterogeneity is critical. Here, we describe an unsupervised, probabilistic framework called a 

composite mixture model that can simultaneously accommodate the wide variety of observations 

frequently observed in EMR datasets, characterize heterogeneous clinical populations, and handle 

missing observations. We demonstrate the efficacy of our approach on a large-scale sepsis cohort, 

developing novel techniques built on our model-based clusters to track patient mortality risk over 

time and identify physiological trends and distinct subgroups of the dataset associated with 

elevated risk of mortality during hospitalization.
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1. Introduction

Electronic medical records (EMRs) have become increasingly ubiquitous in healthcare, and 

the utility of these complex datasets for clinical decision support is the subject of much 

current research ([7] and references therein). EMR data comprise multivariate observations 

of variables with discrete or continuous values. These variables can be static (observed only 

a single time during a hospitalization; e.g. gender) or dynamic (e.g. vital signs). Deriving 

actionable insights from EMR data requires appropriate models for these multi-typed 

observations [28].

Besides complexity in the types of information contained in the EMR, heterogeneity 

inherent in the clinical population under study adds to the challenge of modeling these data. 

This physiological heterogeneity is a hallmark of debilitating conditions like cancer [15] 

and, in particular, sepsis [24], an increasingly prevalent clinical condition characterized by a 

dysregulated immune response to infection leading to organ dysfunction and death. 

Accounting for this heterogeneity can have considerable therapeutic importance. In the case 

of breast cancer, for example, stratification of patient tumors into molecular subtypes 

significantly increased precision of treatment and improved survival (reviewed in [33]). In 

the case of sepsis, delays in antibiotic administration lead to considerably elevated mortality 

risk [23], suggesting that a technique highlighting subtle physiological phenotypes 

associated with elevated mortality risk early in an inpatient stay might aid triage and 

treatment of potentially septic patients. Indeed, a central goal of this and other similar efforts 

is to identify physiologically distinct subgroups of a clinical population more at risk for 

adverse health outcomes that can be targeted with interventions tailored to the subgroup’s 

characteristics [21,39,29,14,18,25,40].

In this study, we describe a joint probabilistic framework called a composite mixture model 

(CMM; [31,37]), a technique heretofore never applied to EMR data. The CMM 

accommodates the wide variety of data types common in EMR datasets while accounting for 

heterogeneity in the clinical population. We adapt our model to analyze a large EMR dataset 

composed of more than 53,000 emergency department (ED) hospitalization episodes from 

Kaiser Permanente Northern California (KPNC) in which patients were suspected to have 

infection and, in a subset of cases, met the criteria for sepsis [22,34]. We demonstrate the 

efficacy of our data-driven approach by identifying and annotating clusters of patient 

episodes with significantly higher risk for mortality during hospitalization, by visualizing 

physiological trends associated with these elevated rates of mortality, and by benchmarking 

the performance of our framework on common EMR analysis tasks such as missing data 

imputation.

2. Related work

One approach to modeling EMR data focuses on the important task of prediction in order to 

prevent or mitigate an impending adverse outcome. Traditional predictive modeling 

approaches, such as logistic regression and random forests [5], can provide useful insights 

for clinical decision support. For example, multi-task predictive models have proven 

successful in stratifying patients according to risk of developing hospital-acquired infections 
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[39,40]. Other approaches have been able to recover clinically relevant phenotypes with 

striking prediction capabilities for a wide range of medical conditions [14,18]. Particularly 

in sepsis, supervised approaches have demonstrated remarkable performance in early 

identification of patients at risk of entering septic shock [17,16]. In essence, these models 

characterize the effects of a fixed set of predictor variables or features on an outcome of 

interest (supervised learning; a conditional model), without directly modeling the features 

themselves. These approaches also require complete case data (i.e. observations without 

missing entries). Without first performing imputation, certain samples or even entire features 

could be removed from analysis. More importantly, many of these approaches assume that 

the population under study can be modeled as a single, homogeneous group, ignoring the 

possibility that the population represents a mixture of distinct subgroups potentially 

amenable to different treatment regimes. In contrast, we develop a framework able to 

account for both population heterogeneity and missing data and, in an unbiased manner, aim 

to identify latent phenotypes in the population enriched for mortality events during 

hospitalization rather than predict mortality events or cataloged conditions (e.g. ICD9 

codes).

Unsupervised approaches, on the other hand, model the whole data observation (outcome 

and features) together (joint model), capturing dependencies among the different dimensions 

of the full observation vector. Such approaches have proven successful recently in directly 

modeling complex EMR observations or projecting them into feature spaces that can then be 

used for prediction or risk stratification [21,29,2,25]. Multivariate statistical mixture models 

are another class of unsupervised learning approach that can formally represent 

heterogeneity in the population, treating both outcomes and features as probabilistic 

quantities to be modeled jointly [32]. However, such mixture models are difficult to apply in 

their conventional form when elements of a multivariate observation are of different types 

(e.g. a categorical variable like gender and a continuous variable like median diastolic blood 

pressure) as is common with EMR data. Similar unsupervised work has recently been 

presented to model these data (e.g. [21,29]). However, these studies either focused on a 

single clinical variable (uric acid trajectories [21]) or transformed multi-typed EMR 

observations into a single representation for modeling purposes (e.g. bag-of-words 

representations [29]). In contrast, we directly model 32 different physiological and 

demographic features of both discrete and continuous types with our simple and extensible 

joint probabilistic framework.

3. Methods

3.1. KPNC sepsis cohort description

Kaiser Permanente Northern California is a highly integrated healthcare delivery system 

with 21 medical centers caring for an overall population of 4 million members. The full 

KPNC dataset consists of 244,248 in-patient hospitalization visits (mortality rate: 5.2%) 

with a suspected or confirmed infection and sepsis diagnosis, drawn from KPNC medical 

centers between 2009 and 2013 [22]. We refer to each in-patient visit as an episode for the 

remainder of this work. For this analysis, we used a subset of the full dataset consisting of 

53,659 inpatient episodes, with an overall mortality rate of ~6%. Our criteria for creating 
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this analysis cohort were the following: (1) hospitalization admission occurred via the 

emergency department (to identify high-risk patients earlier in their care delivery); (2) the 

length of hospitalization was at least twelve hours; and (3) all vital signs were taken three or 

more times during the first three hours of hospitalization. Fig. 1 illustrates the process by 

which we prepared our different analysis cohorts.

Our cohort consisted of both static and dynamic features. The static features that made up 

our dataset include: (1) age; (2) sex; (3) treatment facility code; (4) KPNC membership 

status; (5) indicator of whether patient was transported in from another site; (6) LAPS2, a 

KPNC single measure of acute disease burden at the time of hospital admission; (7) COPS2, 

a monthly KPNC aggregate measure of chronic disease burden; and (8) an indicator of 

patient mortality status at the end of the episode. The vital signs included in this analysis 

were (1) diastolic blood pressure, (2) systolic blood pressure, (3) heart rate, (4) respiratory 

rate, (5) temperature, and (6) pulse pressure. Outlying vital sign observations were removed 

according to the following filters: heart rate > 300; systolic blood pressure > 300; respiratory 

rate > 80; body temperature > 108; and body temperature < 85. We then computed the 

maximum, minimum, median, and standard deviation of patient vital signs over different 

post-admission periods (3, 6, or 12 h). Pairing the summary statistics with their 

corresponding static admission features resulted in three analysis cohorts, one for each post-

admission period (Fig. 1). We note that none of our datasets contained missing values.

3.2. Composite mixture model definition

Here, we describe the composite mixture model, a flexible joint probability model for multi-

typed, multivariate data. The two central ideas behind the CMM are that: (1) the population 

is heterogeneous (composed of subgroups or clusters) and (2) we can specify the full joint 

distribution of a multi-typed observation vector, x, by specifying appropriate univariate, 

exponential family distributions for each dimension of x. The CMM takes the following 

form:

Pr(xi |Θ) = ∑
k = 1

K
πk ∏

p = 1

P
Prp(xi, p |θk, p) (1)

where xi is an observation vector of dimensionality P,K is the number of mixture 

components or clusters in the model, Prp is the distribution of the pth dimension (e.g. 

univariate Gaussian), and θk,p, are the model parameters for the pth dimension’s distribution 

in the kth mixture component. This structure is reflected in the plate notation diagram in Fig. 

2. For completeness, we show an equivalent formulation of the CMM model in Fig. 2 that 

includes the indicator variables, Zi, categorical variables that take the value k (from 1 to K) 

if episode i is assigned to cluster k. To illustrate an application of the CMM, suppose we had 

a three-dimensional observation vector wherein the first dimension contained integer count 

data, the second dimension contained positive and negative real values, and the third 

dimension contained discrete categorical data. A potential CMM for these data might consist 

of the following univariate distributions with different parameter values for each 

dimension’s distribution depending on the mixture component k to which xi was assigned: 
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Pr1 =Poisson(xi,1|λk,1), Pr2 = Normal(xi, 2 | μk, 2, σk, 2
2 ), and Pr3 =Categorical(xi,3|γk,3) (γk,3 is 

the vector of probabilities for each possible discrete value of xi,3). The model structure 

implies that, given a mixture component, the dimensions of the observation vector are 

independent of one another. It is important to note that, despite the features being treated as 

independent, complex correlations among features can be recovered by mixing (or 

averaging) over more components.

3.3. Composite mixture model fitting to KPNC dataset

As shown in Section 3.2, fitting a composite mixture model first requires specification of the 

univariate distributions for each dimension of an observation vector. We support exponential 

family distributions for each observation dimension that can be efficiently estimated in 

parallel by computation of sufficient statistics. For our analysis, categorical variables 

(including mortality status) were modeled with categorical distributions while age, LAPS2, 

COPS2, and the summary statistics of patient vital signs were modeled with either normal, 

gamma, or exponential distributions where appropriate. To facilitate model estimation, we 

added a small amount of jitter to non-categorical features. Specifically, we added a uniform 

random sample in the range −d/10 to d/10 to each value, where d is the smallest distance 

between unique values of that feature.

To fit a model for a given number of clusters, we performed expectation-maximization [8]. 

As expectation-maximization is a local optimization approach sensitive to initialization, we 

performed 3 random restarts of each fitting procedure with a maximum of 100 iterations (we 

observed that this number of iterations was generally sufficient for adequate model fitting). 

We determined the optimal number of clusters by evaluating the Bayesian information 

criterion (BIC) of all fitting restarts for each number of clusters tested (from 10 to 1000 

clusters in increments of 10 for the individual post-admission datasets) and by selecting the 

model with the lowest BIC. We also considered alternative model selection criteria such as 

Akaike information criterion (AIC), though BIC generated more reasonable results 

considering its harsher penalty on model complexity. All composite mixture model data 

structures and fitting routines were implemented in a custom R software package (available 

upon request).

3.4. Mortality enrichment and cluster trajectory analysis

To identify changes in the physiological status of a potentially septic patient during 

hospitalization, we combined the 3 h, 6 h, and 12 h datasets into a single dataset (hereafter 

referred to as the combined dataset) and fit a CMM to all observations (Fig. 1). In this way, 

we treat the three observations for each episode as independent, and while the static features 

were shared (driving all three observations of a single episode to co-cluster with one 

another), changes in the vitals over the course of hospitalization drive association of a given 

episode with different clusters over time. The first motivation for this choice was to 

characterize latent phenotypes across the whole clinical population and every post-admission 

period. Since patients would likely enter the emergency department at different stages of 

their condition, this time-agnostic clustering would allow a late-stage, debilitated patient 

within the first 3 h after admission to be co-clustered with a patient who reached a similar 

physiological state at, say, 12 h post-admission. The second motivation for this approach was 

Mayhew et al. Page 5

J Biomed Inform. Author manuscript; available in PMC 2018 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



to address the label-switching problem [36], a common challenge in mixture modeling. 

Fitting each dataset separately would have resulted in different sets of labels for each post-

admission period that could not have been directly linked over time (i.e. cluster 1 at 3 h post-

admission would likely not have corresponded to cluster 1 at 6 h post-admission).

Consequently, to generate cluster assignments for each episode and post-admission period, 

we fit a CMM to the combined dataset, resulting in an optimal number of 650 clusters 

(tested 50 to 1000 clusters in increments of 50), with cluster sizes ranging from 88 to 2883 

observations. As this number of clusters was prohibitively large for visualization purposes, 

we then clustered the estimated parameters of the fitted model using the partitioning around 

medoids (PAM) algorithm [19] with the final number of clusters set to 20. These cluster 

labels were used in analyses for Figs. 4–6. We then mapped the newly assigned cluster labels 

to each observation in the dataset.

Once we assigned cluster labels to each observation from a given episode and post-

admission period, we combined the cluster labels for each of an episode’s three post-

admission periods into a single vector (cluster trajectory). As with our annotation of 

mortality enrichment for each post-admission period, we computed the significance of 

enrichment of each cluster trajectory for mortality events using a one-tailed Fisher’s exact 

test. We adjusted for multiple hypothesis testing with a Bonferroni-corrected significance 

level of ~2.51E − 05 (trajectories meeting this significance threshold are shown in Fig. 5).

To evaluate the physiological signatures of the three clusters at 12 h post-admission in the 

top mortality-enriched cluster trajectories, we first normalized the LAPS2, COPS2, and vital 

sign features to values between 0 and 1 by performing feature scaling (i.e. subtracting each 

feature by its minimum and dividing by the difference between the feature’s maximum and 

minimum). We then conducted Wilcoxon rank-sum tests, comparing each cluster-specific 

distribution of LAPS2, COPS2, and vital sign statistics with their respective distributions in 

the overall population and computing 95% confidence intervals on the estimated difference 

between the cluster and overall population (Fig. 6).

3.5. CMM-derived marginal importance analysis

Marginal importance plots are often used in conjunction with random forest models to 

visually evaluate the marginal effect of different features on the rate of a particular outcome 

[5,20]. We adapted this concept to develop novel visualizations based on CMM clusters. We 

first determined the optimal number of clusters (200) for the 12 h postadmission dataset 

(chosen arbitrarily) using the BIC criterion as described in Section 3.3. Unlike in the 

previous analyses with the combined dataset, we retained the estimated parameters for this 

model (θ̂) instead of clustering them further using PAM. The procedure we followed to 

compute the two essential components of our CMM-based marginal importance plot 

(estimated mortality rates (p̂d) and estimated sample sizes (n̂d) at different values of a vital 

sign feature of interest) is shown in Fig. 3. Briefly, from a dataset X (N episodes, P features), 

we compute the matrix, W, containing the posterior probabilities of assignment of each 

episode to one of the K clusters (each row of W sums to 1). If we consider the sample size of 

a single episode to be 1, these probabilities represent the distribution of that sample size over 

the K clusters. Simultaneously, we generate a dummy feature matrix for a feature of interest 
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f (lower left of Fig. 3). In this dummy feature matrix, we enumerate a column containing a 

range (from their lowest to highest observed values) for a feature of interest. All other 

feature columns are set to 0. We then use the estimated CMM model parameters, θ̂, to 

compute the matrix, Mf, containing the posterior probabilities of assignment of each dummy 

feature row to one of K clusters. We also compute the expected rate of mortality (p̂d) given 

each value in the range of f, by averaging the estimated conditional rate of mortality in each 

cluster over all K clusters. Finally, we compute the estimated sample sizes (n̂d) at each value 

of f by multiplying the W by the transpose of M and taking the sum of the rows of the 

resulting N × F matrix. In this way, we computed the cumulative density (the estimated 

number of episodes) across all episodes represented at each value in the range of a feature of 

interest. The range of feature values becomes the domain of our marginal importance plot 

and mortality rate is plotted on the y-axis, with the estimated mortality rate (pd̂) and sample 

sizes (n̂d) used to construct the curve and 95% Wilson score confidence intervals ([41]; 

shown in Fig. 7a, b, c, d). We note that, even after filtering patient vital signs for outliers, 

certain extreme values can still be observed during a typical hospitalization ([9]; e.g. blood 

pressure values of 0 for cardiac arrests; Fig. 7a).

3.6. CMM-based missing data imputation

For our missing data analysis, we introduced missing entries (completely at random; 

MCAR) at a rate of 5% in the 6 h dataset (arbitrarily chosen) for all features except age, 

gender, and mortality, which were assumed non-missing for all records. The resulting dataset 

contained 12,344 complete records (i.e. records with no missing values).

Imputation using the CMM involves three steps: (1) performing a CMM fit on either (A) the 

complete records of the MCAR dataset or (B) the MCAR dataset after performing 

population mean imputation, (2) re-computing the cluster membership probabilities for each 

episode conditioned on the non-missing features, and (3) imputing each missing value with 

either (A) the cluster-averaged expected value (for non-categorical variables) or (B) the label 

associated with the mode of the cluster-averaged expected category probabilities (for 

categorical features).

We compared imputation using the CMM to population mean imputation (as a baseline), 

multivariate imputation using chained equations (MICE) [6,38], and k-nearest neighbors 

imputation. For our purposes, we set the prediction method of MICE to predictive mean 

matching [6] for non-categorical variables and logistic/polytomous regression for categorical 

variables. For k-nearest neighbors, we tested neighborhoods of size 5 and 20, assigning the 

value with the largest frequency (‘majority vote’) among neighbors for discrete, categorical 

variables or the mean of neighbor values for continuous variables.

For each feature column with missing values, imputation performance was characterized by 

a distance, D. For non-categorical features, we used the sum of squared deviations from the 

observed values: D = ∑i
N (xi − xi)

2, where xi and x̂i are the observed and imputed values for 

the ith imputed record, respectively, and N is the total number of imputed records. For 

categorical features, we used the counts of incorrectly imputed values: D = ∑i
N [xi ≠ xi], 

where brackets indicate 1 when the condition is true and 0 otherwise. Distances for each 
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feature were then normalized by the corresponding distance obtained using population mean 

imputation. Rankings of distance across imputation methods were robust to the choice of 

distance metric (squared deviations or absolute deviations for non-categorical features; 

overlap, occurrence frequency, inverse occurrence frequency, Eskin [10], Goodall [12] for 

categorical features).

4. Results

4.1. CMMs reveal temporal & physiological signatures of mortality risk in sepsis

An important challenge in treatment of sepsis is the detection of (sometimes subtle) 

physiological changes in a patient while accounting for the heterogeneous presentation of 

the condition. We characterize these latent changes by modeling the full demographic and 

physiological space of all episodes, regardless of time, subsequently identifying the regions 

or clusters of this space with which a patient episode associated during an ED 

hospitalization. To this end, we concatenated the 3 h, 6 h, and 12 h datasets into a combined 
dataset, fit a CMM to all observations, and generated assignments for each episode at each 

post-admission time to one of twenty clusters (see Fig. 1). This approach allowed us to 

characterize demographic and physiological heterogeneity across all episodes regardless of 

time and severity of condition (more discussion of rationale in Methods Section 3.4). 

Despite our use of vital sign summary statistics as features, we observed considerable 

feature variability within each of the 20 clusters, indicating that clustered episodes were not 

assuming single, repeated values for any feature. We ascribe clinically relevant annotations 

to our clusters by assessing each of them for statistical significance of enrichment for 

mortality events during hospitalization. We note that this data-driven cluster annotation 

method could just as easily have been applied to other binary-valued adverse health events 

(e.g. ICU transfer, need for mechanical ventilation, etc.), indicating the portability of our 

approach to other settings or healthcare centers.

From this analysis, we determined the proportion of episodes in each cluster at each post-

admission time and identified those clusters more or less associated with mortality events. 

We found that while the majority of the episodes were assigned to one of the top seven 

clusters over all post-admission periods, some clusters were associated with progressively 

fewer episodes from 3 h to 12 h post-admission (e.g. cluster 8) while other clusters (e.g. 

cluster 10) became associated with more episodes over time (Fig. 4a). These patterns 

highlight the diverse demographic/physiological “landscape” through which patients 

progressed during their hospitalization and indicate how some clusters represent transient 

“stops” in a patient’s progression. When we considered each cluster separately, we found 

that mortality events were significantly underrepresented in episodes assigned to clusters 2, 

4, and 5. Conversely, clusters 1, 3, 10, 13, 14, 15 and 17 showed high degrees of enrichment 

for mortality events (Fig. 4b), indicating heterogeneity even among those patient episodes 

considered at high risk for mortality.

To further analyze temporal patterns in cluster membership, we then considered the full 

sequence of cluster assignments for each episode’s observations (cluster trajectory). This 

analysis resulted in 1,993 unique cluster trajectories, 18 of which were highly enriched for 

mortality events (Fig. 5). The trajectory most enriched for mortality events involved episodes 
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in which the patient remained in cluster 3 while other trajectories indicated association with 

different clusters over the 12-h post-admission period (e.g. the 11th trajectory from the top 

in Fig. 5 starts in cluster 8 at 3 h post-admission then transitions to clusters 6 and 3 at 6 and 

12 h post-admission, respectively). For these mortality-enriched trajectories, episodes tended 

to associate with a diverse set of clusters at 3 h post-admission but generally transitioned 

into one of three clusters (1, 3, or 10) at 12 h post-admission.

We assessed the physiological signatures of these three clusters at 12 h post-admission by 

determining whether patient episodes associated with these clusters had features that were 

significantly different from those of the overall population (Fig. 6; described in Methods, 

Section 3.4). Interestingly, we find that while all three clusters associated with an elevated 

mortality risk, they reflect distinctly different physiological sub-populations, again 

highlighting the heterogeneity inherent in the presentation of sepsis. For example, while 

cluster 3 episodes showed significantly higher acute disease burden (LAPS2) than those 

episodes in clusters 1 and 10, cluster 1 episodes showed significantly higher chronic disease 

burden (COPS2). Notably, cluster 10 episodes showed significantly less chronic and acute 

disease burden than the overall population.

In addition, the vital sign characteristics of the mortality-enriched cluster episodes were 

distinctly different. Vital sign median levels and standard deviations for cluster 3 generally 

deviated more substantially from those in the overall dataset when compared with the same 

characteristics in clusters 1 and 10. In particular, cluster 3 episodes showed significantly 

lower median blood pressure, pulse pressure, and body temperature, higher median heart and 

respiratory rates, and the highest vital sign variability. Cluster 1 vital sign patterns were 

generally similar to those of cluster 3. However, cluster 1 episodes did show significantly 

lower heart rate, higher body temperature, and generally lower vital sign variability for 

blood pressure, heart rate and pulse pressure. Cluster 10 episodes also showed different 

physiological trends: higher median blood pressure and pulse pressure, lower variability in 

body temperature, and respiratory rate median levels and variability close to those of the 

overall population. This analysis suggests that while a patient may be placed in a high-risk 

strata, their physiological state can be quite distinct from that of another high-risk patient. To 

validate the clinical interpretability of these physiological signatures, we provided them to 

our clinical collaborators with some orientation as to what was plotted to see if they could 

assign a coarse categorization to the clusters. They determined that cluster 3 episodes 

represented ’severe physiologic instability’, cluster 1 episodes indicated ’respiratory failure 

in chronic disease’ and cluster 10 episodes represented ’moderate hemodynamic 

compromise’.

4.2. CMMs enable cluster-based visualization of physiological trends of mortality risk

In the previous analysis, we showed that the CMM can stratify populations into 

physiologically distinct subgroups that could highlight the need for different treatment 

regimens. To display these patterns, we adapted a technique often used in conjunction with 

random forest models: marginal importance plots [5,20]. These plots show the expected 

mortality rate and 95% confidence intervals, at different values in the range of a given vital 

sign feature of interest (Figs. 7a–d; described in Fig. 3). For this analysis, we fit the CMM 
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model to the 12 h dataset only and find trends largely reflecting current clinical knowledge 

and practices: median diastolic blood pressure and body temperature levels associated with 

low levels of mortality at 12 h post-admission are within a range (i.e. “within normal limits”) 

outside of which the mortality rate begins to increase. The added advantage of this approach 

is (1) statistical assessment of confidence in the smoothed mortality rate estimates, (2) 

increases in dynamic range of mortality risk due to averaging over the different clusters in 

the CMM and (3) evaluation of nonlinear relationships between vital sign features and 

mortality risk.

In the case of median diastolic blood pressure (Fig. 7a), the mortality rate varied between 

~6% (similar to the overall population rate) at values near 75 to rates in excess of 50% at 

values near 25, reflecting the importance of blood pressure management in sepsis ([13] and 

references therein). Likewise, in the case of body temperature (Fig. 7c), mortality rates were 

at their lowest (~5%) at approximately 98 °F, climbing to rates of nearly 60% as body 

temperature dropped to 85 °F. In the case of standard deviations of the different vital sign 

features (Fig. 7b and d), the plots indicate that, in general, increased variability in a patient’s 

vital signs is associated with higher rates of mortality. However, this relationship was not 

linear (e.g. Fig. 7d), suggesting that some variability was not harmful for patients, within a 

specific range dependent on each variable. Overall, in stratifying the population (as opposed 

to treating it as a homogeneous group) the CMM helps to identify ”pockets” of 

demographic/physiological space that are strongly associated with increased mortality, thus 

facilitating more precise characterization of the marginal physiological trends associated 

with increased rates of mortality.

4.3. CMMs provide competitive missing data imputation by joint learning of feature 
dependencies

As the CMM is a joint probability model, we can use the learned structure from a trained 

CMM to impute missing observations, a common task in EMR analysis. Indeed, recent 

unsupervised structure learning approaches have proven successful at this task [3]. We 

compare the CMM’s performance on a modified version of the 6 h dataset (with 5% missing 

data introduced; see Methods) with that of three other imputation approaches: (1) MICE [6], 

a gold standard method for missing data imputation, (2) k-nearest neighbors, a 

nonparametric approach to imputation and (3) imputation with the population mean (our 

baseline). As MICE (based on fully conditional regressions) and CMMs (based on 

unsupervised learning) are designed for very different purposes, our goal in evaluating the 

CMM’s data imputation performance is not to draw direct comparisons with other 

imputation methods, but rather to assess the situations in which CMMs might prove useful 

for data imputation. Fig. 8 shows the distances, relative to population mean imputation, for 

select features using various imputation methods. Overall, the average relative distances 

across all features are 0.570 ± 0.001 (CMM using complete records), 0.524 ± 0.001 (CMM 

using population mean imputation), 0.398 ± 0.009 (MICE), 0.528 (5-nearest neighbors), and 

0.501 (20-nearest neighbors), indicating the CMM’s general utility for missing data 

imputation.
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For all features, CMM imputation using estimates based on population mean imputation 

outperformed CMM imputation using estimates based solely on complete records (Fig. 8). 

This result was expected, as the former has over four times as much training data as the 

latter. For all summary statistics of vital signs, MICE outperformed both CMM imputation 

methods and was comparable in performance to k-nearest neighbors. As MICE constructs a 

fully conditional model of each feature in its imputation and vitals are expected to be 

predictive of one another, this result is not surprising. No approach significantly improved 

over population imputation for the three categorical features in the dataset (membership 

status, transport code, and facility code).

CMM-based imputation did result in substantially smaller distances for one important 

physiological feature: LAPS2. While LAPS2—which is based on laboratory, vital sign, and 

neurologic information obtained within the 72 h preceding hospitalization—shows relatively 

little conditional dependence on the other features in the dataset across the entire population 

(hence the slight improvement MICE yields over population mean imputation), the CMM 

seems to detect latent structure according to this measure of acute illness, offering a 

significant improvement over population mean imputation. This result corroborates our 

previous findings of population structure according to mortality risk.

5. Discussion and conclusions

We demonstrated the flexibility and efficacy of our composite mixture model approach in 

analyzing multi-typed EMR datasets characterized by population heterogeneity and data 

missingness. The model can be used to stratify clinical populations according to risk of 

different unfavorable outcomes at different points in a hospitalization and to evaluate the 

marginal associations of patient physiology with higher rates of such outcomes. With the 

wide range of common EMR data types supported by the CMM, specification of a new 

model or extension of existing models to new data types is straightforward without requiring 

significant development efforts. Coupled with the cluster-based techniques we present here, 

the CMM can be used to statistically annotate groups of patients in an unbiased manner, an 

approach that can easily be deployed as part of a patient monitoring system in other 

healthcare centers. In this scenario, we would first fit the CMM to episode data from a large 

number of patients and across a range of post-admission time periods (as in our analysis 

from Section 3.4), identifying the optimal number of patient clusters or phenotypes or pre-

specifying some more manageable number of clusters (say, 20 as in our application of 

PAM). We would then annotate these clusters for one or more clinical events of interest 

using our statistical enrichment approach. With the model ready for deployment and with the 

clusters annotated, we would feed new patient feature vectors or patient feature vectors 

updated with new observations to the model over the course of a hospitalization to identify 

changes in the probability of assignment of the patient to different high-risk clusters. In 

addition, as a joint rather than conditional probability model, the CMM not only provides a 

useful framework to impute missing observations but also to predict outcomes of interest for 

held-out samples, enabling analyses that can complement purely predictive modeling 

studies.
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Our work is most closely related to the unsupervised learning work by Pivovarov et al. [29] 

and the supervised learning works by Halpern et al. [14] and Joshi et al. [18]. In [29], the 

authors transform different EMR data types (including clinical notes and ICD9 codes) into a 

single type of representation (bag-of-words) meant to be fit by a latent Dirichlet allocation-

based mixture model [4]. In contrast, we directly model demographic and physiological 

variables of both discrete and continuous types from in-patient episodes.

Another important difference between this study and others is the data-driven approach we 

take to annotate and evaluate our clusters. Benchmarking of clustering approaches is 

problematic. In Halpern et al. [14,18], the authors take a supervised (or weakly supervised) 

approach to address this issue using “gold standard” (or “silver standard”) labels, evaluating 

the ability of their methods to recover manually curated phenotypes usually associated with 

certain clinical conditions (external evaluation; [11]). As we do not have access to such 

supervised information for sepsis [1,34,35] and are working in a more specific population of 

interest (e.g. suspected septic patients as opposed to all emergency department patients), we 

instead opt for an indirect evaluation of our clusters [11]: assessing their utility for the 

chosen goal of enriching patients into subgroups with statistically significantly higher rates 

of adverse health outcomes like mortality during hospitalization. We take this unbiased 

approach to discover and evaluate potentially uncharted, latent phenotypes relevant to sepsis 

treatment since manually curated conditions or prediction targets might introduce subjective 

bias into the kinds of phenotypes discovered. Consequently, an advantage of the CMM 

model, coupled with our statistically driven evaluation of the physiological signatures of 

high risk clusters, is its ability to generate clinically interpretable readouts of different 

patient subgroups of interest. While we make no claim of superiority in our clustering, we 

do believe that the flexibility and portability of the CMM, coupled with the novel cluster-

based analyses we present here, provide a complementary, data-driven approach to clinical 

phenotyping and risk analysis.

The CMM is not without its drawbacks. For one, manually specifying the model template, or 

list of univariate distributions that model each individual feature of a dataset, can be 

prohibitive in high feature dimensions. Also, while model fitting routines have been 

vectorized and the component distributions (i.e. exponential family distributions) are 

amenable to embarrassing data parallelism [27], our approach was not optimized further. As 

such, estimation of a CMM can be computationally intensive (e.g. approximately 3.5 h on a 

single core for the 3 h dataset, with 53,659 episodes and 32 features, fitting to 250 (the 

optimal number) clusters). In previous non-medical applications, we overcame this 

computational burden by leveraging scalable high-performance computing software for 

streaming data analysis [37]. To address both challenges, we are currently extending our 

model fitting software to automatically identify “default” distributions for a given feature 

column as well as exploring scalable (i.e. data-parallel) estimation routines.

In addition to demographic information, we opted to model a particular set of patient vital 

sign statistics representative of level and variability over fixed post-admission periods. 

However, this approach ignores dynamic patterns in the vital signs including changes in the 

cross-correlation between different vital sign types that might also be indicative of changes 

in patient health [26] and could be included as features. In addition, an alternative approach 
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to modeling the vital signs would be to extend the CMM with distributions appropriate for 

time series data (e.g. a Gaussian process; [30,21]). Such an extension could potentially 

reduce the number of parameters in the overall CMM and lessen model specification and 

estimation time. Moreover, while not included in our analyses, lab test results can aid in the 

risk stratification of patients and, like vital signs, provide clinically actionable targets for 

intervention to improve patient health. As part of our ongoing and future work, we are 

investigating these extensions to our analyses.

We achieved competitive missing data imputation performance with the CMM, though it is 

important to note how that analysis also highlights differences between unsupervised and 

supervised learning approaches. Regression-based methods like MICE make predictions 

based on population-wide conditional information. Thus, features for which MICE performs 

well could indicate strong conditional dependencies between those features and all other 

features at the population level. In contrast, CMM-based imputation makes predictions based 

on identifying latent local structure, identifying subpopulations of the full dataset that are 

more similar to one another. In particular, the CMM uncovers latent structure with respect to 

features like LAPS2, leading to improved imputation performance, even though the current 

formulation of the model does not include conditional dependencies. It is worth noting that 

our assumption of conditional independence among feature dimensions given a mixture 

component represents one potential model structure of the CMM. Conditional dependencies 

can be introduced into the CMM rather straightforwardly (e.g. replacing univariate normal 

distributions with linear regressions conditioned on other features) and will be the subject of 

future work. Taken together, these results suggest that the CMM could be used in concert 

with other data imputation approaches to address missing data challenges on a per-feature 

basis.

Our CMM analysis and data-driven cluster annotation of the KPNC sepsis cohort revealed 

physiologically distinct subpopulations associated with elevated rates of mortality. In a 

patient monitoring context, a patient’s observation vector could be passed as input to our 

fitted model at different points in their hospitalization to evaluate the probability of their 

association with high-risk clusters. Moreover, an important follow-up analysis could identify 

patterns in those episodes assigned to high risk clusters at 3 h post-admission that were 

assigned to low risk clusters later in their hospitalization (and vice versa). As our full dataset 

also includes discrete time series of the medications and procedures ordered by the clinician 

during each hospitalization, we can evaluate whether certain medications or procedures were 

over-represented in trajectories in which patients transitioned into clusters of higher or lower 

risk. Overall, our CMM framework provides a valuable decision support tool to characterize 

and stratify heterogeneous clinical populations, capturing clinically relevant changes in 

patient physiology while accounting for the data missingness and wide variety of data types 

inherent in large-scale electronic medical record data.
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Abbreviations

EMR electronic medical record

CMM composite mixture model

ED emergency department

KPNC Kaiser Permanente Northern California

BIC Bayesian information criterion

AIC Akaike information criterion

PAM partitioning around medoids

MICE multivariate imputation using chained equations

MCAR missing completely at random
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Fig. 1. 
Flowchart of cohort selection, data pre-processing, and analysis dataset construction.
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Fig. 2. 
Plate notation diagram of composite mixture model. To indicate the relationship between 

episodes and clusters, the formulation shown here includes the latent indicator variables, Zi, 

that specify the cluster assignment for episode i. This formulation is equivalent to the one 

shown in Eq. (1).
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Fig. 3. 
Diagram of computational procedure for constructing CMM-based marginal importance 

plots.
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Fig. 4. 
(a) Proportions of episodes assigned to each of 20 clusters for each post-admission period. 

The corresponding number of episodes assigned to each cluster are shown in each cell. (b) 

Mortality enrichment for each cluster and each post-admission period. The enrichment value 

is log(-log(p)) (for exposition purposes) where p is a one-tailed Fisher’s exact test p-value 

evaluating the significance of enrichment of mortality events for each cluster during a given 

post-admission period. Black cells indicate clusters to which no episodes were assigned 

during that post-admission period.
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Fig. 5. 
Cluster trajectories in the KPNC sepsis cohort enriched for mortality events. Trajectories are 

ranked in descending order by the -log p-value of a one-tailed Fisher’s exact test. A cluster 

trajectory appears in each row and consists of three cluster assignments, one for each of the 

three post-admission periods (3 h,6 h,12 h).

Mayhew et al. Page 21

J Biomed Inform. Author manuscript; available in PMC 2018 June 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 6. 
Estimated differences between cluster-specific and population values of each feature. The 

dots represent the estimated difference while whiskers represent the 95% confidence interval 

as computed by Wilcoxon rank-sum tests. The colors of each cluster’s dot and whiskers 

correspond to those in Fig. 5. The lack of an overlap between these intervals and a difference 

of 0 (gray line) reflects a significant difference in cluster-specific values of the feature as 

compared to the overall population. (For interpretation of the references to color in this 

figure legend, the reader is referred to the web version of this article.)
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Fig. 7. 
Marginal importance plots for diastolic blood pressure (in mmHg; median (a) and standard 

deviation (b)) and body temperature (in degrees Fahrenheit; median (c) and standard 

deviation (d)) at 12 h post-admission. The dark line in the center of the band is the estimated 

mortality rate at each value of the vitals feature of interest while the lighter bands are 95% 

Wilson score intervals.
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Fig. 8. 
Distances between imputed and observed values from four different imputation methods for 

select features, relative to distances from population mean imputation (Dnormalized = Dimp./

Dpop. mean imp.), where D is the appropriate distance for each feature as described in Section 

3.6. Error bars represent standard deviation across imputations on 3 independent CMM fits 

(for CMM imputations) or across 20 independent imputations (for MICE). Performance was 

similar for TRANSPORT and two other categorical features (membership and facility codes) 

not shown. TRANSPORT, patient transport code; BPDIA, median diastolic blood pressure; 

BPSYS, median systolic blood pressure; HRTRT, median heart rate; PP, median pulse 

pressure; RSPRT, median respiratory rate; TEMP, median temperature.
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