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Abstract

Functional magnetic resonance imaging (fMRI) is an important tool for pre-surgical evalua-

tion of eloquent cortex. Classic task-based paradigms require patient participation and indi-

vidual imaging sequence acquisitions for each functional domain that is being assessed.

Resting state fMRI (rs-fMRI), however, enables functional localization without patient partici-

pation and can evaluate numerous functional domains with a single imaging session. To

date, post-processing of this resting state data has been resource intensive, which limits its

widespread application for routine clinical use. Through a novel automated algorithm and

advanced imaging IT structure, we report the clinical application and the large-scale integra-

tion of rs-fMRI into routine neurosurgical practice. One hundred and ninety one consecutive

patients underwent a 3T rs-fMRI, 83 of whom also underwent both motor and language

task-based fMRI. Data were processed using a novel, automated, multi-layer perceptron

algorithm and integrated into stereotactic navigation using a streamlined IT imaging pipe-

line. One hundred eighty-five studies were performed for intracranial neoplasm, 14 for

refractory epilepsy and 33 for vascular malformations or other neurological disorders. Fail-

ure rate of rs-fMRI of 13% was significantly better than that for task-based fMRI (38.5%,) (p

<0.001). In conclusion, at Washington University in St. Louis, rs-fMRI has become an inte-

gral part of standard imaging for neurosurgical planning. Resting state fMRI can be used in

all patients, and due to its lower failure rate than task-based fMRI, it is useful for patients

who are unable to cooperate with task-based studies.
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Introduction

Striking the correct balance between aggressive resection and functional preservation has been

an ongoing dynamic in neurosurgery. Metrics that predict long-term survival of malignant

glial neoplasm are 1) extent of resection, and 2) preservation of functional status[1–3]. Func-

tional preservation historically has relied on the gold standard of intraoperative cortical stimu-

lation[4]. More recently, task-based functional magnetic resonance imaging (fMRI) has also

become a useful adjunct for pre-surgical planning[5]. Task-based fMRI can be associated with

a high failure rate in populations that cannot comply with task paradigms (e.g., cognitively/

neurologically impaired patients, and children). Moreover, each function must be individually

mapped, making the mapping paradigms lengthy. These limitations are eliminated by the use

of resting state functional magnetic resonance imaging (rsfMRI). This approach uses the

endogenous brain activity detectable with blood oxygen level dependent (BOLD) MRI to iden-

tify areas that are interacting at rest[6]. Spontaneous BOLD fluctuations are low-frequency

(<0.1 Hz) oscillations in metabolic activity that are anatomically correlated within distinct

functional networks[7]. Using spontaneous activity, one can generate resting-state correlation

maps that are similar to the functional maps obtained from task activations[8]. rsfMRI is

highly efficient: multiple resting state networks (RSNs) (e.g. motor, speech, etc), can be

mapped simultaneously with a single imaging session lasting less than fifteen minutes[9]. The

imaging can also be performed under sedation/anesthesia without compromise of the func-

tional localization[10].

The current barrier to widespread use of rsfMRI in neurosurgical practice is the high degree

of advanced imaging expertise necessary to perform the analyses. To address this shortcoming

we have done two things. First, we have created a multi-layer perceptron (MLP)-based analysis

tool that assigns RSN membership (e.g., somatomotor, language, etc) to each locus within the

brain. We have shown that MLP-based RSN mapping is a powerful tool for automating the

identification of resting state networks in individuals[9]. MLP-based RSN mapping has been

shown to be useful in presurgical planning and shown to correspond to results obtained by

cortical stimulation[11]. Second, we have created a dedicated imaging informatics platform

that seamlessly integrates MLP-based RSN mapping into the clinical IT infrastructure[12].

Table 1. Patient demographics.

Patient Demographics

Total patients N = 191

Male N = 118 (62%)

Female N = 73 (38%)

Age 46 y/o (3–84 y/o)

Adult N = 173 (91%)

Children N = 18 (9%)

Tumor Low grade glioma N = 41 (21%)

High grade glioma N = 80 (42%)

Other tumors (DNET, Meningioma, Pilocytic Astrocytoma,

Ganglioglioma) N = 32 (17%)

Vascular Malformations N = 10 (5%)

Epilepsy N = 6 (3%)

Non-neoplastic (Encephalitis, OCD

Neurocysticercosis, Amyloid

angiopathy, CJD)

N = 12 (6%)

Negative pathology N = 6 (3%)

Pathology N/A (4/191) N = 4 (2%)

https://doi.org/10.1371/journal.pone.0198349.t001
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The RSN mapping system has been configured such that all algorithms/calculations can be

performed rapidly on a single computer and interface with clinical Picture Archiving and

Communication System (PACS) systems and the Medtronic StealthStation Navigation

System.

In this study we retrospectively report on the initial eighteen-month experience of clinical

deployment of this integrated imaging platform. Cumulatively, the experience demonstrates

robust neurosurgeon adoption, utilization for a diversity of clinical applications, and a reduced

failure rate when compared to standard task-based functional mapping.

Methods

Patient characteristics

After obtaining institutional review board approval from the Washington University Human

Research Protection Office, the MRI of 191 consecutive patients between January 1, 2014 to

June 30th, 2015 who had a rs-fMRI underwent retrospective evaluation of the images and elec-

tronic medical record for data collection. The patient demographics and underlying disease

that were evaluated with rs-fMRI are summarized in Table 1.

Pre-processing pipeline

The pre-processing used in the present work has been described elsewhere[13]. Briefly, this

includes compensation for slice-dependent time shifts, elimination of systematic odd-even

slice intensity differences due to interleaved acquisition and rigid body correction for head

movement within and across runs. The fMRI data are intensity scaled (one multiplicative fac-

tor applied to all voxels of all frames within each run) to obtain a mode value of 1000. Atlas

transformation is achieved by composition of affine transforms connecting the fMRI volumes

with the T1- and T2-weighed structural images. Head movement correction is included in a

single resampling to generate a volumetric time-series in 3mm3 atlas space.

Additional preprocessing in preparation for MLP analysis includes the following: (1) spatial

smoothing (6 mm full-width half- maximum Gaussian blur in each direction), (2) voxelwise

removal of linear trends over each run, (3) temporal low-pass filtering to retain

frequencies < 0.1 Hz, and (4) reduction of spurious variance by regression of nuisance wave-

forms derived from head motion correction and extraction of the time series from regions of

noninterest in white matter and CSF. This step includes regression of the global signal aver-

aged over the whole brain. Global signal has demonstrated enhancement in the detection of

system-specific correlations [14]and exhibits shared variance with respiratory and cardiac sig-

nal regressors[15]. The sensitivity of the fMRI signal to arterial pCO2 fluctuations and head

motion is well described, Our standard pre-processing procedures include (5) scrubbing tech-

niques to remove volumes contaminated by large head movements[16]. Systemic evaluation of

the most common pre-processing techniques have demonstrated that our methods are repre-

sentative of the most effective artifact reduction strategies[17].

The multi-layer perceptron

The topography of resting state networks (RSNs) in individual patients was mapped using a

multilayer perceptron (MLP) trained to assign RSN membership to each voxel on the basis of

resting state fMRI (rs-fMRI) data. A full technical description of this method is given in [9].

The following summarizes the essential points. MLPs are supervised classifiers trained to map

input data, i.e., functional connectivity maps, to pre-defined output classes, e.g., RSNs. The

critical distinction between MLP-based RSN mapping vs. alternative strategies, e.g., ICA [18]
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is that the former is supervised while the latter is not. To illustrate by analogy, automatic num-

ber readers are supervised classifiers, used by the post office to automatically route letters

according to zip code[19]. Such classifiers are trained by presentation of hand-written num-

bers together with their associated true identity. An unsupervised classifier would have to first

deduce, by exposure to hand-written zip-codes, the existence of a set of archetypical number

symbols (e.g., "2", "8", etc.). It is obvious that unsupervised classification is a vastly more diffi-

cult challenge in comparison to supervised classification.

The MLP was trained to associate correlation maps with a priori defined, resting state net-

work identities. The seven RSN were as follows: default mode network (DMN)[20, 21], senso-

rimotor network (SMN)[7], visual network (VIS)[18, 22], language network (LAN)[18, 22],

dorsal and ventral attention network (DAN, VAN)[23, 24], and the fronto-parietal control net-

work (FPC). RSNs were defined using task-fMRI responses in 21 normal young adults

screened to exclude neurological impairment and psychotropic medications[9]. Importantly,

prior to initial MLP training, this ROI set was iteratively refined to ensure consistent (across

subjects) correlation maps across all seed ROIs assigned to a given RSN. This preliminary

refinement step generated 169 canonical seed ROIs representing 7 RSNs. Following initial

training, the MLP architecture was optimized using a separate dataset (N = 17). Performance

of the trained MLP then was validated in separate, very large (N = 692) dataset obtained from

the Harvard-MGH Brain Genomics Superstruct Project[25]. This validation demonstrated

reliable classification RSN membership of cerebellar voxels[26], even though the cerebellum

was excluded from the training dataset. It was also shown, using a second validation dataset

(N = 10), that the somatomotor RSN was reliably mapped over the central sulcus despite cm-

scale, intra-individual differences in gyral anatomy.

Imaging workflow

Standardized order sets for resting-state fMRI with or without a complete conventional brain

MRI or task-based fMRI were created to facilitate clear communication of orders between the

neurosurgeons and the radiology department. Examinations are scheduled for the first avail-

able time slot and entered into a tracking calendar to allow technical and professional staff to

track the case to completion.

All patients were scanned using a 3-T TRIO scanner (Siemens, Erlangen, Germany). rs-

fMRI data were acquired using a T2� EPI sequence (3 × 3 × 3-mm3 voxels; 128 volumes/run;

TE = 27 ms; TR = 2.8 s; field of view = 256 mm; flip angle = 90˚), while the patients were

instructed to remain still and fixate on a visual cross-hair without falling asleep (2 runs of 6

minute each for a total time of 12 minutes). Tumor protocol anatomic imaging included

T1-weighted magnetization-prepared rapid acquisition gradient echo (MP-PAGE),

T2-weighted fast spin echo, susceptibility-weighted imaging (SWI), diffusion-weighted imag-

ing (DWI) and pre and post gadolinium T1-weigted fast spin echo in multiple projections. All

anatomic and functional magnetic resonance data were acquired in approximately 60 minutes

for each patient.

Our workflow was streamlined to facilitate acquisition of the rs-fMRI data and rapidly

transfer data before and after processing using a system referred to as the Translational Imag-

ing Portal (TIP). TIP is a customized version of the XNAT imaging informatics platform[12]

that was created to facilitate the translation of imaging research into clinical practice. XNAT is

a web-based software platform designed to facilitate common management and productivity

tasks for imaging and associated data. It consists of an image repository to store raw and post-

processed images, a database to store metadata and non-imaging measures, and user interface

tools for accessing, querying, visualizing, and exploring data. XNAT supports all common
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imaging methods, and its data model can be extended to capture virtually any related meta-

data. XNAT includes a DICOM workflow to enable exams to be sent directly from scanners,

PACS, and other DICOM devices. XNAT’s web application provides a number of productivity

features, including data entry forms, searching, reports of experimental data, upload/download

tools, access to standard laboratory processing pipelines, and an online image viewer. A fine-

grained access control system ensures that users are restricted to accessing only authorized

data. XNAT also includes a web services API for programmatic access and an open plugin

architecture for extending XNAT’s core capabilities.

While the standard open source XNAT platform provides the infrastructure for securely

storing, processing, and reviewing the rs-fMRI studies, TIP extends XNAT in several ways to

support the full clinical rs-fMRI workflow. An interface was implemented to query and

retrieve patient MRI studies from the clinical image archive. The interface allows patient stud-

ies to be easily reviewed to identify those containing resting state sequences. Fully automated

pipelines were implemented to orchestrate the actual execution of the perceptron and percep-

tron quality control algorithms. These pipelines ensure that the algorithms are executed con-

sistently and that all parameters and execution history is fully documented. The pipelines

execute the algorithms and generate individual DICOM-formatted images representing each

resting state network. The MLP output provides a probability for the classification of each

voxel to a certain network. The network maps were provided to the surgeons at several proba-

bility thresholds, allowing the surgeon to select the one that makes the best representation for

the surgery. The most popular choice has been the 97% threshold. These images are posted to

the XNAT database and integrated with the original imaging exam. Finally, custom screens

were added to the XNAT web-based user interface to provide patient-centric views of the cases

and to implement a stepwise workflow for processing and reviewing cases. This stepwise pro-

cedure enforces a standardized procedure that includes careful review of processed results

before the network maps can be submitted to the clinical archive. TIP includes reporting fea-

tures to track performance and quality metrics over time.

Technical staff trained in running the resting-state fMRI processing pipeline retrieve the

case from PACS, process the case, review the quality control parameters, and upload the pro-

cessed resting-state fMRI images back to PACS and the neurosurgical intraoperative planning

workstation for integration with diffusion tensor tractography.

Quality control measures include assessment of translational and rotational motion, and

co-registration of the BOLD data with the anatomical image. The time required to process

clinical resting-state fMRI in the processing pipeline varies from thirty minutes to one hour

depending on whether or not the case passes the quality control steps without modification.

The interpreting radiologist reviews and reports on the resting-state fMRI, conventional MR

and task-based fMRI if available, and diffusion tensor tractography. The scan is then uploaded

to the intraoperative navigation system in preparation for the surgery. A schematic of the

workflow pipeline from image acquisition to surgical navigation is provided in Fig 1. An exam-

ple of imaging of all resting state networks downloaded to the intraoperative navigation system

is shown in Fig 2.

Post-processed imaging data evaluation

Patients were identified who had concurrent task-based fMRI (tb-MRI) and resting state

fMRI. All studies were evaluated as successful or failed with regard to demonstrating clinically

relevant topographies. Specifically, we compared in the subset of eighty-three patients that

received both resting state fMRI and task-based fMRI the failure rate in which no functional

localization was accomplished.
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Results

Clinical utilization and alteration of practice patterns

A total of 191 consecutive patients (173 adults and 18 children) underwent a total of 232 rs-

fMRI sessions between January 1, 2014 and June 30, 2015. One hundred fifty-five patients had

a single rs-fMRI session, 31 patients had 2 rs-fMRI sessions and 5 patients had 3 rs-fMRI ses-

sions. Overall utilization increased between January 2014 and June 2015. One hundred eighty-

five studies were performed in the setting of intracranial neoplasm, either primary or meta-

static, 14 studies were performed in patients with epilepsy and 33 studies were performed in

the setting of other neurologic disorders (including vascular malformations, inflammatory or

infectious disorders, as well as neuropsychiatric disorders). See Table 1 for additional

Fig 1. Resting state processing workflow. The Translational Imaging Portal (TIP) provides informatics capabilities to (1) retrieve MRI exams from the hospital

clinical information system (PACS), (2) run the automated rsfMRI processing pipeline via the multi-layer perceptron analytic on a HIPAA-compliant computing

cluster, (3) review quality control metrics generated by the pipeline, and (4) submit MLP maps for exams that pass QC to the PACS.

https://doi.org/10.1371/journal.pone.0198349.g001
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demographic information. For the neurosurgical patients, 76% were used in the context of a

craniotomy, 15% with laser interstitial therapy, and 9% with biopsy.

Study of failure rates

Of the 191 unique patients undergoing rs-fMRI, 83 also underwent both motor and language

task-based fMRI. Thirty-two task-based studies failed (38.5%, 32/83) while 28 rs-fMRI sessions

failed (13%, 28/232). These differences were statistically significant p< .0001 (Fischer’s exact

test) with rs-fMRI having a significantly reduced rate of imaging failure. Causes of failure for

both study types included lack of cortical activation despite appropriate thresholding, motion

or susceptibility artifact, lack of cooperation, lack of MPRAGE image acquisition for registra-

tion, registration errors and technical errors such as incorrect TE/TR parameters (see Table 2).

Most resting state failures were due to motion that occurs during the resting state acquisi-

tion when the patients fall asleep, have involuntary movements, or forget instructions to hold

still. This typically does not occur with the successful task-fMRI because the patient can remain

still and awake while concentrating on a task to perform. The anatomic distortion is due to

Fig 2. Resting state networks shown in stealth navigation software. After acquisition of rs-fMRI and processing of the data through the MLP analytic, the images are

uploaded to the Medtronic Stealth Station. The workflow was streamlined to facilitate acquisition of the rs-fMRI data and rapidly transfer data before and after

processing using a system referred to as the Translational Imaging Portal (TIP). The seven RSN were as follows: Default Mode network (DMN), Sensorimotor network

(SMN), Visual network (VIS), Language network (LAN), Dorsal and Ventral Attention network (DAN, VAN), Fronto-Parietal Control network (FPC).

https://doi.org/10.1371/journal.pone.0198349.g002
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extreme cases of mass effect or large territories of prior resection. The resting state processing

algorithm generally handled moderately large tumors or regions of resected brain quite well.

The signal loss due to susceptibility occurred in one pediatric patient with braces and in a few

patients who recently had resections or had recent hemorrhage causing signal loss next to

large collections of blood or postoperative gas.

Exemplar cases

Here some exemplar cases are presented that demonstrate the fundamental utility of rsfMRI.

1. Comparable localization between task and resting-state fMRI. Patient is a sixty-two

year-old with left parietal biopsy-proven glioblastoma multiforme. Resting state fMRI is

shown in Fig 3A and task-based fMRI is shown in Fig 4B Broca’s area activation bilaterally and

Wernicke area activation on the left are similar for both techniques.

2. Successful rsfMRI mapping in the setting of failed task-based fMRI. Patient is a fifty-

year-old male with new onset of headache. Preoperative functional imaging demonstrates a large

mass in the posterior inferior frontal lobe. Fig 4A shows motor system results with MLP-rsfMRI

and for task-based fMRI (1&2). Both show reasonable functional localization around the central

sulcus. In the same patient, Fig 4B shows language system results for MLP-rsfMRI and for task

fMRI. While there is no evidence of cortical activation with in the frontal lobe with task-based

fMRI for language (4B), there is a strong functionally localized region with MLP-defined resting-

state MRI (4B). Taken together, these findings show MLP-resting state fMRI has the capability of

identifying functional cortex in tenuous regions where task-based fMRI fails.

3. Mapping speech sites in an aphasic patient. Patient is a forty-year-old male who pre-

sented with headaches and speech difficulty. Further evaluation with MRI demonstrated an expan-

sile left temporal tumor (Fig 5A). The patient was given steroids and his speech returned to normal.

During this time a resting state MRI was obtained and speech networks were identified (Fig 5B).

Prior to his scheduled surgery he had a prolonged seizure and was post-ictally globally aphasic for

several days. During this time a repeat resting state MRI was obtained and speech networks were

again identified despite his inability to speak (Fig 5C). These findings are significant because they

provide an extreme example of being able to map function despite compromised cognitive function

(i.e. mapping speech in the setting of an aphasia). Notably, the resting state network topographies

were similar between imaging when speech was intact and when it was compromised.

4. Mapping eloquent cortex in a sedated pediatric patient. A three old boy with a prior

history of pineal region fibroblastic spindle cell tumor that was previously resected who

Table 2. Comparison of performance between task-fMRI and resting state fMRI.

A. Cause Of Failure rs-fMRI (n = 232) task-based fMRI (n = 83)

Patient Motion 14 (6.0%) 0 (0%)

Susceptibility artifact 6 (2.6%) 0 (0%)

Unable to follow commands 0 (0%) 10 (12%)

No activation 2 (.9%) 20 (24%)

Technical failure NOS / did not pass QA 3 (1.2%) 2 (2.5%)

Anatomic misregistration to atlas 3 (1.2%) 0 (0%)

Total 28 (13%) 32 (38.5%)

B. Performance Between rs-fMFI and task-fMRI

Successful rs-fMRI Failed task-fMRI

Successful task-fMRI 54 25

Failed task-fMRI 29 3

https://doi.org/10.1371/journal.pone.0198349.t002
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presented with behavioral changes and vomiting. For MR imaging he was sedated with propfol

and sevoflourane. Imaging demonstrates a large tumor in the brain stem (Fig 6A), and motor

and speech networks are clearly defined (Fig 6B and 6C). Consistent with prior studies in ani-

mals and humans, resting state networks are present despite alteration of consciousness with

anesthetics[10, 27, 28]. It is also important to note that the patient is quite young and any form

of task-based fMRI would not be possible.

Discussion

The resting state fMRI analytics and IT work flow created at Washington University School of

Medicine have converted a complex research-oriented brain mapping methodology into a practi-

cal and effective tool for preoperative assessment of functional regions in the brain. There are

numerous advantages to resting state fMRI and its automated processing. Resting state fMRI does

not require patient participation, numerous functional domains can be evaluated in a single imag-

ing scan, and sedation does not alter the functional localization. The imaging pipeline associated

with these analytics has enabled resting state fMRI to become a routine clinical tool. Additionally,

we find in this institutional experience that the resting state fMRI performed much more reliably

than classic task-based fMRI. Taken together, these findings support the important role that rest-

ing state fMRI can play in neurosurgical care.

Advantages of a supervised machine learning for resting state MRI

Resting state fMRI analysis methodology historically was dominated by two complementary

strategies: spatial Independent Components Analysis (sICA)[18], and seed-based correlation

Fig 3. Comparable localization between task and resting-state fMRI. Single patient comparison for language for both MLP rsfMRI (A) and task (B). Both

demonstrate similar regions of topographic localization of function. Imaging threshold for MLP rsfMRI was 97% probability. Threshold for task was above

threshold as defined by clinical imaging software package.

https://doi.org/10.1371/journal.pone.0198349.g003
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analysis (SCA)[7]. Both strategies assign resting state networks (RSNs) identities to brain vox-

els by exploiting the fact that spontaneous neural activity is correlated (coherent) within widely

distributed regions of the brain. Both strategies yield highly reproducible results at the group
level in normal subjects[22, 29]. sICA decomposes resting state fMRI data into a sum of compo-

nents, each component corresponding to a spatial topography and a timecourse. Since sICA

makes no a priori assumptions regarding the topography of RSNs, this method exemplifies

unsupervised classification. The principal advantage of sICA is that it provides a direct means

of separating artifact from blood oxygen level dependent (BOLD) signals of neural origin,

although this separation typically requires observer expertise. However, the results obtained by

sICA may vary substantially depending on processing parameters (e.g., number of requested

components). Thus, sICA can be difficult to use in the investigation of targeted RSNs, espe-

cially in single subjects. In practice, the user must select the component of interest from the

many typically returned by sICA, e.g., as in[30]. In contrast, seed-based correlation analysis

(SCA) is computed by voxel-wise evaluation of the Pearson correlation between the time-

courses and an a priori targeted region of interest (ROI) and all other voxels in the brain. The

principal difficulty in using seed-based correlation mapping is exclusion of non-neural artifact,

which typically is accomplished using regression techniques[14, 31, 32]. However, SCA many

not be reliable when brain anatomy has been distorted by mass effects or RSNs have been rear-

ranged to compensate for focal loss of function[33]. To address these shortcomings, we have

previously described a perceptron-based method for mapping RSNs in individuals specifically

designed for neurosurgical preoperative planning[9]. Perceptrons are supervised machine

learning algorithms that can be trained to associate arbitrary input patterns with discrete out-

put labels. We trained a multilayer perceptron (MLP) to associate seed-based correlation maps

with particular RSNs. Running the trained MLP on correlation maps corresponding to all vox-

els in the brain generates voxel-wise RSN membership estimates. Several features of MLP-

based RSN mapping make this technique highly suited to pre-surgical planning in tumor

Fig 4. Successful rsfMRI mapping in the setting of failed task-based fMRI. Single patient comparison for motor and language for both task and MLP

rsfMRI. While both modalities are successful for motor which is distant from the tumor (A), task-based imaging does not show localization in the frontal

lobe, while MLP-resting state fMRI does show good localization (B). Imaging threshold for MLP rsfMRI was 97% probability. Threshold for task was

above threshold as defined by clinical imaging software package.

https://doi.org/10.1371/journal.pone.0198349.g004

Fig 5. Resting state MRI mapping of speech networks in an aphasic patient. A. Forty year old patient with left temporal tumor. B. rs-fMRI mapping of speech when

speech was intact. C. rs-fMRI mapping of speech when patient globally aphasic due to prolonged seizure. Imaging threshold for MLP rsfMRI was 97% probability.

https://doi.org/10.1371/journal.pone.0198349.g005
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patients: (i) MLP outputs always represent the same entities, ordered in the same way; (ii)

MLP-based RSN mapping, unlike unsupervised methods (e.g., sICA), is reliable in individuals;

(iii) the MLP reliably assigns RSN membership in all voxels, even voxels not included in the

training set; this property implies that the MLP accommodates focal anatomic distortions and

rearrangements of RSN topography, which are expected in patients with brain tumors[9, 33].

Our current version of the MLP generates voxelwise membership estimates for the following

seven RSNs: Default Mode network (DMN)[20, 21], Sensorimotor network (SMN)[7], Visual

network (VIS)[18, 22], Language network (LAN)[18, 22], Dorsal and Ventral Attention net-

work (DAN, VAN)[23, 24], Fronto-Parietal Control network (FPC). MLP-derived RSN esti-

mation results can be displayed as seven continuous probability density maps or as one

winner-take-all map. While the majority of maps used clinically in this institution experience

were the motor, language, and visual networks; our mapping analytic enables the identification

of all the functional domains, which may also potentially be clinically relevant for more subtle

cognitive domains, such as attention and memory.

The clinical advantages of using automated resting state fMRI mapping

Beyond the technical elegance of the MLP method efficiently localizing function despite brain

lesions, the automated nature of the processing provides additional distinct clinical advan-

tages. The resting state modality by itself enables functional imaging on patients who would

typically be excluded from task-based fMRI due to an inability to cooperate with the various

testing maneuvers required of task-based imaging. These patient populations include young

children, cognitively impaired patients (based on either baseline disability or in the setting of a

pathologic neurologic deficit), as well as in sedated patients. Additionally, we show examples

that even patients who fail a task-based fMRI, the localization can still be accomplished with

resting state. Another advantage created by the automation of the processing of resting-state

fMRI data processed via a MLP algorithm is that it only requires 12 minutes of scanner time

when completed in isolation. This is contrasted against the hour that is required for acquisition

of task-based functional imaging (including the time to set up the equipment, train the patient

and acquire the BOLD data). This superior functional imaging capability is seen in those

Fig 6. Resting state MRI mapping of eloquent cortex in a sedated pediatric patient. Three and half year old patient with brain stem tumor imaged while under

propofol sedation. A. Tumor. B. rs-fMRI mapping of speech. C. rs-fMRI mapping of motor. Imaging threshold for MLP rsfMRI was 97% probability.

https://doi.org/10.1371/journal.pone.0198349.g006
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patients who had both task and resting state imaging. The failure rate for resting state was sig-

nificantly less than that of task-based fMRI, 13% vs. 38.5%, respectively. Additionally, tradi-

tional task-based fMRI requires specialized equipment for acquisition and processing of the

data as well as personnel trained in acquiring the data and ensuring its quality prior to release

of the patient from the radiology department. In addition to these resource utilization con-

cerns, task-based studies can only be performed on a limited number of MR scanners, thus

introducing limitations from a scheduling and departmental efficiency perspective as well. The

radiology department must also commit to maintaining the equipment and providing trained

staff to perform and process the exams. In contrast, the clinical resting-state fMRI protocol is

available for acquisition on all 3-Tesla MR units at Washington University’s Barnes Jewish and

St. Louis Children’s inpatient, outpatient, and research MR imaging departments and data can

be acquired 24 hours per day, facilitating timely surgical intervention when necessary. Thus,

the automated nature of the MLP algorithm reduces the need for committed technicians from

the radiology department and increases the likelihood that this resting state MR technology

can scale across institutions.

The research advantages of using automated resting state fMRI mapping

Very often mapping techniques vary from institution to institution making it hard for insights

from clinical experience to be rigorously compared and translated across practices. The stan-

dardized nature of the MLP mapping using resting state MRI ensures that functional localiza-

tion is performed identically across all patients. Thus, the uniform mapping output can

provide consistent localization information, such that various techniques (e.g. cortical stimula-

tion, transcranial magnetic stimulation, and cortical physiologic changes) and various clini-

cally relevant measurements (e.g. proximity of resection and neuropsychological/functional

assessments) can all potentially be measured and compared across an identical mapping bench

mark.

Study limitations

There are several studies that are worth noting in this work. First, the study was retrospective

in nature. Definitive conclusions of the manner in which resting state fMRI alters clinical prac-

tice and patient outcomes will require a prospective clinical study. Second, the current MLP-

analytic and IT infrastructure was locally created and is not currently a commercial package

that is widely available. Thus, wider scale implementation will require either a commercial

product or dedicated institutional investment in creating a similar infrastructure. Third, while

we have demonstrated successful execution of resting state fMRI in a clinical environment,

this study does not have clinical outcomes data to assess whether the imaging altered or

improved clinical care.

Conclusion

Resting state fMRI is a useful presurgical planning tool that can be integrated into the clinical

PACS system and the intraoperative neuronavigation system. It confers a distinct advantage in

its ability to identify eloquent cortex in patients who would not be able to participate in a task-

based study. Finally, when compared to classic task-based mapping, resting state MRI has a

much lower failure rate.
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