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Abstract

Lung mass density is directly associated with lung pathology. Computed Tomography (CT) 

evaluates lung pathology using the Hounsfield unit (HU) but not lung density directly. We have 

developed a lung ultrasound surface wave elastography (LUSWE) technique to measure the 

surface wave speed of superficial lung tissue. The objective of this study was to develop a method 

for analyzing lung mass density of superficial lung tissue using a deep neural network (DNN) and 

synthetic data of wave speed measurements with LUSWE. The synthetic training dataset of 

surface wave speed, excitation frequency, lung mass density, and viscoelasticity from LUSWE 

(788000 in total) was used to train the DNN model. The DNN was composed of 3 hidden layers of 

1024 neurons for each layer and trained for 10 epochs with a batch size of 4096 and a learning rate 

of 0.001 with three types of optimizers. The test dataset (4000) of wave speeds at three excitation 

frequencies (100, 150, and 200 Hz) and shear elasticity of superficial lung tissue was used to 

predict the lung density and evaluate its accuracy compared with predefined lung mass densities. 

This technique was then validated on a sponge phantom experiment. The obtained results showed 

that predictions matched well with test dataset (validation accuracy is 0.992) and experimental 

data in the sponge phantom experiment. This method may be useful to analyze lung mass density 

by using the DNN model together with the surface wave speed and lung stiffness measurements.
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Introduction

Interstitial lung disease (ILD), manifested as fibrotic and stiffened lung parenchyma, can 

result in symptoms such as dyspnea and may lead to respiratory failure [1]. ILD usually 

affects the peripheral, sub-pleural regions of the lung [2, 3]. ILD can be induced by 

autoimmune diseases, genetic abnormalities, and long-term exposures to hazardous 
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materials yet its cause is mostly unknown and lung manifestations are characterized as 

idiopathic interstitial pneumonia.

It has been shown that lung mass is not uniformly distributed in the lung, with greater 

density in the lower lobes. Moreover, lung mass increases with the degree of fibrosis [4, 5]. 

Currently, there are no clinical imaging modalities to directly measure lung mass density. 

High-resolution computed tomography (HRCT) is the clinical standard for diagnosing lung 

fibrosis given the specific radiation attenuation properties of the lung tissue [6, 7]. Numerous 

studies have shown that the extent of emphysema measured by pathology scores in resected 

lung tissue is well correlated with lung density values obtained from preoperative CT of the 

lung [8, 9]. Two objective measures of CT lung density, so-called densitometric parameters 

(the percentile density and relative area of emphysema), were used to correlate emphysema 

on CT to the extent of emphysema in the corresponding resected lobes. CT images have 

been used to quantify lung density to some extent [10–12]. Computed tomography (CT) is 

the major clinical imaging modality for assessing various lung diseases. The mechanism of 

CT is based on the changes of tissue mass density but the CT system uses the Hounsfield 

unit (HU) but not lung density to image the lung. Yet, it exposes patients to a high dose of 

radiation.

Data-driven clinical predictions are not new in medical practice. Combined with modern 

machine learning, clinical data enable us to generate prediction outcomes for different 

clinical applications. Machine learning techniques are particularly suitable for predictions 

based on existing data. These approaches are able to discover and identify patterns and 

relationships between them from complex datasets, while they are able to effectively predict 

future outcomes [13, 14]. In supervised learning, a labeled set of training data is used to 

estimate or map the input to the desired output. In the case of regression problems, a 

learning function maps the data into a real-valued variable. For each new sample, the value 

of the predictive variable can be estimated [15].

It is well known that lung tissue is normally filled with air and the difference in acoustic 

impedance between air and tissue is large, resulting that most of the energy of the ultrasound 

wave is reflected from the lung surface. We have recently developed a lung ultrasound 

surface wave elastography technique (LUSWE) for measuring the surface wave speeds of 

superficial lung tissue [16–18]. The estimation of viscoelasticity of lung tissue is also 

dependent on mass density of lung tissue. However, the data of mass density of lung is very 

limited, especially when the lung tissue is diseased (such as ILD) or at various pulmonary 

pressures (such as at total lung volume). The purpose of this study is to develop a method to 

analyze the lung density using a deep neural network algorithm and the LUSWE 

measurements.

Materials and methods

Synthetic dataset

In order to generate the database for training the DNN model, analytical simulations were 

carried out for different sets of material parameters.
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The surface wave speed model is used,

cs = 1
1.05

2(μ1
2 + ω2μ2

2)
ρ(μ1 + μ1

2 + ω2μ2
2)

(1)

where μ1, μ2 and ρ are shear elasticity, shear viscosity, and mass density of the material, 

while ω and cs are the excitation frequency and corresponding surface wave speed [19–21]. 

Lung density of healthy subjects obtained via x-ray was reported to be 0.24 g/cm3. For the 

patients with pulmonary congestion and edema, the lung density was 0.33-0.62 g/cm3 [22]. 

We could not find lung density data for ILD patients or at the total lung volume. Young’s 

modulus of normal lung tissue was reported to be 1-5 kPa [23]. Fibrotic lung tissue was 

reported 20 times stiffer than normal lung tissues [24]. The ranges of material parameters 

were: μ1 = (2 kPa, 14 kPa), μ2 =(2 Pa·s, 17 Pa·s) [25], ρ = (240 kg/m3, 620 kg/m3). A certain 

number of random numbers in a normal distribution were generated within the range of 

material parameter (20 for μ1, 20 for μ2 and 3200 for ρ). For each set of material properties 

(μ1, μ2 and ρ), three excitation frequencies (100, 150, and 200 Hz) were used to generate the 

wave speeds at corresponding frequencies. 792000 data sets were obtained in total. The 

dataset is divided into three parts: training data (630400), validation data (157600), testing 

data (4000). The features available for us to use are the shear wave speeds of lung tissue at 

three excitation frequencies and shear elasticity of lung tissue. The only label is the mass 

density of superficial lung tissue.

Deep neural network model

The synthetic dataset is used to train a DNN model. The proposed architecture is composed 

of 5 fully-connected layers as described in Fig. 1. The DNN model trained by back 

propagation consists of 4 neurons in the input layer, 1024 neurons in each of three hidden 

layers, and 1 neuron in the output layer. The surface wave speeds at three frequencies and 

shear elasticity (cs_100, cs_150, cs_200 and μ1) of lung tissue are imported as input layer. For 

our Deep Neural Network, we used the ‘DNNRegressor’ with rectified linear activation unit 

(ReLU). To reduce overfitting, regularizer L2 was used for each fully-connected layer [26]. 

The training of DNN is composed of two parts: a training objective and an optimization 

algorithm to minimize this objective function. In this study, we evaluated the performance of 

3 optimizers, Adam, Stochastic gradient descent (SGD) and AdaGrad, to minimize the mean 

square error (MSE) [27, 28]. The MSE represents the dissimilarity of the approximated 

output distribution from the true distribution of labels. Learning rate was 0.001. The neuron 

in the output layer corresponds to the predicted lung mass density and is compared with the 

predefined lung mass density (TargetsData). The evaluation of performance of different 

optimizers was based on a train-validation-test scheme. The actual training of the approach 

was carried out on the training dataset, while the validation dataset (cross-validation ratio is 

0.2) was used for fine tuning of hyper-parameters; the overall performance of each optimizer 

was evaluated on the test dataset [29].

The trainable weights are initialized with the Xavier initialization [30]. The weight updates 

are performed in mini-batches and the number of samples per batch was set to 4096. The 
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training ends when the network does not significantly improve its performance on the 

validation set for a predefined number of epochs. This number is set to 10 and the 

performance is evaluated in terms of loss and accuracy [31]. Loss is mean square error, 

which is dissimilarity of the approximated output distribution from the true distribution of 

labels. Loss = MSE = 1
n ∑i=1

n Yi − Ŷ1
2
. Accuracy is calculated in terms of coefficient of 

determination R2, which is calculated as, R2 = 1 −
∑i = 1

n Yi − Ŷi
2

∑i = 1
n Yi − Ȳ 2 . Yi is the training data, Ŷi

is the prediction from the model, Ȳ is the mean value of training dataset. An improvement is 

considered significant if the relative increase in performance is at least 0.5%.

The DNN was implemented using the Python API of TensorFlow and TFLearn framework. 

Graph visualization of data flow for the network was shown in Figure 1.

LUSWE on sponge phantom

A cellulose sponge (Ocelo utility sponge, 3M, St. Paul, MN, USA) was cut into a 3.0 cm × 

1.9 cm × 8.0 cm rectangular piece. The volume and weight of the dry sponge were measured 

to calculate its density. The sponge was put into a customized metal holder with a fixed inner 

width of 2.0 cm (Figure 2). It was then injected with tap water at an interval of 3 ml from 0 

to 30 ml and the corresponding mass density of sponge was calculated. After each injection, 

a sinusoidal signal of 0.1s duration was generated using a function generator (33120A, 

Agilent Technologies, Inc., Santa Clara, CA, USA) and amplified with amplifier (Pyle PCA4 

stereo power amplifier, Pyle audio inc., Brooklyn, NY, USA) at five frequencies 100, 150, 

200, 250 and 300 Hz [32]. This signal drives a mechanical shaker (FG-142, Labworks Inc., 

Costa Mesa, CA, USA) which applied a harmonic vibration on the sponge phantom surface. 

A Verasonics Vantage system with a L11-5v probe (6.4 MHZ) was used to capture the 

motion of the sponge. Each measurement was repeated three times at each injection and 

frequency. The surface wave speed of the sponge was analyzed by the change in wave phase 

with distance. For the details of procedures for measuring the surface wave speed of the 

sponge phantom, readers are encouraged to read reference [18, 19]. The viscoelasticity of 

the sponge at each injection was calculated using the Voigt model [33]. Given the surface 

wave speed at different excitation frequency and viscoelasticity of the sponge at different 

level of water injection, the mass density of the sponge was predicted using the trained DNN 

model. It was then compared with the measured mass density of the sponge phantom at 

different level of water injection.

Results

The convergence of the three different optimizers is demonstrated in terms of the validation 

loss over the epochs in Fig. 3(a). The loss drops dramatically in the first few steps for Adam 

yet soon stops. For SGD and AdaGrad, the loss gradually drops toward the end. The 

validation accuracy of model was plotted in Fig. 3(b). Both SGD and AdaGrad gradually 

approach 0.86 with AdaGrad converging faster than SGD while Adam gradually approaches 

1 from approximately 0.7. MSE and accuracy of the validation dataset of three different 

optimizers were shown in Table 1. Minimizing the MSE by the Adam optimizer yielded the 
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best results in a small number of iterations. AdaGrad follows with about 5% lower 

performance and SGD with even a higher drop in performance of 8%. Predefined and 

predicted lung densities of different optimizers for the test dataset were shown in Table 2. It 

showed that the prediction matched well with the predefined densities using Adam yet not 

good with SGD or AdaGrad.

The predicted density from the DNN matched well with the measured density of the sponge 

phantom (Table 3). The validation accuracy is 0.92.

Discussions

The aim of this study was to develop a deep neural network (DNN) model to predict the lung 

density for ILD patients based on measurements of wave speeds obtained from LUSWE. 

Ranges of viscoelasticity and densities of lung tissue covering both healthy controls and ILD 

patients were predefined to generate synthetic data in terms of wave speeds of lung tissue at 

three vibration frequencies to train the DNN model. Then, the DNN model was used to 

predict lung density based on wave speeds of lung tissue at three frequencies and shear 

elasticity of lung tissue. This model was also validated using a LUSWE on a sponge 

phantom. The obtained results show that DNN can be used to predict lung mass density with 

high accuracy.

Ultrasonography is not widely used in clinical practice for lung evaluation because lung 

tissue is filled with air and most energy of the ultrasound wave is reflected from the lung 

surface. However, lung ultrasonography can be used for diagnosing various thoracic diseases 

and especially useful in the emergency and critical care settings [34–36]. In order to 

noninvasively measure lung viscoelastic property, we have developed an ultrasound-based 

LUSWE technique to quantify superficial lung tissue stiffness [37, 38]. In LUSWE, a small, 

local 0.1 second harmonic vibration is generated by the indenter of a handheld shaker on the 

skin of the subject at three frequencies (100, 150, and 200 Hz). The ultrasound probe is 

placed approximately 5 mm away from the indenter in the same intercostal space to measure 

the generated surface wave propagation on the lung surface in that intercostal space. The 

wave propagation speed of superficial lung tissue is determined by the change in wave phase 

with distance.

At first, we used linear regression to identify lung mass density based on surface wave 

speeds of lung tissue at different excitation frequencies, yet got pretty poor results (data not 

shown). The DNN Regressor is a fully connected feed-forward model that is connected with 

a rectified linear activation unit (ReLU) [39]. It has been shown that activation function 

greatly affects the speed of convergence. The use of the ReLU function has been proven to 

be able to accelerate the training process compared with the sigmoid alternative. SGD is a 

stochastic approximation of the gradient descent optimization and iterative method for 

minimizing an objective function that is written as a sum of differentiable functions. 

AdaGrad is a modified stochastic gradient descent with per-parameter learning rate. It works 

well with sparse gradients. However, for noisy objectives, higher-order optimization is not 

suited. Adam is a method for efficient stochastic optimization that only requires first-order 

gradients with little memory requirements. It computes individual adaptive learning rates for 
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different parameters from estimates of first and second moments of the gradients. Adam 

adapts learning rates for different layers instead of manually hand picking. Adam employs a 

preconditioner that adapts to the geometry of the data. Adam adapts the advantage of 

AdaGrad for sparse gradients. Moreover, its magnitudes of parameter updates are invariant 

to rescaling of the gradient, its step sizes are approximately bounded by the step size hyper-

parameter, it does not require a stationary objective, and it performs a form of step size 

annealing [27, 40].

Lung CT scanning has widely been used to quantify lung density for emphysema [8]. 

Parenchyma of patients with pulmonary fibrosis was imaged with HRCT to evaluate lung 

density based on gray scale histogram [10]. HRCT is essential in quantitative analysis of 

ILD in terms of regional volumetric quantities [41]. However, HRCT substantially increases 

radiation exposure for patients and the potential for frequency HRCT use is limited by its 

expense. In future studies, HRCT could be used to validate the prediction of lung density 

with DNN. Lung density measurements via CT scanning was well correlated with 

pulmonary function tests [11]. However, CT or HRCT does not directly measure lung 

density. We could extend this DNN model together with CT and pulmonary function test 

(PFT) for analyzing patient’s LUSWE data. PFT can provide the global lung stiffness and 

LUSWE can provide local region lung stiffness measurements in various intercostal spaces. 

The novelty of this study was to develop a method for analyzing the lung mass density using 

DNN and measurements from LUSWE. In future studies, we will evaluate novel DNN 

techniques and their applications to our problems. We will increase the number of layers of 

neural network and use deep-residual-networks to improve the accuracy of prediction.

The wave speed on the lung surface was determined by analyzing ultrasound data directly 

from lung surface. Hence, the wave speed measurement is local and independent of the 

location of excitation. The wave speeds of superficial lung tissue in LUSWE are obtained at 

total lung capacity when a subject is taking a deep breath and holds for a few seconds. The 

lung density is also dependent on the pulmonary pressure. In future studies, in vitro studies 

can be conducted on porcine lungs to investigate the relationship between lung density and 

pulmonary pressure based on LUSWE and DNN.

Most soft tissues are incompressible and their mass densities are close to 1000 kg/m3. Lung 

parenchyma is a porous material filled with air and with a void ratio of approximately 0.7 

[42, 43]. The range of lung mass between 240 kg/m3 and 620 kg/m3 was studied in this 

research based on the available data from literature. Sponge phantom has been shown to 

have similar microstructure as lung parenchyma [44, 45]. With its availability, relevant 

phantom models for a systemic study of induced disease states, such as pulmonary edema, 

can be generated. Pulmonary edema is a fundamental feature of congestive heart failure and 

inflammatory conditions such as acute respiratory distress syndrome [46]. The presence of 

extravascular lung water (EVLW) predicts worse prognosis in critically ill patients [47] and 

increased risk of death or heart failure readmission [48]. The lung density should increase 

for lung edema. In future, we plan to evaluate the DNN model for patients with pulmonary 

edema.
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Conclusion

In this work, we propose to use a deep neural network model for lung mass density 

prediction of superficial lung tissue based on LUSWE. The synthetic data was obtained by 

calculating surface wave speeds of superficial lung tissue at different excitation frequencies 

given viscoelasticity and density of lung tissue. The training was performed by minimizing 

the mean square error of the training set and validation set with the different optimizers. The 

proposed method is evaluated on the synthetic dataset and validated on the sponge phantom 

experiment. The DNN model is able to predict lung tissue density with high accuracy using 

the Adam optimizer.
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Highlight

• Developing a method to analyze lung mass density using a deep neural 

network model and experimental data with lung ultrasound surface wave 

elastography (LUSWE).

• Synthetic data was generated in terms of surface wave speed from excitation 

frequency, lung mass density and viscoelasticity from LUSWE to train the 

deep neural network model.

• The obtained results showed that predictions matched well with test dataset 

(validation accuracy is 0.992).

• This model was validated in a lung phantom model using sponges.
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Figure 1. 
Schematic of a deep neural network.
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Figure 2. 
Experimental setup of the LUSWE on the sponge phantom
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Figure 3. 
Comparison of the convergence speed between three optimizers. Loss (a) and accuracy (b) 

curves during the supervised learning of the proposed system.
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Table 1

Comparison in metrics of the proposed technique with different optimizers.

Metrics Adam SGD AdaGrad

MSE Loss 8 26062 26422

Val_acc 0.992 0.856 0.862
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