Skip to main content
. 2018 Jun 22;8:9555. doi: 10.1038/s41598-018-27859-3

Table 1.

Performance of BRT models within the 5-fold gridded cross validation structure using different combinations of meta-parameters: tree complexity (tc), learning rate (lr), and bagging fraction (bf).

Tree complexity Learning rate Bagging fraction No. trees mean deviance MSE
5 0.005 0.5 850 2.96 4.68
5 0.005 0.6 950 2.68 4.38
5 0.005 0.7 1200 2.62 4.35
5 0.001 0.5 4450 2.79 4.46
5 0.001 0.6 5000 2.74 4.42
5 0.001 0.7 5200 2.81 4.55
5 0.0005 0.5 8850 3.13 4.90
5 0.0005 0.6 10000 3.06 4.84
5 0.0005 0.7 9150 3.06 4.88
7 0.005 0.5 650 2.78 4.40
7 0.005 0.6 950 2.55 4.18
7 0.005 0.7 700 2.67 4.33
7 0.001 0.5 3200 2.74 4.36
7 0.001 0.6 4400 2.68 4.30
7 0.001 0.7 4000 2.61 4.24
7 0.0005 0.5 5600 2.95 4.60
7 0.0005 0.6 8200 2.72 4.34
7 0.0005 0.7 7200 2.70 4.34
9 0.005 0.5 350 3.03 4.68
9 0.005 0.6 600 2.68 4.28
9 0.005 0.7 650 2.51 4.09
9 0.001 0.5 2200 2.83 4.42
9 0.001 0.6 3400 2.54 4.11
9 0.001 0.7 3600 2.54 4.13
9 0.0005 0.5 4550 2.96 4.58
9 0.0005 0.6 6750 2.59 4.15
9 0.0005 0.7 7000 2.57 4.16

Performance measures reported are mean Poisson deviance and mean squared error (MSE) of the model across the 5-folds. The meta-parameter combination with the lowest mean deviance and MSE, and >1000 fitted trees is shown in bold.