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As a group, mixed neuronal-glial tumors (MNGTs) exhibit 
genetic variability, including stable genomes, whole chromo-
some gains, BRAF-V600E, and FGFR1 mutations [8, 9, 11, 
12]. While histologic criteria are described to distinguish 
MNGT types ganglioglioma (GG) and dysembryoplastic 
neuroepithelial tumor (DNT), non-specific features preclude 
confident classification in a high proportion of cases [2, 8, 
10, 12]. Herein, we report the characterization of a novel 
FGFR2-INA fusion gene identified during clinical genomic 
profiling in two cases of MNGTs that could not be specifi-
cally classified as GG or DNT.

Clinical, imaging, histology, and fusion gene charac-
teristics of each case are summarized in suppl. Table 1 
(Online Resource 1). Both patients presented with seizures, 
cortical-based tumors, and one patient’s tumor was recur-
rent. By histology and immunohistochemistry, both cases 

consisted of oligodendrocyte-like cells and admixed neurons 
within microcytic spaces (Fig. 1a). GFAP-positive astro-
cytes, CD34 expression (MNGT-1), and calcification were 
observed. Both cases lacked pools of mucin, floating neu-
rons, specific glioneuronal elements, eosinophilic granular 
bodies, and perivascular inflammation. Features were most 
similar to DNT; however, both lacked key criteria for this 
diagnosis.

Targeted RNA-sequencing revealed a novel in-frame 
fusion between FGFR2 exon 17 and INA exon 2 (Fig. 1b) 
in both cases. Additional DNA sequence and copy number 
variants of clinical significance were also identified by tar-
geted next-generation sequence panel [suppl. Tables 2, 3, 4 
(Online Resource 1)] [7]. FGFR2, a receptor kinase, regu-
lates several growth-related signaling pathways implicated 
in cancer progression, including RAS-RAF-MAPK and 
PI3K/AKT/mTOR [3]. INA encodes the alpha-internexin 
protein involved in cytoskeletal organization and neuronal 
morphogenesis [6]. The novel fusion retains the extracellular 
immunoglobin-like and tyrosine kinase domains of FGFR2, 
suggesting oncogenic activation of downstream signaling, 
and the truncated coil 2 and tail region of INA, suggesting 
dimerization (Fig. 1c).
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We cloned FGFR2-INA and stably expressed it in 
NIH/3T3 and Tp53-null primary mouse astrocytes (PMAs) 
[1, 5] [suppl. Figure 1 (Online Resource 2)]. In soft agar 
proliferation assays, FGFR2-INA expressing NIH/3T3 
showed a significant increase in colony count over control, 
similar to BRAF V600E (p < 0.0005) (Fig. 1d). Next, we 
assessed the signaling potential of FGFR2-INA. In serum 
starved conditions, we observed high-level activation of 
both the MAPK and PI3 K/mTOR pathways assessed via 
elevated levels of phosphorylated-ERK and -S6, respec-
tively, compared to vector-controlled cells (Fig. 1e). Mech-
anistically, we found that FGFR2-INA homo-dimerizes in 

co-immunoprecipitation assays suggesting dimerization-
induced activation of FGFR2-INA (Fig. 1f). Using combi-
natorial targeting of downstream MAPK and PI3K/mTOR 
pathways with trametinib and everolimus, respectively, we 
could suppress FGFR2-INA-driven oncogenic signaling and 
growth (Fig. 1f, suppl. Figure 2 (Online Resource 3)).

We identify and characterize a novel FGFR2-INA fusion 
associated with unclassified MNGT in two patients lacking 
other reported driver alterations (BRAF-V600E and FGFR1). 
Other FGFR2 fusions have been identified in epileptogenic 
tumors of the young with some overlapping histologic fea-
tures to the current two cases [4]. It is possible that these 
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Fig. 1   Histologic and sequencing characteristics of two MNGT har-
boring an FGFR2-INA fusion that activates the MAPK and PI3  K/
mTOR pathways. a MNGT-1 (left) and MNGT-2 (right) contained 
small oligodendrocyte-like cells admixed with neurons surrounded by 
clear microcystic spaces (insets, 400X H&E), 200X H&E. b RNA-
seq reads and confirmatory reverse complement Sanger sequencing of 
FGFR2-INA. c Structure of FGFR2-INA: FGFR2 exons 2–3 encode 
Ig-1, exons 4–5 encode Ig-2, exons 6–7 encode Ig-3 domains, and 
exons 9–17 encode a truncated tyrosine kinase domain (lacking three 

amino acids from FGFR2 exon-18). d Soft agar assay using NIH3T3 
stably expressing FGFR2-INA, n = 10. Error bars represent SEM. e 
Western blot analysis of MAPK and PI3 K/mTOR pathway proteins 
in NIH3T3 and PMAs. ‘p’—phosphorylated; ‘t’—total protein. f 
Co-immunoprecipitation (Co-IP) assay with anti-Myc tag beads and 
co-transfecting HEK293 cells with Flag (F)- and Myc (M)-tagged 
FGFR2-INA, and F-FGFR2-INA with M- vector control. g Effect of 
combinatorial trametinib and everolimus treatment on FGFR2-INA-
driven oncogenic signaling and growth in NIH3T3 cells
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tumors represent an emerging category of low-grade epilep-
togenic tumor. Our functional studies show that the FGFR2-
INA fusion drives oncogenesis potentially via activation of 
the MAPK and PI3 K/mTOR pathways. Therefore, FGFR2-
INA is the likely driver of tumorigenesis in at least a sub-
set of MNGTs and is a potential target for small-molecule 
inhibitors.
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