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Abstract

Mutations in canonical transient receptor potential-6 (TRPC6) channels give rise to rare familial forms of focal and segmental
glomerulosclerosis (FSGS). Here we examined a possible role for TRPC6 in the progression of chronic puromycin
aminonucleoside (PAN) nephrosis in Sprague-Dawley rats, a classic model of acquired nephrotic syndromes. We used
CRISPR/Cas9 technology to delete a 239-bp region within exon 2 of the Trpc6 gene (Trpc6®® allele). Trpc6°V rats expressed
detectable Tipc6 transcripts missing exon 2, and TRPC6 proteins could be detected by immunoblot of renal cortex. However, the
abundance of Trpc6 transcripts and TRPC6 protein in renal cortex was much lower than in Trpc6™"™! littermates, and functional
TRPC6 channels could not be detected in whole-cell recordings from glomerular cells cultured from 7rpc6°?% animals, possibly
because of disruption of ankyrin repeats 1 and 2. During the chronic phase of PAN nephrosis, 7rpc6°/! rats had reduced urine
albumin excretion, reduced serum cholesterol and triglycerides, and improved azotemia compared to wild-type Trpc6™™ litter-
mates. Glomerulosclerosis was severe during chronic PAN nephrosis in Trpc6™™ rats but was markedly reduced in Trpe69e/d!
littermates. Trpc6°/ animals also had less severe tubulointerstitial fibrosis as assessed by several biochemical and histological
analyses, as well as reduced foot process effacement and glomerular basement thickening compared to Trpc6™™™" controls. None
of the manipulations in this study affected the abundance of TRPCS channels in renal cortex. TRPC3 was increased in PAN
nephrosis and in Trpc6'* rats. These data support a role for TRPC6 channels in driving an acquired form of secondary FSGS.

Key messages
*  We examined aminonucleoside nephrosis in rats with wild type and inactivated TRPC6.
+ TRPC6 channels were inactivated by CRISPR/Cas9
editing of the Trpc6 gene.
* TRPC6 inactivation reduced albuminuria in the chronic
but not the acute phase.
*  TRPC6 inactivation reduced glomerulosclerosis and ultra-
structural changes.
» TRPC6 inactivation also reduced interstitial changes and
renal fibrosis.
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Introduction

Focal and segmental glomerulosclerosis (FSGS) occurs fol-
>4 Stuart E. Dryer lowing a sufficient loss of podocytes [1, 2], often secondary

sdryer@uh.edu to other pathological states [3]. A primary form of FSGS oc-
curs as a result of circulating factors that drive glomerular
dysfunction through poorly understood mechanisms [4, 5].
In addition, genetic studies have identified gain-of-function
mutations in the 7rpc6 gene in patients with familial FSGS
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[6-10]. Trpc6 encodes a widely expressed Ca**-permeable
channel (TRPC6) found in mesangial cells, podocytes, and
other cells [11].

Familial FSGS associated with 7Trpc6 mutations is rare
[10], and it is not known if dysregulation of wild-type
TRPC6 channels contributes to acquired FSGS. Patients with
non-familial glomerular diseases, including primary FSGS,
express TRPC6 at higher levels within glomeruli [12]. It is
not known if this plays a role in driving the disease progres-
sion or, alternatively, if TRPC6 upregulation is a compensa-
tory mechanism or a non-specific downstream marker of dis-
ease processes. We have recently shown that podocyte TRPC6
dysregulation can be driven by circulating factors present in
patients with primary FSGS [13].

Previous studies have attempted to determine if TRPC6
contributes to kidney dysfunction and glomerulosclerosis
using genetic manipulations of TRPC6 in mice [14, 15].
However, the manipulations that were used to produce
FSGS-like lesions in those studies constrain conclusions that
can be drawn since the kidney disease was transient and mild,
even in Trpc6*'™ controls [14] or entailed genetic manipu-
lations that cause artificial sustained TRPC6 activation
[15, 16]. Beyond considerations of earlier experimental
designs, there is value in addressing disease mechanisms
in multiple species [17].

Here we have examined if TRPC6 channels play a role in
the progression of chronic puromycin aminonucleoside (PAN)
nephrosis in rats, an extensively studied model of severe sec-
ondary FSGS [1]. Because of its severity, this model more
closely resembles patterns seen in human glomerular diseases
than mouse models used to date. It does not require additional
manipulations that artificially sustain TRPC6 activation. We
also used CRISPR/Cas9 genome editing to delete a 239-bp
region within exon 2 of Tipc6, which introduced numerous
stop codons downstream of the deletion. Truncated Trpc6
transcripts and TRPC6 proteins could still be detected, possi-
bly as a result of posttranscriptional skipping of exon 2 [18,
19]. However, TRPC6 abundance was much lower in renal
cortex of Trpc6del/ del rats, and we were unable to detect func-
tional TRPC6 channels in glomerular cells cultured from those
animals. Consequently, it was still possible to test the central
hypothesis of this study.

Material and methods

Genome editing procedures

Trpe6*®9! rats were generated using CRISPR/Cas9 technol-
ogy through a contract with a commercial vendor

(Transposagen Biopharmaceuticals Inc.). The guide RNAs
targeted a 239-bp domain in exon 2 of the rat Trpcé
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gene. The sequences of the two CRISPR guide RNAs
used were as follows:

2.1 GGAAGAAGGTTGGCTAATCG
2.2 GGAAAACTTGTCTCGAGTTG

These guide RNAs were designed to be specific for Trpc6
and do not target genes encoding closely related channel pro-
teins (see Supplemental Material). It is important to note that
we cannot entirely exclude that they may have off-target ef-
fects elsewhere. Littermates bred from Trpc6™V%! heterozy-
gotes were genotyped using PCR primers that span the deleted
region of the Trpc6 gene (primer sequences are in
Supplemental Material Table 1). RT-PCR analyses of total
RNA extracted from renal cortex of Trpc6™"™" and Trpe6™
del rats was carried out using primers designed to span various
portions of the Trpc6 transcript, including exons 1-2, exons
2-4, exons 4-8, and exons 8—13. We also used a primer pair
that spanned a short region on either side of the deleted region
(exon 1-A2) and a primer pair to detect Actb.

Glomerular cell isolation and electrophysiology
Decapsulated glomeruli were isolated from Trpc6™'™ and
Trpe6°/9 rats [20]. Epithelial cells that grew out of the glo-
meruli after 2 days were re-plated onto collagen-coated glass
coverslips and used for electrophysiology as described previ-
ously [13, 21]. Data are from cells isolated from at least three
animals in each group. Recordings were made with an
Axopatch 1D amplifier (Molecular Devices) and analyzed
using PClamp™ v 10 software (Molecular Devices). The bath
solution contained 150 mM NaCl, 5.4 mM CsCl, 0.8 mM
MgCl,, 5.4 mM CaCl,, and 10 mM HEPES, pH 7.4 at
1.5 ml/min. Pipette solutions in all experiments contained
10 mM NacCl, 125 mM CsCl, 6.2 mM MgCl,, 10 mM
HEPES, and 10 mm EGTA, pH 7.2. Briefly, after making
intracellular contact, cells were held at —40 mV. Currents
were periodically monitored during application of voltage
ramps (— 80 to + 80 mV over 2.5 s), before and after appli-
cation of 100 uM ATP by gravity-fed superfusion. We
have previously shown that ATP activates TRPC6 chan-
nels in podocytes through actions on G protein-coupled
P2Y receptors [21]. ATP-evoked currents occurred within
60-90 s after switching bath solutions, corresponding to
the dead time of the perfusion system and chamber. ATP-
evoked currents were blocked by 100 nM SAR-7334
(MedChem Express), a highly specific inhibitor of
TRPC6 [22]. Currents were quantified at + 80 mV and
are presented as the fold change in presence of ATP over
baseline. We also analyzed the percentage of cells with
discernible increases in current evoked by ATP in the
two groups.
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Chronic PAN nephrosis

These protocols were approved by the University of Houston
Institutional Animal Care and Use Committee following NIH
guidelines. Trpc6™™ rats and Trpe6®! littermates (100—
150 g) were given two injections of PAN (Sigma-Aldrich)
dissolved in 0.9% sterile saline. A first injection of 200 mg/
kg i.p. was followed by a second injection of 100 mg/kg i.p.
administered 30 days later. Controls received the saline vehi-
cle at the same times. Urine albumin was measured using a
commercial ELISA assay (Exocell Inc.). Mean arterial blood
pressure was measured between by tail-cuff plethysmography
(CODA 6, Kent Scientific). At 30 days after the second injec-
tion, blood was sampled and animals were sacrificed by CO,
inhalation followed by cervical dislocation and the kidneys
and heart were excised and weighed. A portion of renal cortex
of one kidney was removed and reserved for biochemical,
histological, and ultrastructural analysis.

Immunoblot analysis

These methods were described previously [13]. Renal cortex
was homogenized in M-PER™ mammalian protein extraction
buffer (Thermo Fisher Scientific) and sonicated on ice. The
homogenates were subjected to centrifugation at 13,000 rpm
for 30 min. Protein concentrations of the supernatants were
determined with Bradford reagent (Bio-Rad). Rabbit antibod-
ies against TRPC6 (ACC-017) and TRPC3 (ACC-016) were
from Alomone Labs. The TRPC6 antibody targets motifs
encoded by exon 1 located in the amino-terminal and up-
stream of the deletion in the Tipc6® allele. We also used a
polyclonal TRPC6 antibody from Booster Biological
Technology that targets residues 248-264 in the rat channel,
downstream of the deletion. A mouse monoclonal antibody
against TRPCS was from NeuroMAB. We also used a rabbit
polyclonal antibody against TRPCS from Alomone (ACC-
020). All TRPC antibodies were used at a dilution of
1:1000. A mouse monoclonal antibody (clone 1A4) against
a-smooth muscle actin (SMA) was from Sigma-Aldrich.

Histology and ultrastructure

Portions of kidney were immersion-fixed, embedded in paraf-
fin, and 3-pm serial sections staining by periodic acid-Schift’s
(PAS) and Masson’s trichrome methods and by immunohisto-
chemistry. All pathological specimens were evaluated by an
observer blind to the nature of the treatment group. For each
animal, the glomerular score (GS) in PAS-stained sections was
graded using a scale of 0—4: 0 was assigned to normal glomer-
uli, 1 denoted glomeruli with mesangial expansion, 2 denoted
glomeruli in which sclerosis encompassed less than 50% of
the glomerulus, 3 denoted glomeruli with lesions
encompassing 50—75% of the glomerulus, and 4 denoted

glomeruli with lesions encompassing more than 75% of the
glomerulus or fully collapsed glomeruli. GS was evaluated in
25-50 glomeruli and averaged to obtain a mean value for each
animal. Statistical analysis was carried out on the mean values
from each group of animals, with N=6 rats per group.
Immunohistochemistry for the rat macrophage marker CD68
was carried out by ABC method using a monoclonal primary
antibody against rat CD68 (ED-1) from Abcam (ab31630) ata
dilution of 1:200. The average number of stained cells per
glomerulus for each animal was determined by an observer
blind to the treatment group. A portion of renal cortex was
fixed by immersion in 3% glutaraldehyde plus 3% parafor-
maldehyde in 0.1 M sodium cacodylate buffer pH 7.3 for
ultrastructural analysis as described in detail previously [23].
The thickness of the glomerular basement membrane was de-
termined from these images. Podocyte foot process width
(FPW) was calculated as FPW =71/4 x > GBM length / ) foot
process where > GBM length is the total GBM length mea-
sured in each picture and Y foot process is the total number of
foot processes counted in each picture. The term 7t/4 corrects
for random variation in the angle of section relative to the long
axis of the podocyte [24].

Statistical analyses

All statistical analyses were carried out using public-access
computational tools (http://www.vassarstats.net) with P <0.
05 regarded as significant. Immunoblot assays were
performed in triplicate and analyzed by densitometry. The
data are presented as fold changes relative to the lowest
value observed in a control group and are presented as mean
+ SD. They were analyzed by Student’s unpaired or
Bonferroni’s ¢ test. Electrophysiological data were analyzed
by Mann-Whitney U test and by Fisher’s exact test. Data on
24-h urine albumin excretion and other quantitative measures
of renal and metabolic status are presented as mean + SEM
and as scatter plots from N =6 rats per group. Data were an-
alyzed by two-way ANOVA followed by Tukey’s honest sig-
nificant difference post hoc test The two independent vari-
ables were genotype (Irpc6™"™ vs. Trpc6*V9!) and drug
treatment (PAN vs. saline vehicle). A statistically positive re-
sult was inferred when F values for the interaction between
drug effects and genotype indicated P < 0.05.

Results

Effects of the exon 2 deletion on renal cortical TRPC6
expression and function in glomerular cells

The strategy used to generate Tipc6 exon 2 deletions in rats is

summarized in Fig. 1a. The deletion of a 239-bp region within
the Trpc6 gene was confirmed by genomic sequencing and
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Fig. 1 Generation of the Trpc6°® allele and its expression in Trpc6®eVde!

and Trpc6™™ rats. a Schematic showing CRISPR/Cas9 strategy used to
generate rats with a 239-bp deletion in the second exon of Tipc6. We
initially expected this deletion to result in numerous frameshift mutations
downstream of the deletion. The sequences of guide RNAs used to
generate the animals are also shown. b Conventional RT-PCR of Tipc6
transcripts in renal cortex using primer pairs that span different portions of
the transcript. All of the primer pairs produced robust signal from renal
cortex of Trpc6™™ rats, but signal from all primer pairs was reduced in
Trpe6°/e! Jittermates and was missing using the primer pair (1-A2) that

was readily seen in PCR analyses of genomic DNA used to
genotype the animals. This deletion introduced numerous pre-
mature stop codons downstream of the deletion. However, we
were able to detect Trpc6 transcripts in renal cortex by RT-
PCR using four different primer pairs, although these tran-
scripts were present at substantially lower levels in Trpc6®
del rats compared to Trpc6™”™ littermates (Fig. 1b). By con-
trast, when we used a primer pair that targeted regions of the
transcript very close to the deleted region within exon 2 (exon
1A2), we obtained signals of the appropriate size in Trpc6™"™
rats but not in Trpc6™/! littermates (Fig. 1b). We also ob-
served TRPC6 subunits in immunoblot analysis of renal
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targets residues very close to the deleted region. ¢ Example of
immunoblot analysis of TRPC6 in renal cortical extracts from a
Trpe6™"™ and a Trpc6*™ rat as indicated. The blot to the left showed
signal obtained using an antibody targeting motifs upstream of the
deletion, and the blot to the right was obtained using a different
antibody targeting a sequence downstream of the deletion. Signal from
Trpe6™™ rats was easy to see but was extremely faint in the Trpc69</de!
animals. d Densitometric analysis of the signal obtained using the N-
terminal antibody with N =6 animals per group

cortex of Trpc6™'™ and Trpc6®®9 rats, although the signal
from Trpc6™/ rats was very faint (Fig. lc, d). This pattern
was seen with two different commercial polyclonal antibodies
that target different epitopes within the TRPC6 channel. Thus,
Trpc6V9! animals are able to express very low levels of
TRPCG6 subunits, possibly by splicing out the exon containing
premature stop codons, a phenomenon reported by other in-
vestigators studying other genes modified by CRISPR/Cas9
methods [18, 19]. It is clear from the expression levels of
transcripts and proteins that the Trpc6%! is a strongly
hypomorphic allele. We confirmed this using whole-cell re-
cordings of glomerular cells cultured from Tipc6™™ and
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Trpe69V9 animals (Fig. 2). We have previously shown that
ATP activates TRPC6 channels in podocytes by activation
of P2Y receptors [21]. Here we observed that 100 uM
ATP caused robust activation of cationic currents in 8
out of 11 cells, in total cultured from three different
Trpc(i"”/Wt animals, and cells from all three animals
responded to ATP. As we observed previously [21], those
currents peaked within 60-90 s after the onset of gravity-
fed perfusion with external saline containing ATP. The
ATP-evoked currents were blocked completely by subse-
quent application of 100 nM SAR-7334, a selective inhib-
itor of TRPC6 [22] (Fig. 2a). By contrast, 100 uM ATP
did not activate cationic currents in any of ten cells ex-
amined from three different Trpc6V%! rats (P <0.0007

Fig. 2 Whole-cell recordings

by Mann-Whitney U test analysis of fold increases in
current and P <0.0008 by Fisher’s exact test of the num-
bers of cells with a discernible response).

Urine albumin excretion and renal function

PAN-evoked nephrosis in rats occurs in two phases [1, 25,
26]. An acute injury phase characterized by severe proteinuria
occurs within days after a single PAN injection. At that time,
no lesions can be seen by light microscopy. This recovers over
the next 2-3 weeks but is followed by a sustained re-
emergence of albuminuria that, while less severe, is accompa-
nied by glomerulosclerosis [1, 25, 26]. The chronic phase of
this model is relevant to human nephrotic syndromes. We
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observed no difference in 24-h urine albumin excretion in
PAN-treated Trpc6™"™ and Trpc6° rats during the acute
phase, measured 10 days after the initial PAN injection
(Fig. 3a). At that time, all PAN-treated animals exhibited
severe proteinuria >40 mg/24 h. There was no difference
in albumin excretion between Trpc6™'™" and Tipc6®de
rats that received saline. Two-way ANOVA revealed a
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Fig. 3 Reduced albuminuria in chronic PAN nephrosis in Trpc6%/! rats

compared to Trpc6™*! littermates. a Urine albumin excretion (over 24 h)
inrats 10 days after an initial PAN or saline injection, as indicated. Scatter
graph on left shows urine albumin excretion from each animal in each
group. Bar graph to the right shows mean + SEM for the six animals in
each group. Two-way ANOVA indicates marked effect of PAN on
albumin excretion, but there was no difference in this effect between
Trpe6™™" and Trpc6™*® rats, and no interaction between the effects of
genotype and drug treatment. b In the same animals, 30 days after the first
PAN injection, there is now a statistically robust difference in 24-h urine
albumin excretion between Trpc6™V™ and Trpc69Y9®! animals that
received revealed by significant interaction effect between genotype and
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robust effect of PAN, but no statistically significant inter-
action between the effects of genotype and PAN treatment
at that stage (P =0.2336).

A difference in the amount of 24-h urine albumin ex-
cretion in PAN-treated Trpc6™'™" and Trpc6°V! rats was
observed 30 days after the first PAN injection (Fig. 3b).
At that time, PAN-treated Trpc6™"™" rats had a significant
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drug treatment and by Tukey’s honest significant difference post hoc test.
At this stage, Trpc6°*! animals appear to be completely protected from
PAN-evoked albuminuria. A few days after these urine samples were
collected, a second injection of PAN or saline was given to these rats. ¢
Urine albumin excretion in the same animals, 30 days after the second
PAN or saline injection (and 60 days after the first one). Urine albumin
excretion was increased in PAN-treated animals. There is marked
protection from PAN effects in Trpc6°®! animals. Two-way ANOVA
indicates statistically robust interaction between effects of PAN and
genotype, and the post hoc test indicates marked difference between
Trpe6™"™ and Trpe6% rats that received PAN
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increase in 24-h urine albumin excretion compared to
saline-treated controls (albeit less than in the acute phase),
whereas there was no difference between PAN-treated
Trpc6®V®! animals and saline-treated controls. There
was a statistically significant interaction between the ef-
fects of genotype and PAN treatment (P <0.001) on urine
albumin excretion. At that time, the rats were given a
second injection of PAN or saline. The protective effect
in Trpc69V9e! animals was still observed more than
30 days after the second booster injection (which is
60 days into the disease process), and two-way ANOVA
again revealed a robustly significant interaction effect be-
tween effects of genotype and PAN treatment on albumin
excretion (P <0.001), indicating a partial protective effect
of exon 2 deletion (Fig. 3c). Albuminuria at the 60-day
time point was not correlated with the degree of protein-
uria seen at 10 days (see Supplemental Fig. 1). There was
an increase in kidney weight/body weight ratio in PAN-
treated rats compared to saline-treated controls, but this
effect was not changed by 7rpc6 knockout (see
Supplemental Figs. 2 and 3). PAN treatment and Trpc6
exon 2 deletion had no effect on heart weight or mean
arterial pressure (Supplemental Fig. 3).

The protective effect of Trpc6™® was observed with several
other measurements. PAN-treated rats had increased blood
urea nitrogen (BUN) compared to saline-treated controls,
measured 60 days after the initial injection. This was less
severe in Trpc6°V rats compared to Trpc6™'™ littermates,
and two-way ANOVA revealed a statistically significant inter-
action between genotype and PAN treatment on BUN (P <
0.05) (Fig. 4a). Chronic PAN in Trpc6™™" animals caused
increases in serum total cholesterol and triglycerides (Fig.
4a), but this was less severe in Trpe6™/ littermates (P <
0.05). In a separate experiment with six rats in each group,
we measured 24-h urine albumin excretion, BUN, and serum
lipids 30 days after injection of PAN or saline (Fig. 4b). In
these rats (V=6 per group), we again saw albuminuria and
increased BUN in PAN-treated Trpc6™"™ rats but not in PAN-
treated 7rpc6°/% rats, and the protective effect at 30 days
was essentially complete (P < 0.05) (Fig. 4b).

Histology and ultrastructural analysis

Animals were sacrificed after completion of the 60-day pro-
tocol. Histology assessed by PAS staining was normal in
saline-treated Trpc6™™" and Trpc69V9! rats (Fig. 5a, b).
However, there was marked glomerular scarring and many
collapsed glomeruli in all of the PAN-treated Tipc6™'™ rats
(Fig. 5¢). Indeed, virtually, every glomerulus in PAN-treated
Trpe6™”™ animals exhibited some degree of sclerosis. There
was also extensive tubular atrophy, and many tubular protein
casts, along with interstitial hypercellularity and fibrosis. The
pathology was quantitatively and qualitatively less severe in

PAN-treated Trpc6? rats (Fig. 5d, ). It was possible to
find many unaffected or mildly affected glomeruli in
Trpe6®% rats. There were indications of tubulointerstitial
disease, especially hypercellularity, but hyalinization in tu-
bules was rare in PAN-treated Trpc6°/! rats. A quantitative
analysis of glomerulosclerosis in this experiment indicated a
significant protective effect of exon 2 deletion (Fig. Se, right)
(P<0.01 by two-way ANOVA). Trpc6°% rats also had re-
duced interstitial fibrosis. We detected substantially more o~
smooth muscle actin (SMA) in the renal cortex of PAN-treated
rats than in saline-treated controls. This increase was less se-
vere in Trpc6®4! rats compared to Tipce6™™ littermates
(Fig. 6a). This could also be seen in Masson’s trichrome stain-
ing (Fig. 6). We observed fewer cells expressing the
monocyte/macrophage marker CD68 within the glomeruli of
PAN-treated Trpc6°V! rats compared to Trpc6™™ rats
(Fig. 7).

Glomerular ultrastructure was indistinguishable in saline-
treated Trpc6™"™ and Trpc6®*! rats (Fig. 8). However, ultra-
structure was more disrupted in PAN-treated Trpc6™"™ ani-
mals than Trpc6°/ littermates, with more extensive foot pro-
cess effacement and glomerular basement membrane (GBM)
thickening. The differences in FPW and GBM thickening in
PAN-treated Trpc6™™ and Trpe6®* animals were quantita-
tively significant (Fig. 8; see also Supplemental Fig. 4).

Discussion

TRPC6 channels have been implicated in familial forms of
TRPC6, and it has been suggested that these channels also
play a role in acquired nephrotic syndromes [12, 13]. The
hypothesis that TRPC6 channels play a role in the progression
of acquired FSGS predicts that pathology in chronic PAN
nephrosis should be reduced when functional TRPC6 chan-
nels are not present. We tested this prediction in Zrpc6®/4!
Sprague-Dawley rats and their littermate TrpctiwWt controls
generated by CRISPR/Cas9 technology.

The Trpc6° allele generated in this study is present at very
low levels at both the mRNA and protein level Trpe6/ee
rats, and we were unable to detect functional TRPC6 channels
in glomerular cells from those animals, in marked contrast to
Trpcé\"’vwt controls. Nevertheless, the fact that TRPC6 sub-
units could be detected using two different antibodies, in spite
of the fact that the deletion was predicted to induce a shift in
the reading frame, indicates precautions that should be taken
when using CRISPR/Cas9 technology. Indeed, conclusions of
this study must also be tempered by the possibility of off-
target effects of the guide RNAs used here. There are recent
examples in which animals have been able to remove
disrupted exons, most likely by posttranscriptional splicing
processes [18, 19] and a similar process could explain why
these transcripts and proteins are detectable here.
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Fig. 4 Trpc69V rats are
protected against changes in
blood chemistry seen in chronic
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Chronic PAN or saline 60 days
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PAN nephrosis. a In the same a 120
animals shown in Fig. 3
immediately prior to sacrifice, we 5
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In any case, the TRPC6 proteins produced in Zrpc6/e!
rats are non-functional in glomerular cells. Note that two of
the three ankyrin repeats in the N-terminal are missing,
resulting in disruption of the entire ankyrin repeat domain.
Those ankyrin repeats are conserved in all TRPC channels
and are necessary for assembly of channels into functional
tetramers [27-29]. As an aside, we should note that macro-
scopic currents through wild-type TRPC6 channels in
podocytes [14, 20, 30] do not exhibit dual rectification (at both

@ Springer

negative and positive membrane potentials) that is often seen
with TRPC6 channels examined in heterologous expression
systems such as HEK293 cells [31]. However, dual rectifica-
tion is not always seen even with heterologously expressed
TRPC6 channels [32, 33]. This is by no means unique to
podocytes and has been seen in TRPC6 currents in several
other preparations [34-38]. The biophysical and biochemical
bases for the complex rectifications that are sometimes seen
with TRPC6 channels is not known, but it bears noting that
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Fig. 5 Histological analysis showing protective effect of 7rpc6 exon 2
deletion during chronic PAN nephrosis. PAS-stained sections were
prepared after the animals in Fig. 3 were sacrificed. The deletion has no
effect on renal histology in saline-treated rats (a, b). By contrast, there is
severe kidney disease in Trpc6™™' rats that received chronic PAN (c).
Nearly all of the glomeruli in these animals showed at least some
glomerulosclerosis and many were completely collapsed. There were
also frequent protein casts within tubules, as well as tubular atrophy and
marked interstitial hypercellularity. d There were still indications of
kidney disease in Trpc6%V®! rats that received chronic PAN, but they
were markedly less severe. e Mean glomerular score (GS) calculated in
a blind manner from PAS-stained sections from each group, with scatter
plot showing results from individual animals (left) and bar graph showing

this behavior is not captured in barrier-and-well models that
recapitulate other complex features of monovalent and diva-
lent cation permeation through TRPC6 [38]. The shape of the
I-V curve, beyond some degree of outward rectification at
positive membrane potentials, should not be used as a criteri-
on for determining if a particular current is flowing through

P, =0.0043

Glomerular score

del/del
Saline PAN

wt/wt

wt/wt del/del

group mean + SEM (right). A GS of 0 was assigned to normal glomeruli,
one was assigned to glomeruli with mesangial expansion, two was
assigned to glomeruli in which sclerosis encompassed less than 50% of
the glomerulus, three was assigned to glomeruli with lesions that
encompassed 50-75% of the glomerulus, and four was assigned to
glomeruli with lesions encompassing more than 75% of the glomerulus,
including fully collapsed glomeruli. For each animal, GS was evaluated
in 25-50 glomeruli and averaged to obtain a mean value for that animal.
Statistical analysis was carried out on the mean values from each group of
animals, with N = 6 rats in each of the four groups. We observed reduced
glomerulosclerosis in five out of six Trpc6°*! rats. This effect was
significant by two-way ANOVA and post hoc test

TRPC6. However, pharmacological criteria (e.g., inhibition
by SAR7334) and molecular criteria such as effects of knock-
down [20] or knockout [36, 37], or empty vector controls in
heterologous expression systems, are more definitive. In this
regard, ATP-activated currents in podocytes are also eliminat-
ed after TRPC6 knockdown [21].
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Fig. 6 Kidney fibrosis in chronic
PAN nephropathy is reduced in a
Trpe6®/®! rats. a Immunoblot

KDa

analysis of x-SMA abundance of
renal cortex indicates that fibrosis 42 —
in PAN-treated Trpc6™"™ rats is
more severe than in Trpc6™®/4. b
Masson’s trichrome staining
showing that fibrosis extends to 42 =
tubulointerstitial areas during
chronic PAN nephrosis

c
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The core observation in this study is that 7rpc6°®% rats
had less severe kidney disease than Trpc6™"™ controls during
the chronic phase when FSGS lesions are present. By contrast,
we did not see a protective effect during the acute phase of
PAN nephrosis. The acute stage of PAN nephrosis is caused
by severe oxidative stress resulting from the metabolism of
PAN within podocytes, and it bears noting that the lesions
typical of FSGS are not present during the acute stage, even
though albuminuria is severe [1, 25, 26].

The effect of the deletion in Trpc6°®% in rats, as in ZTrpc6
" mice studied previously, is probably global. Therefore, there
is no reason to attribute all of the protective effects to changes
the TRPC6 channels in podocytes, because these channels are
expressed in other cell types, including glomerular mesangial
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cells [11, 39, 40]. Indeed, it is possible that a portion of the
protective effects observed in Trpc6%/! rats reflects at least
mild immunosuppression, as is seen in reduced inflammation
associated with airway allergic responses in Trpc6 " mice
[41]. TRPC6 channels contribute to Ca** responses in macro-
phages [37], T cells [42], and neutrophils [43] and may also
play a role in allowing trans-epithelial migration of leu-
kocytes [44, 45]. TRPC6 channels also contribute to fi-
broblast activation in kidney following unilateral ureteral
obstruction in mice [46, 47]. This could explain in part
why the reduction of fibrosis in our model was particular-
ly marked. We observed reduced numbers of CD68-
positive monocytes and/or macrophages within the glo-
meruli of PAN-treated Tipc6/9! rats, which might occur
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Fig. 7 Tipc6 exon 2 deletion
reduces infiltration of CD68- a
expressing cells into glomeruli of
PAN-treated animals. a Examples
of immunohistochemistry using
the monoclonal antibody ED-1,
which is directed against CD68, a
marker for macrophages and
monocytes of myeloid lineage.
Inset in lower right panel is shown
at higher magnification in b. ¢
Mean + SEM of the average
number of ED-1 stained cells per
glomerular cross section in each
animal (N = 6 rats per group). It
should be noted however that we
did not make serial sections
through entire glomeruli. Cells
were counted by an observer
blind to the nature of the treatment

groups

if TRPC6 was required for their full activation, migration,
or secretion of immune modulators.

While we cannot exclude a role for TRPC6 in
immunomodulation in PAN nephrosis, FSGS is generally
considered to be a podocyte disease, and there is a report
that podocyte-specific over-expression of TRPC6 results
in glomerular disease in mice [16]. In the rat model
studied here, following a loss of a threshold number of
podocytes during the acute phase of PAN nephrosis [1],
podocytes on the remaining capillary tufts are subjected
to increased hydrostatic pressures that can drive their
detachment [2, 3, 26]. We have previously observed that
TRPC6 becomes active in response to mechanical stimuli
in rat podocytes [13, 20]. It is possible that shear and
expansile forces associated with glomerular
hyperfiltration lead to sustained and excessive activation

Trpc6 WYt Saline

Trpc6 de/del Saline

50 pm
C s P, <0.0001
5 8
a P<0.01
39 —
£
S 44
oo
S~
2
T 2
p
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© Saline  PAN Saline  PAN
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of TRPC6 in glomerular cells resulting Ca®* overload in
foot processes and changes in gene expression, including
upregulation of TRPC6 itself [48]. While such changes
may be adaptive in the short term, it is possible that
sustained activation of TRPC6 eventually increases the
loss of podocytes.

The protection seen in Trpc6® rats, while statistically
and biologically robust, was not complete in the later chronic
phase of PAN nephrosis (60 days). Clearly, there are multiple
processes involved in the pathogenesis of chronic kidney dis-
ease and it may be unrealistic to expect complete protection to
result from any single manipulation. It is possible that the
effect would be more complete if other TRPC channels, such
as TRPCS and/or TRPC3, were also suppressed. TRPCS is
expressed in podocytes [13, 49, 50] and has been suggested to
play a role in nephrotic syndromes [51, 52] and can be

el/del
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Fig. 8 Tipc6 exon 2 deletion
reduces ultrastructural changes
evoked by chronic PAN. These
transmission electron
micrographs were prepared from
the same animals of Fig. 3 after
sacrifice. a In Trpe6™”™ animals,
chronic PAN nephrosis was
associated with extensive foot
process effacement and marked
thickening and disruption and
thickening of glomerular
basement membrane (left). Many
capillary loops no longer had
discernible foot processes. In
Trpcédcl/dCI rats, we still observed
some effacement and thickening
of foot processes. However,
ultrastructure was substantially
closer to normal (right). b Trpc6
exon 2 deletion has no effect on
glomerular ultrastructure in
saline-treated rats. ¢
Quantification of the effects of
exon 2 deletion on mean foot
process width (FPW) and GBM
thickness (GBMW) in saline- and
PAN-treated animals

Saline

mobilized to surface under in vitro conditions designed to
mimic severe primary FSGS [13]. While we observed that
TRPCS5 abundance was not altered in the chronic PAN model
or in Trpc6% rats, it is possible that TRPC5 is more impor-
tant in other forms of kidney disease or in other experimental
models. TRPC3 was more abundant in renal cortex of
Trpe6°/%! animals compared to saline-treated Trpc6™"™ lit-
termates. Chronic PAN nephrosis also led to an increase of
TRPC3 abundance in TrpctSVWWt animals. However, renal cor-
tical TRPC3 did not increase further following PAN treatment
in Trpc6®4 rats (Supplemental Fig. 5).

In summary, we have CRISPR/Cas9 methods to delete a
portion of the Trpc6 gene in rats, resulting in a strongly
hypomorphic allele that is missing portions of the channel
thought to be required for assembly, and which appears to
be non-functional. Animals homozygous for that deletion
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had less kidney disease in the chronic PAN nephrosis model
as assessed by multiple measures. These observations have
been made in a different species than has been used in previ-
ous studies on TRPC6 and in a model that produces severe
disease that closely resembles that seen in humans. These
observations support therapeutic strategies based on inhibition
of TRPC6 channels or targeting the pathways that lead to their
dysregulation.
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