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We investigated the role of H-Ras in chemokine-induced integrin regulation in leukocytes.
Stimulation of Jurkat T cells with the CXC chemokine stromal cell-derived factor-la (SDF-1«)
resulted in a rapid increase in the phosphorylation, i.e., activation of extracellular signal receptor-
activated kinase (ERK) but not c-Jun NH,-terminal kinase or p38 kinase, and phosphorylation of
Akt, reflecting phosphatidylinositol 3-kinase (PI3-K) activation. Phosphorylation of ERK in Jurkat
cells was enhanced and attenuated by expression of dominant active (D12) or inactive (N17) forms
of H-Ras, respectively, while N17 H-Ras abrogated SDF-1a-induced Akt phosphorylation. SDF-1a
triggered a transient regulation of adhesion to intercellular adhesion molecule-1 (ICAM-1) and
vascular cell adhesion molecule-1 mediated by lymphocyte function antigen-1 (LFA-1) and very
late antigen-4 (VLA-4), respectively, and a rapid increase in LFA-1 binding to soluble ICAM-1.1g,
which was inhibited by D12 but not N17 H-Ras. Both D12 and N17 H-Ras abrogated the
regulation of LFA-1 but not VLA-4 avidity, and impaired LFA-1-mediated transendothelial
chemotaxis but not VLA-4-dependent transmigration induced by SDF-1a. Analysis of the mutant
Jurkat J19 clone revealed LFA-1 with constitutively high affinity and reduced ERK phosphoryla-
tion, which were partially restored by expression of active H-Ras. Inhibition of PI3-K blocked the
up-regulation of Jurkat cell adhesion to ICAM-1 by SDF-1a, whereas inhibition of mitogen-
activated protein kinase kinase impaired the subsequent down-regulation and blocking both
pathways abrogated LFA-1 regulation. Our data suggest that inhibition of initial PI3-K activation
by inactive H-Ras or sustained activation of an inhibitory ERK pathway by active H-Ras prevail
to abolish LFA-1 regulation and transendothelial migration induced by SDF-1le in leukocytes,
establishing a complex and bimodal involvement of H-Ras.

INTRODUCTION Kooyk and Figdor, 2000). As a result, integrins may be

linked to important signaling processes, such as tyrosine

Integrins are heterodimeric transmembrane proteins and are
important for cellular adhesive functions during various
processes such as cell proliferation and development
(Springer, 1990; Hynes, 1992). Integrins may act as check-
points for signal transduction pathways originating from
inside the cell (inside-out signaling) or resulting from bind-
ing to its ligand (outside-in signaling) (Clark and Brugge,
1995; Dedhar and Hannigan, 1996; Humphries, 1996; Kola-
nus and Seed, 1997; Giancotti and Ruoslahti, 1999, van
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phosphorylation, and cellular events, such as actin cytoskel-
etal reorganization and focal adhesion formation. Numerous
studies have contributed to the understanding of the molec-
ular mechanisms that eventuate in integrin avidity regula-
tion and this has given rise to two predominant theories.
First, extracellular conformational changes in the molecule
may induce an increased affinity to ligand (Diamond and
Springer 1994; Humphries, 1996; Stewart et al., 1996). Sec-
ond, cytoskeletal release of integrins enabling their lateral
clustering may result in increases in integrin avidity (Lub et
al., 1997; Yauch et al., 1997; Hato et al., 1998; van Kooyk et al.,
1999).
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Although integrin activation may involve a combination
of clustering and affinity change, the contributions of each
mechanism may depend on the mode of stimulation. Inte-
grins may be activated in vitro by nonphysiological stimuli
such as divalent cations or activating monoclonal antibodies
(mAbs), which induce an extracellular conformational
change and thus an increase in affinity (Diamond and
Springer, 1994; Humphries, 1996; Stewart et al., 1996). On the
other hand, cellular stimulation of protein kinase C may
induce an increase in integrin avidity accompanied by cell
spreading (Stewart et al., 1996). During the sequential model
of leukocyte emigration, regulation of integrin activity is
important for the firm arrest and subsequent transendothe-
lial migration of leukocytes (Springer, 1994). In this model, it
has been suggested that integrin activation may occur as a
result of selectin cross-linking or the exposure to chemo-
kines (Springer, 1994; Simon ef al., 1995; Hwang et al., 1996;
Weber et al., 1996a,b; Peled et al., 1999; Simon et al., 2000).
Chemokines are a family of chemotactic cytokines released
by various tissues during inflammation (Baggiolini, 1998;
Nelson and Krensky, 1998). Although initially described as
mediators of chemotaxis, chemokines have also been dem-
onstrated to induce the firm arrest of cells and transmigra-
tion via the specific modes of avidity regulation for distinct
integrins, i.e., transient for lymphocyte function antigen-1
(LFA-1) and very late antigen-4 (VLA-4) and sustained for
Mac-1 or VLA-5 (Smith et al., 1989; Weber et al., 1996a,b,
1997a; Sadhu et al., 1998; Weber and Springer, 1998b).

In recent years, it has been described that the small GT-
Pases of the Ras family may also be involved in regulation of
integrin avidity (Zhang et al., 1996, Hughes et al., 1997;
O'Rourke ef al., 1998; Shibayama ef al., 1999; Tanaka et al.,
1999). The small GTPase R-ras has been found to increase the
avidity of Bl integrins, which was associated with cell
spreading (Zhang et al., 1996). In contrast, H-Ras acts as a
negative regulator of 81 and B3 integrin activation, which
was mediated by the Raf-1/extracellular signal receptor-
activated kinase (ERK) pathway and resulted in a decrease
in integrin affinity (Hughes et al., 1997). These studies were
largely restricted to malignant cell types or to integrins
expressed exogenously, i.e., not in their natural cellular con-
text. More recently, however, studies have found that in
leukocytes stimulated by T-cell receptor engagement or in-
terleukin-3 (IL-3), H-Ras may signal to activate the avidity of
B1 and B2 integrins independently of the Raf-1/ERK kinase
pathway, thereby suggesting a more complex role of H-Ras
in integrin activation (O'Rourke et al., 1998; Shibayama et al.,
1999). It has been shown that the CXC chemokine stromal
cell-derived factor-la (SDF-1«) and the chemoattractant fac-
tor formyl-methionyl-leucyl-phenylalanine can induce the
activation of two downstream effectors of Ras, i.e., rapid
activation of ERK and phosphatidylinositol 3-kinase (PI3-K)
(Ganju et al., 1998; Sotsios et al., 1999; Vicente-Manzanares et
al., 1999; Constantin et al., 2000; Tilton et al., 2000). Therefore,
we studied the role of H-Ras in the regulation of leukocytic
integrins in response to chemokines. Here we demonstrate
that H-Ras is involved in the transient avidity regulation of
the B2 integrin LFA-1 and transendothelial chemotaxis of
lymphocytes stimulated by SDF-la. Although the initial
up-regulation in LFA-1 avidity is dependent on PI3-K, the
subsequent down-regulation appears to be mediated by
ERK.
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MATERIALS AND METHODS

Cell Culture, mAbs, and Reagents

The T-lymphoma Jurkat cells were cultured as described (Weber et
al., 1997b). The J19 cell clone was generated by radiation mutagen-
esis. In brief, Jurkat cells were treated with y-irradiation producing
50% cell death. Cells were returned to culture, and cells expressing
LFA-1 in a constitutively active state were selected by immunopan-
ning on intercellular adhesion molecule-1 (ICAM-1). Single cell
colonies were screened by adhesion to ICAM-1 and the J19 cell clone
was used for further experiments. Flow cytometry and comparison
of purified LFA-1 in adhesion assays confirmed that the LFA-1
molecule in the J19 cells was unaltered. DNA sequencing of the oL
and B2 cytoplasmic domain cDNA generated by reverse transcrip-
tion-polymerase chain reaction in the wild-type (Jn.9) and the J19
cells was the same. The active (D12) and inactive (N17) forms of
H-Ras (kindly provided by Dr. A. Hall, University College, London,
United Kingdom) were subcloned into pcDNA3 (Invitrogen, Carls-
bad, CA). For stable transfections, cells were electroporated with
c¢DNA and selected in RPMI-1640 medium supplemented with 0.75
mg/ml geneticin (Invitrogen). Single cell colonies were screened by
immunoblotting for expression of H-Ras and phosphorylated ERK
(pERK). In addition, immunoblotting with a c-myc mAb directed
against a tag epitope preceeding the sequence of H-Ras mutant
constructs also revealed expression in transfectants our unpub-
lished data, thus distinguishing mutant from endogenous H-Ras. As
a control, cells were also transfected with pcDNA3 vector alone. For
select experiments with transient transfections, cells were cotrans-
fected with cDNA encoding H-Ras mutants and with cDNA encod-
ing a green fluorescence protein (GFP) by electroporation (107 cells
with 30 pg of cDNA in 250 ul at 300 V and 1200 uF; Zeitlmann et al.,
1998). The efficiency of transfection was assessed after 12 h by
analyzing GFP expression in a flow cytometer. Cell populations
transfected with an equivalent efficiency of >50% were instantly
used in adhesion assays. The TS1/22 mAb blocking aL(Sanchez-
Madrid et al., 1982) is available from American Type Culture Col-
lection (Rockville, MD) and blocking VLA-4 mAb HP1/2 was a kind
gift from Dr. Martin Hemler (Dana Faber Cancer Institute, Boston,
MA). mAbs to pERK, ERK, phosphorylated c-Jun NH,-terminal
kinase (JNK), JNK, phosphorylated-p38, p38, phosphorylated Akt,
Akt, and H-Ras were purchased from Santa Cruz Biotechnology
(Santa Cruz, CA) or New England Biolabs (Beverly, MA). The mAb
to CXCR4 was purchased from BD PharMingen (San Diego, CA).
SDF-1a was purchased from Pepro Tech (Rocky Hill, NJ). Recom-
binant soluble vascular cell adhesion molecule-1 (VCAM-1) was a
kind gift from Dr. R. Rothlein (Boehringer Ingelheim, Ridgefield,
CT) or was purchased from R & D Systems (Wiesbaden, Germany).
The 40-kDa fragment of fibronectin (FN40) containing the connect-
ing segment 1 was purchased from Invitrogen. All other reagents
were from Sigma (Deisenhofen, Germany) unless otherwise specified.

Immunoblotting

Cell lysates were made in sample buffer containing protease inhib-
itors and proteins were separated by SDS-PAGE. Membranes were
blocked in 5% milk/Tris-buffered saline (TBS) and incubated with
the indicated specific mAbs for 1 h or overnight, washed, incubated
with horseradish peroxidase-conjugated secondary antibody for 1 h,
and washed. Proteins were detected by enhanced chemilumines-
cence (Amersham Pharmacia Biotech, Freiburg, Germany).

Flow Cytometry

Cells were incubated with specific mAbs or the isotype control (10
pg/ml) for 30 min on ice, washed, and stained with fluorescein
isothiocyanate (FITC)-conjugated anti-mouse mAb for 30 min on
ice. Surface expression was then analyzed in an FACScan (BD
Biosciences, Heidelberg, Germany). To assess expression of GFP,
cells were lysed with 0.2% Triton X-100 on ice for 2 min, washed,
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and fluorescence intensity was measured by flow cytometry. For
soluble ICAM-1 binding assays, cells were reacted with increasing
concentrations of ICAM-1 fused with an Ig domain ICAM-1.Ig) in
TBS supplemented with 2 mM Mg?* and 1 mM Ca?* for 1 h at 37°C,
stained with FITC-conjugated goat anti-human IgG mAb on ice, and
analyzed by flow cytometry (Stewart et al., 1996; Geiger et al., 2000).
In some experiments, cells were incubated in TBS supplemented
with 10 mM Mg?"/1 mM EGTA to induce high-affinity LFA-1
receptors (Stewart et al., 1996). For analysis of SDF-la—induced
binding of ICAM-1, cells and transfectants were preincubated with
ICAM-1.Ig at 100 pg/ml and FITC-conjugated goat anti-human IgG
mAb mAb in TBS/2 mM Mg?*/1 mM Ca?* for 30 min, stimulated
with SDF-1a (1 pg/ml) for 1 min, removed from the soluble phase
by spin centrifugation at 400 X g for 1 min, fixed in 2% paraformal-
dehyde, and analyzed in an FACScan. After subtraction of unstimu-
lated background binding, induction of ICAM-1 binding was ex-
pressed as specific median fluorescence intensity stimulated by
SDF-1a.

Cell Adhesion Assays

Cell adhesion to ICAM-1 or VCAM-1 adsorbed at 10 ug/ml and
0.25-2.5 pg/ml, respectively, was performed as described (Weber et
al., 1996a,b). Proteins were coated onto 96-well microtiter plates
(Linbro Titertek; Eschwege, Germany) and nonspecific adhesion
was blocked by the addition 0.5% bovine serum albumin (BSA) in
HHMC (Hanks’ balanced salt solution, 10 mM HEPES pH 7.4, 1 mM
Mg?*, 1 mM Ca?") for 2 h at room temperature. Cells were labeled
with the fluorescent dye 2,7-biscarboxyethyl-5(6)-carboxyfluores-
cein acetaxymethyl ester (BCECF-AM) (1 ug/ml), and resuspended
in HHMC supplemented with 0.5% BSA. For inhibition of PI3-K or
mitogen-activated protein kinase kinase (MEK) kinase, cells were
preincubated with wortmannin (100 nM) and PD 98059 (20 uM)
(both Calbiochem, San Diego, CA), respectively, for 15 min at 37°C
and maintained in the assay. For mAb inhibition, cells were prein-
cubated with the indicated mAbs (10 pg/ml) for 30 min on ice and
maintained in the assay. Labeled cells (5 X 10% in 50 ul) were added
to ligand-coated wells in the presence of assay medium (control) or
stimuli. Nonadherent cells were removed by multiple rapid inver-
sions of the plate and washes in HHMC (flick wash) and fluores-
cence of input and adherent cells was quantified with a fluorescence
plate reader (Tecan-SLT; Tecan, Crailsheim, Germany). Specific
binding was expressed as percentage of input and are the mean +
SD of at least four separate experiments performed in triplicate.

Transendothelial and Transfilter Chemotaxis Assay

Isolation and culture of human umbilical vein endothelial cells
and transendothelial migration assays were performed as de-
scribed (Weber et al., 1996b). For transendothelial assays, human
umbilical vein endothelial cells were grown on collagen-coated
6.5-mm-diameter Transwell inserts (5 um pore size; Costar, Wies-
baden, Germany, MA). For chemotaxis assays, the Transwell
inserts were coated overnight with the specific VLA-4 ligand
FN40 or VCAM-1 (10 and 0.5 ug/ml, respectively), washed, and
blocked with RPMI-1640 supplemented with 0.5% BSA or were
left untreated (bare filter assay). For inhibition experiments, cells
were pretreated with blocking mAbs for 30 min on ice before
being added to the assay. Chemokines in assay medium (RPMI-
1640/medium 199, 0.5% BSA) were added to 24-well tissue cul-
ture plates. Transwells were inserted and cells added to the top
chamber. A dilution of cells served as a measure of input. Jurkat
cells were allowed to transmigrate across filters coated with
endothelial cells for 4 h or across bare or protein-coated filters for
3 h. Input and transmigrated cells were counted by microscopy
and in an FACScan with the use of appropriate light scatter gates.
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RESULTS

CXC Chemokine SDF-1a Selectively Phosphorylates
Mitogen-activated Protein (MAP) Kinase ERK and
Akt

To study the effect of chemokine stimulation on the H-Ras/
Raf-1/MAP kinase pathway, Jurkat T lymphoma cells,
which endogenously express the SDF-1a receptor CXCR4
(Hesselgesser et al., 1998), were stimulated with the CXC
chemokine SDF-1e, and the phosphorylated forms of the
MAP kinases, ERK, JNK, and p38, were detected by immu-
noblotting with the use of specific mAbs. Stimulation of
Jurkat cells with 1 pug/ml SDF-1a for different periods of
time resulted in a rapid and pronounced increase in the
levels of phosphorylated, i.e., activated ERK, which reached
a maximum at 1 and 5 min before being gradually down-
regulated at later time points (Figure 1A). In contrast, the
phosphorylation of JNK or p38 kinase was not significantly
up-regulated in response to SDF-1q, which is consistent with
a previous report (Figure 1A; Ganju ef al., 1998). These
results were confirmed by quantitative densitometry com-
paring levels of phosphorylated relative to total protein
(Figure 1B). The induction of ERK phosphorylation by
SDF-1a was dose-dependent with maximal effects occurring
at 1 pg/ml, whereas the total amounts of ERK remained
unaltered (Figure 1C). In addition, SDF-1« induced a rapid
increase in the levels of phosphorylated Akt, a downstream
target of PI3-K (Figure 1D). Our data reveal that SDF-la
triggers activation, i.e., phosphorylation of ERK, as well as
phosphorylation of Akt, indicative of PI3-K activation.

H-Ras Selectively Regulates Phosphorylation of
ERK and Akt but not [NK or p38 Kinase

It has been reported that integrin activity may be regu-
lated specifically via the H-Ras/Raf-1/ERK kinase path-
way (Hughes et al., 1997). To directly investigate the in-
volvement of H-Ras in the regulation of integrin avidity
by chemokines in the physiological context of a leukocyte,
we transfected Jurkat cells with dominant active (D12
H-Ras) and inactive (N17 H-Ras) forms of H-Ras. Trans-
fection with both H-Ras mutants resulted in a severalfold
increase in the H-Ras protein levels in selected clones and
expression of a tag epitope, as assessed by immunoblot-
ting and quantitative densitometry, indicating overex-
pression of the mutants (Figure 2A; our unpublished
data). Jurkat clones (i.e., 22 or 23) selected after transfec-
tion with D12 H-Ras revealed increased levels of phos-
phorylated ERK compared with vector-transfected cells
(Figure 2B). Conversely, Jurkat clones (i.e., 14 or 36) ex-
pressing N17 H-Ras exhibited lower levels of phosphor-
ylated ERK compared with vector-transfected cells. In
contrast, levels of phosphorylated JNK or p38 and total
expression of the MAP kinases were not significantly
affected by expression of D12 or N17 H-Ras (Figure 2B).
The expression of inactive N17 H-Ras almost completely
abrogated Akt phosphorylation in response to SDF-1a,
whereas the increase in ERK phosphorylation was only
slightly impaired in comparison with wild-type Jurkat
cells, as revealed by densitometrical quantification (Fig-
ure 2C; our unpublished data). Thus, these data indicate
that H-Ras is complexly and intricately involved in sig-
naling pathways triggered by SDF-1a.

Molecular Biology of the Cell



H-Ras and LFA-1 Regulation

A B
PERK »- S e S e -
—#— pERK
“ —&— pINK
(otal ERK 3 T IS I 30 S - = 53310_ —e— p-p38
| ) i
pJNK2 & ——— ——  — — Eg
ot v R R ——— g%g 5
ggg
reskce = SN NBEEOE ",
— . ol 1 5 10 20 30 45 60
total p38 kinase - P NP - - o
g ; SDF-1a stimulation (1pug/ml)
0 1 5 10 20 30 45 60 Time (min)
SDF-1a stimulation (1pg/ml)
Time (min)
C k> - == P ———
walERK » S total Akt - e
0 1 10 100 1
I_—;gf-l_nl—l - 0 1 5 10 20 30
SDF-1a stimulation (1pg/ml)
SDF-1a stimulation Time (min)

Figure 1. SDF-la induces substantial phosphorylation of ERK and Akt but not JNK or p38. Jurkat cells were stimulated with SDF-1a (1
pg/ml) for indicated periods (A, B, and D) or with SDF-1« at indicated concentrations (C). Cell lysates were separated by 10% SDS-PAGE
and specific mAbs were used to detect phosphorylated and total ERK (A-C), JNK, and p38 kinase (A and B) or Akt (D). Shown are
representative blots from at least three separate experiments or quantitative densitometry (B) expressed as phosphorylated relative to total

protein (percentage of control) of a representative experiment.

Involvement of H-Ras in Regulation of LFA-1 but
not VLA-4 Avidity Induced by SDF-1a

It has previously been demonstrated that chemokines in-
duce the transient activation of the integrins LFA-1 and
VLA-4 to their ligands ICAM-1 and VCAM-1, respectively
(Campbell et al., 1998; Weber et al., 1996b, 1999a; Constantin
et al., 2000), which may be of particular relevance for cell
migration and transendothelial chemotaxis. To study the
potential role of H-Ras in the regulation of these integrins,
we performed static adhesion assays on ICAM-1 and
VCAM-1 with the use of the Jurkat D12 and N17 H-Ras
transfectants stimulated with SDF-1a. The surface expres-
sion of LFA-1, VLA-4, and the SDF-1a receptor CXCR4 on
vector-transfected Jurkat cells, Jurkat/D12 H-Ras clone 22,
and Jurkat N17/H-Ras clone 36 was compared by flow
cytometry, confirming equivalent levels of expression and
indicating that transfection of mutant forms of H-Ras did
not interfere with the transcriptional or translational regu-
lation of these molecules (Figure 3). Moreover, the total
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expression levels of the signaling kinases ERK, JNK, p38,
and Akt were unaffected by stable transfection with the
H-Ras mutants (Figure 2), providing further evidence that
the regulation of genes involved in the processes studied
was unaltered. Adhesion assays demonstrated that SDF-1a
triggered the transient adhesion of wild-type Jurkat cells to
immobilized ICAM-1 or VCAM-1 (Figure 4, A and C). The
binding was mediated by LFA-1 and VLA-4, respectively, as
confirmed by blocking with specific mAbs (Figure 4, A and
C). Both D12 and N17 H-Ras impaired the transient regula-
tion of LFA-1 avidity induced by SDF-la (Figure 4A). In
contrast, neither the active nor inactive form of H-Ras af-
fected the regulation of VLA-4 avidity at different substrate
densities of VCAM-1 (Figure 4C; our unpublished data).
Moreover, both forms of H-Ras partially impaired Jurkat cell
adhesion to ICAM-1 induced by the phorbol ester phorbol-
12-myristate-13-acetate (PMA) (Figure 4B), whereas only the
inactive form of H-Ras appeared to slightly inhibit PMA-
induced adhesion to VCAM-1 (Figure 4D). These data sug-
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Figure 2. Expression of dominant active (D12) or inactive (N17) forms of H-Ras results in a selective regulation of phosphorylated ERK.
Jurkat cells were stably transfected with vector alone, active (D12) or inactive (N17) H-Ras. Cell lysates from selected clones were separated
by 10% SDS-PAGE and specific mAbs were used to detect total H-Ras (A), and phosphorylated and total ERK, JNK, and p38 kinase (B).
Jurkat/N17 H-Ras transfectants were stimulated with SDF-1a (1 pg/ml) for indicated times, cell lysates were separated by 10% SDS-PAGE,
and specific mAbs were used to detect phosphorylated and total ERK and Akt (C). Shown are representative blots from at least three separate

experiments.

gest that H-Ras is involved in chemokine-induced regula-
tion of LFA-1 but not VLA-4 avidity. To exclude that these
observations were complicated by the use of stably trans-
fected cell lines derived from single clones resulting in sec-
ondary adaptions, e.g., selection for altered regulation of
other genes, or effects induced by the H-Ras mutants on the
mRNA transcription of other signaling elements, we also
performed select experiments with cells transiently trans-
fected with the same constructs. Expression of a GFP protein
confirmed that the transfection efficiency was equivalent
among the cell populations used (Figure 5A). Adhesion
assays on immobilized ICAM-1 indeed confirmed that the
transient expression of either D12 or N17 H-Ras impaired
the regulation of LFA-1 avidity by SDF-1« (Figure 5B).

Role of H-Ras in LFA-1-mediated Transendothelial
Chemotaxis Stimulated by SDF-1a

Because both 81 and B2 can contribute to transendothelial
chemotaxis of leukocytes, we performed chemotaxis as-
says toward an SDF-la gradient with the use of the D12
and N17 H-Ras transfectants. Across bare filters, wild-
type Jurkat cells, or D12 or N17 H-Ras transfectants re-
vealed comparable levels of integrin-independent migra-
tion induced by SDF-1a (Figure 6A), confirming that the
intrinsic motility of these cell types was equivalent (We-
ber et al., 1997a). In contrast, both D12 H-Ras and N17

3078

H-Ras significantly impaired transmigration across filters
coated with endothelial cells, toward an SDF-1a gradient
(Figure 6B). Inhibition with a blocking mAb to LFA-1
demonstrated that transendothelial chemotaxis of wild-
type Jurkat cells was largely LFA-1-dependent, whereas
blocking LFA-1 expressed on D12 or N17 H-Ras transfec-
tants did not affect transmigration (Figure 6B). Thus, these
data confirm a requirement for dynamic regulation of
LFA-1 during transendothelial chemotaxis and implicate
an important role for H-Ras in controlling this process. In
transmigration experiments across filters coated with the
specific ligands of VLA-4, the 40-kDa fragment of fi-
bronectin containing connecting segment 1 or VCAM-1,
we did not observe a significant difference in the chemo-
taxis of wild-type Jurkat cells, or D12 or N17 H-Ras trans-
fectants induced by SDF-1a (Figure 6C; our unpublished
data). Inhibition of VLA-4 equivalently increased trans-
migration across FN40-coated filters (Figure 6C). This is
most likely due to the constitutively active state of VLA-4
expressed on Jurkat cells, and confirms previous observa-
tions that the inhibition of this VLA-4 activity facilitates
transmigration of Jurkat cells (Weber et al., 1996b). These
data indicate that H-Ras mutants did not affect VLA-4—
dependent transmigration, and thus parallel and further
support our findings that H-Ras specifically participates
in LFA-1 but not VLA-4 avidity regulation by chemokines.

Molecular Biology of the Cell
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H-Ras May Act as Negative Regulator of LFA-1
Affinity Induction via Raf-1/ERK Kinase

The ability of H-Ras to suppress integrin activation has been
described in Chinese hamster ovary cell transfectants
(Hughes et al., 1997). In leukocytes stimulated by T-cell
receptor engagement or IL-3, H-Ras has been found to me-
diate an induction of integrin avidity via cytoskeletal chang-
es; however, a direct involvement of the Raf-1/ERK kinase
has not been demonstrated (O'Rourke ef al., 1998; Tanaka et
al., 1999). This may be due to a difference in the affinity state
of the integrin, depending on cellular environment. Hence,
we characterized the mutant cell clone J19, expressing LFA-1
in a constitutively active form. As previously described (We-
ber et al., 1999a), surface expression of LFA-1, comparison of
purified LFA-1 in adhesion assays, and DNA sequencing of
al and B2 cytoplasmic domain cDNA generated by reverse
transcription-polymerase chain reaction confirmed that the
LFA-1 molecule expressed by the J19 cells was unchanged to
that of the wild-type Jurkat clone (Jn.9), suggesting the pres-
ence of a signaling defect (our unpublished data). Analysis
of the level of phosphorylated ERK in the Jurkat and J19 cells
revealed a significantly reduced level of phosphorylated
ERK in the J19 cells, suggesting a defect in the H-Ras/Raf-
1/ERK pathway (Figure 7A). In contrast, we did not observe
a significant difference in the levels of JNK and p38 phos-
phorylation or in the total expression of the MAP kinases in
Jurkat and J19 cells (Figure 7A). To determine whether the
levels of phosphorylated ERK could be restored by H-Ras,
we overexpressed dominant active D12H-Ras in J19 cells
(Figure 7B). Transfection of J19 cells with dominant active
D12 H-Ras at least partially restored the levels of phosphor-
ylated ERK without affecting expression of total or phos-
phorylated JNK and p38 kinase (Figure 7A). Flow cytometric
analysis confirmed equivalent levels of LFA-1 on J19 cells
and J19/D12 H-Ras transfectants (Figure 8A). In adhesion
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assays, the binding of unstimulated J19/D12 H-Ras trans-
fectants to immobilized ICAM-1 was significantly lower
than that observed with the mutant J19 cells (Figure 8B). To
investigate whether the J19 cells express LFA-1 in a high-
affinity form, we performed soluble binding assays to
ICAM-1.Ig. Consistent with a previous report (Stewart ef al.,
1996), we found that the binding of soluble ICAM-1 in the
presence of Mg?* and Ca?* low on resting Jurkat cells but
can be increased by removing Ca?* in am Mg/EGTA buffer
(Figure 8C). Specific binding was confirmed by preincuba-
tion with a blocking mAb to LFA-1 (Figure 8C). Notably, we
observed that J19 cells bound ICAM-1 more efficiently than
wild-type cells even in the presence of Ca 2%, indicating the
expression of receptors in a high-affinity form (Figure 8C).
However, transfection of J19 cells with D12 H-Ras reduced
the binding of soluble ICAM-1.Ig (Figure 8C). In addition,
we investigated the effects of the H-Ras mutants on the
binding of soluble ICAM-1 to wild-type Jurkat cells induced
by SDF-1a. In accordance with a previous study (Constantin
et al., 2000), we found that wild-type Jurkat cells rapidly
bound soluble ICAM-1 in response to SDF-1a (Figure 8D).
Moreover, the rapid increase in LFA-1-dependent binding
of soluble ICAM-1.Ig stimulated by SDF-1a at 1 min was
inhibited by dominant active D12 H-Ras but not by domi-
nant inactive N17 H-Ras (Figure 8D). These experiments
infer that active H-Ras may impair the induction of high-
affinity receptors by SDF-1a. Together, our data indicate that
H-Ras can negatively regulate the high-affinity form of
LFA-1, thereby reducing cell adhesion to ICAM-1.

Activation of LFA-1 by SDF-1a Depends on PI3-K,
whereas Down-Regulation Is Mediated by ERK

Known effectors of H-Ras, e.g., Raf-1/ERK kinase pathway
and PI3-K, have been implicated in integrin regulation. Al-
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though the Raf-1/ERK kinase pathway may mediate a sup-
pression in integrin affinity, PI3-K has been shown to be
involved in the activation of integrins (Hughes et al., 1997;
Capodici et al., 1998; Nagel et al., 1998; Constantin et al.,
2000). Because the transient regulation of LFA-1 avidity by
SDF-1a was impaired by both the active and inactive forms
of H-Ras, we investigated whether this pattern of regulation
was mediated by sequential signals via PI3-K and the Raf-
1/ERK kinase pathway. Adhesion assays with Jurkat cells to
immobilized ICAM-1 demonstrated that inhibition of PI3-K
with wortmannin resulted in an impairment of the initial
increase in LFA-1-mediated adhesion; however, at later time
points, the levels of adhesion observed were similar to that
of untreated Jurkat cells (Figure 9A). In contrast, inhibition
of MEK kinase with PD 98059 did not affect the level of
adhesion at early time points; however, the subsequent de-
crease in adhesion was impaired (Figure 9C). Thus, it ap-
pears that SDF-la activation of LFA-1 involves an early
up-regulation of adhesion via PI3-K and a subsequent
down-regulation of adhesion was mediated by the Raf-1/
ERK kinase pathway. The striking parallel between the ef-
fects on LFA-1 avidity regulation exerted by stable expres-
sion of dominant inactive and active H-Ras mutants and by
treatment with pharmacological inhibitors of H-Ras effectors
is further indicative of the notion that the effects observed
were unlikely due to alterations in gene regulation or adap-
tations induced by the transfections. In contrast, adhesion
assays on immobilized VCAM-1 revealed that the transient
regulation of VLA-4 avidity was not significantly altered by
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represent the mean = SD of at least four separate
experiments performed in triplicate.

inhibition of either PI3-K or ERK at different substrate den-
sities of VCAM-1 tested (Figure 9, B and D; our unpublished
data). It has been reported that PI3-K might activate MEK
kinase and subsequently ERK (King et al., 1997). This sug-
gests that the down-regulation of LFA-1 avidity induced by
ERK may occur as a result from the early activation of PI3-K.
Notably, in combination, inhibition of PI3-K and MEK ki-
nase resulted in a gradual increase in adhesion to ICAM-1
but did not affect the regulation of adhesion to VCAM-1
(Figure 9, E and F). This indicates that SDF-la induced
regulation of LFA-1 avidity requires a sequential involve-
ment of both pathways downstream of H-Ras.

DISCUSSION

In this report, we demonstrate that the small GTPase H-Ras
is involved in the regulation of integrin avidity and leuko-
cyte chemotaxis induced by the CXC chemokine SDF-1a.
Furthermore, investigation of the downstream effectors of
H-Ras revealed that the sequential action of PI3-K and ERK
participated in mediating the transient regulation of LFA-1
avidity by chemokines.

It has previously been reported that H-Ras can negatively
regulate integrin activation via the Raf-1/MEK/ERK kinase
pathway (Hughes et al., 1997). In this study, it was demon-
strated that H-Ras impairs expression of the allbB3 activa-
tion epitope recognized by the reporter mAb PACI in Chi-
nese hamster ovary transfectants, suggesting that it may
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Figure 5. Adhesion of Jurkat cells transiently transfected with
H-Ras mutants on ICAM-1. (A) Cells were transiently cotransfected
with vector, or D12 or N17 H-Ras together with a cDNA-encoding
GFP. Expression of GFP was measured by flow cytometry. (B)
Adhesion of vector, D12 and N17 H-Ras Jurkat transfectants to
ICAM-1. Transfectants labeled with BCECF-AM were stimulated
with SDF-1a (1 pg/ml) and allowed to adhere to ICAM-1 for
indicated times. Nonadherent cells were removed by a flick wash.
Fluorescence of input and adherent cells was measured in a fluo-
rescence plate reader. Data represent the mean * SD of three
experiments.

function to suppress the affinity of the integrin (Hughes et
al., 1997). Our results now provide three separate lines of
evidence to support this concept. First, characterization of
the mutant J19 cells, which express LFA-1 in a high-affinity
state revealed a reduced amount of phosphorylated ERK,
suggestive of a signal transduction defect. Transfection of
J19 cells with the active form of H-Ras restored the level of
phosphorylated ERK and reduced constitutive LFA-1 affin-
ity, indicating that H-Ras may negatively regulate the activ-
ity of LFA-1 in leukocytes when expressed in a high-affinity
state. Second, expression of active D12 H-Ras inhibited the
rapid increase in LFA-1 binding to soluble ICAM-1 induced
by SDF-1a. Third, specific inhibition of MEK kinase with PD
98059 inhibited the down-regulation of LFA-1-mediated ad-
hesion in response to SDF-1a. Together, these findings sug-
gest that the H-Ras/ERK pathway can suppress a high-
avidity state of LFA-1 induced by chemokines in leukocytes,
and may also imply an active role for H-Ras in the down-
regulation of LFA-1 activity by chemokines.

We found that both active and inactive forms of H-Ras
impaired the modulation of LFA-1 avidity by SDF-la. Al-
though the down-regulation of LFA-1 avidity appeared to
be mediated by the ERK pathway, activation of PI3-K was
responsible for the rapid increase in LFA-1-dependent ad-
hesion. Notably, our results indicate that N17 H-Ras only
slightly impaired the increase in ERK phosphorylation but
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almost completely abrogated Akt phosphorylation in re-
sponse to SDF-1a. These differences may reflect that SDF-1 is
a very potent stimulus for ERK phosphorylation as evident
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in wild-type Jurkat cells, whereas PI3-K activation may be
more susceptible to dominant inactive H-Ras. This was con-
sistent with a report (Shibayama et al., 1999) demonstrating
that pERK was still up-regulated upon IL-3 stimulation in
cells expressing dominant inactive H-Ras. Alternatively, an
upstream regulator of ERK may bypass H-Ras. Neverthe-
less, it should rather be emphasized that the effects of N17
H-Ras are most likely due to the inhibition of PI3-K activa-
tion. A recent report has shown that activation of LFA-1 by
chemokines involves a rapid increase in both lateral cluster-
ing and affinity changes (Constantin et al., 2000). Although
PI3-K appeared to be important in mediating lateral mobil-
ity, it did not play a direct role in inducing the high-affinity
state of LFA-1, although PI3-K-dependent lateral mobility
may facilitate the induction of high-affinity receptors. Nota-
bly, our findings that dominant inactive N17 H-Ras, which
predominantly inhibits PI3-K activation, did not interfere
with the induction of soluble ICAM-1 binding by SDF-1a
would support that PI3-K is not involved in the up-regula-
tion of LFA-1 affinity.

As a direct effector of H-Ras, PI3-K has been implicated in
integrin activation and cell adhesion (Rodriguez-Viciana et
al., 1994; Kolanus and Seed, 1997; Jones et al., 1998). PI3-K
has been demonstrated to activate LFA-1-mediated adhe-
sion by inducing the membrane recruitment of cytohesin-1,
which directly interacts with the B2 subunit (Nagel et al.,
1998). It has also been shown that activation of PI3-K may be
important for the activation of the Raf-1/ERK pathway
(King et al., 1997; Chaudhary et al., 2000). Because inhibition
of PI3-K has been shown to impair ERK phosphorylation by
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chemokines (Sotsios et al., 1999), this suggests that a sequen-
tial involvement of PI3-K and ERK may play a role in the
transient regulation of LFA-1 avidity by chemokines. Thus,
although inactive H-Ras impairs activation of PI3-K neces-
sary for the early up-regulation in LFA-1 avidity, overex-
pression of dominant active H-Ras may predominantly in-
duce the Raf-1/ERK kinase pathway impairing LFA-1
activation by chemokines. It has also been reported that
PI3-K may be involved in the activation of the B2 integrin
Mac-1 by the chemoattractant formyl-methionyl-leucyl-phe-
nylalanine, independently of ERK (Capodici et al., 1998). In
addition, active H-Ras can cause sustained LFA-1-specific
adhesion to ICAM-1 or endothelial cells, which was medi-
ated by PI3-K and triggered by immobilized or endogenous
MIP-1« (Tanaka et al., 1999). In contrast, we and others have
found that soluble SDF-1a induced a transient increase in
LFA-1 avidity (Campbell et al., 1998; Weber et al., 1999a;
Constantin et al., 2000). These differences may suggest che-
mokine-specificity in signaling pathways, which may then
influence integrin regulation.

In contrast to LFA-1, we did not observe any effect of
dominant inactive or active H-Ras mutants on VLA-4 regu-
lation or VLA-4-dependent chemotaxis of Jurkat cells in-
duced by SDF-1a. Our findings demonstrate that neither the
H-Ras/Raf-1/ERK pathway nor PI3-K was involved in
VLA-4 activation by SDF-1a and thus support a recent find-
ings in myeloma cells (Sanz-Rodriguez et al., 2001). Our data
thus confirm that the mechanisms involved in chemokine-
induced activation of 81 and 2 integrins may differ (Weber
et al., 1996b). It has been proposed that the transient activa-
tion of VLA-4 by chemokines is independent of changes in
affinity or conformation. Rather, chemokines have been
shown to induce a transient avidity regulation of VLA-4
expressed on monocytes and eosinophils in a manner de-
pendent on actin cytoskeletal rearrangements (Weber et al.,
1996a,b). Although the involvement of PI3-K in regulation of
LFA-1 avidity appears to depend on the substrate density
(Constantin et al., 2000), we did not observe any effects of
wortmannin or LY29004 on VLA-4 adhesion to very low
concentrations of VCAM-1 (our unpublished data). The fact
that VLA-4 regulation did not appear to be affected by the
pathways studied may also reflect or be due to a preexisting
relatively high-avidity state of VLA-4 expressed on unstimu-
lated Jurkat cells. In extension, this may infer that PI3-K and
ERK are only involved in the chemokine regulation of inte-
grins (e.g., LFA-1), which are maintained in a default low-
affinity state under resting conditions.

Recently, it has been reported that the Src kinase Lck may
be associated with a preexistent high-affinity state of VLA-4
(Feigelson et al., 2001). Lck kinase may up-regulate VLA-4
affinity and may thereby facilitate rapid spontaneous, as
well as chemokine-induced adhesion of T cells mediated by
VLA-4. However, stimulation of ERK in response to chemo-
kines was independent of the presence of Ick kinase and this
also supports our findings that the H-Ras/Raf/ERK kinase
pathway is not involved in VLA-4 avidity regulation by
chemokines. Although our findings did not reveal a role for
H-Ras in VLA-4 activation, this does not exclude that VLA-4
plays a crucial role in leukocyte recruitment in vivo and in
vitro. In contrast to stimulation with chemokines, H-Ras has
been found to signal VLA-4 activation induced by IL-3,
which was however not dependent on PI3-K (Shibayama et
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al., 1999) and has been implicated in LFA-1 activation after
T-cell receptor engagement (O’Rourke et al., 1998). This in-
fers that the involvement of H-Ras may not only be integrin
specific but also fundamentally dependent on the type of
stimulus.

We observed that expression of either the active or inac-
tive forms of H-Ras impaired transendothelial migration to
SDF-1a, which was largely dependent on LFA-1, as demon-
strated by blocking with LFA-1 mAb (Weber et al., 1997a).
Both PI3-K and ERK have been implicated in leukocyte
chemotaxis (Turner et al., 1995; Weber et al., 1998a; Sotsios et
al., 1999). Given the role of H-Ras in LFA-1 avidity regula-
tion, this confirms the requirement for a dynamic regulation
of LFA-1 during chemotaxis across unstimulated endothe-
lium (Weber et al., 1996b, 1997a). Another mechanism impli-
cating H-Ras during cell migration is the effects on actin
cytoskeletal remodeling. H-Ras may induce cell spreading
and active H-Ras has been shown to increase the chemotac-
tic migration of skeletal myoblasts (Rodriguez-Viciana et al.,
1997; Suzuki et al., 2000). However, it has also been reported
that active Raf-1 induced rounding of cells of fibronectin and
that a reduction in H-Ras activity may be important in the
initiation of migration (Lee et al., 1996; Hughes et al., 1997).
Our findings suggest that a cyclical activity of H-Ras is
necessary for leukocyte chemotaxis, which may reflect the
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dynamic regulation of LFA-1 but does not exclude effects on
the actin cytoskeleton. This extends findings that the regu-
lation of another small GTPase, i.e., cdc42, is critical for
chemokine-induced transendothelial migration of leuko-
cytes by mediating actin-based filopodia formation and po-
larization rather than by affecting integrin avidity (Weber et
al., 1998a).

Cell migration requires the coordination of multiple inter-
dependent cellular events involving numerous signaling
molecules. During this process, activation and deactivation
of integrins are important in the dynamic adhesive steps
critical for cell migration. Furthermore, integrins may trigger
various downstream cellular signaling pathways that are
involved in cell adhesion. It has been proposed that the
differential regulation of specific integrins by chemokines
contributes to the individual events during leukocyte che-
motaxis, i.e., although VLA-4 mediates lateral migration,
LFA-1 is critical for transendothelial migration. We demon-
strate here that H-Ras may positively or negatively regulate
LFA-1 avidity via activation of PI3-K and the Raf/ERK
kinase pathway, respectively. Given the importance of
LFA-1 during transendothelial migration, these data reiter-
ate the complex processes involved for successful leukocyte
trafficking.
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